1
|
Akshay SD, Deekshit VK, Mohan Raj J, Maiti B. Outer Membrane Proteins and Efflux Pumps Mediated Multi-Drug Resistance in Salmonella: Rising Threat to Antimicrobial Therapy. ACS Infect Dis 2023; 9:2072-2092. [PMID: 37910638 DOI: 10.1021/acsinfecdis.3c00408] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Despite colossal achievements in antibiotic therapy in recent decades, drug-resistant pathogens have remained a leading cause of death and economic loss globally. One such WHO-critical group pathogen is Salmonella. The extensive and inappropriate treatments for Salmonella infections have led from multi-drug resistance (MDR) to extensive drug resistance (XDR). The synergy between efflux-mediated systems and outer membrane proteins (OMPs) may favor MDR in Salmonella. Differential expression of the efflux system and OMPs (influx) and positional mutations are the factors that can be correlated to the development of drug resistance. Insights into the mechanism of influx and efflux of antibiotics can aid in developing a structurally stable molecule that can be proficient at escaping from the resistance loops in Salmonella. Understanding the strategic responsibilities and developing policies to address the surge of drug resistance at the national, regional, and global levels are the needs of the hour. In this Review, we attempt to aggregate all the available research findings and delineate the resistance mechanisms by dissecting the involvement of OMPs and efflux systems. Integrating major OMPs and the efflux system's differential expression and positional mutation in Salmonella may provide insight into developing strategic therapies for one health application.
Collapse
Affiliation(s)
- Sadanand Dangari Akshay
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Juliet Mohan Raj
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore-575018, India
| |
Collapse
|
2
|
Applied Proteomics in 'One Health'. Proteomes 2021; 9:proteomes9030031. [PMID: 34208880 PMCID: PMC8293331 DOI: 10.3390/proteomes9030031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
‘One Health’ summarises the idea that human health and animal health are interdependent and bound to the health of ecosystems. The purpose of proteomics methodologies and studies is to determine proteins present in samples of interest and to quantify changes in protein expression during pathological conditions. The objectives of this paper are to review the application of proteomics technologies within the One Health concept and to appraise their role in the elucidation of diseases and situations relevant to One Health. The paper develops in three sections. Proteomics Applications in Zoonotic Infections part discusses proteomics applications in zoonotic infections and explores the use of proteomics for studying pathogenetic pathways, transmission dynamics, diagnostic biomarkers and novel vaccines in prion, viral, bacterial, protozoan and metazoan zoonotic infections. Proteomics Applications in Antibiotic Resistance part discusses proteomics applications in mechanisms of resistance development and discovery of novel treatments for antibiotic resistance. Proteomics Applications in Food Safety part discusses the detection of allergens, exposure of adulteration, identification of pathogens and toxins, study of product traits and characterisation of proteins in food safety. Sensitive analysis of proteins, including low-abundant ones in complex biological samples, will be achieved in the future, thus enabling implementation of targeted proteomics in clinical settings, shedding light on biomarker research and promoting the One Health concept.
Collapse
|
3
|
Liang Y, Deng F, Mu P, Wen J, Deng Y. Quantitative proteomics implicates YggT in streptomycin resistance in Salmonella enterica serovar Enteritidis. Biotechnol Lett 2021; 43:919-932. [PMID: 33502659 DOI: 10.1007/s10529-021-03083-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To identify proteins that may be associated with antibiotic resistance in the multidrug-resistant Salmonella enterica D14, by constructing proteomic profiles using mass spectrometry-based label-free quantitative proteomics (LFQP). RESULTS D14 was cultured with four antibiotics (ampicillin, nalidixic acid, streptomycin, and tetracycline) separately. Subsequently, the findings from an equal combination of the four cultures were compared with the profile of sensitive S. enterica 104. 2255 proteins, including 149 differentially up-regulated proteins, were identified. Many of these up-regulated proteins were associated with flagellar assembly and chemotaxis, two-component system, amino acid metabolism, β-lactam resistance, and transmembrane transport. A subset of 10 genes was evaluated via quantitative real-time PCR (qPCR), followed by the construction of cheR, fliS, fliA, arnA, and yggT deletion mutants. Only the yggT-deleted D14 mutant showed decrease in streptomycin resistance, whereas the other deletions had no effect. Furthermore, complementation of yggT and the overexpression of yggT in S. enterica ATCC 14028 increased the streptomycin resistance. Additionally, spot dilution assay results confirmed that Salmonella strains, harboring yggT, exhibited an advantage in the presence of streptomycin. CONCLUSIONS The above proteomic and mutagenic analyses revealed that yggT is involved in streptomycin resistance in S. enterica.
Collapse
Affiliation(s)
- Yansheng Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Fengru Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China. .,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China. .,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Wang L, Zhao X, Xia X, Zhu C, Qin W, Xu Y, Hang B, Sun Y, Chen S, Zhang H, Jiang J, Hu J, Fotina H, Zhang G. Antimicrobial Peptide JH-3 Effectively Kills Salmonella enterica Serovar Typhimurium Strain CVCC541 and Reduces Its Pathogenicity in Mice. Probiotics Antimicrob Proteins 2020; 11:1379-1390. [PMID: 31001786 DOI: 10.1007/s12602-019-09533-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Salmonella is an important zoonotic pathogen and is a major cause of gastrointestinal diseases worldwide. The current serious problem of antibiotic abuse has prompted the search for new substitutes for antibiotics. JH-3 is a small antimicrobial peptide with broad-spectrum bactericidal activity. In this study, we showed that JH-3 has good bactericidal activity towards the clinical isolate Salmonella enterica serovar Typhimurium strain CVCC541. The minimum inhibitory concentration (MIC) of JH-3 against this bacterium was determined to be 100 μg/mL, which could decrease the number of CVCC541 cells by 1000-fold in vitro within 5 h. The transmission electron microscopy (TEM) results showed that JH-3 can damage the cell wall and membrane of CVCC541, leading to the leakage of cell contents and subsequent cell death. To measure the bactericidal activity of CVCC541-infected mice were treated intraperitoneally 40 or 10 mg/kg JH-3 at 2 h or 3 days postinfection. Our results showed that treatment with 40 mg/kg JH-3 at 2 h postinfection had the best therapeutic effect and could significantly protect mice from a lethal dose of CVCC541. Furthermore, the clinical symptoms, bacterial burden in blood and organs, and intestinal pathological changes were all decreased and were close to normal. This study examined the therapeutic effect of the antimicrobial peptide JH-3 against S. enterica CVCC541 infection for the first time and determined the therapeutic effect of different JH-3 doses and treatment times, laying the foundation for studies of new antimicrobial agents.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China.,Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, People's Republic of China
| | - Xueqin Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.,Sumy National Agrarian University, Sumy, Ukraine
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Chunling Zhu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Wanhai Qin
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Bolin Hang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Shijun Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Huihui Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China. .,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China.
| | - Hanna Fotina
- Sumy National Agrarian University, Sumy, Ukraine
| | - Gaiping Zhang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, People's Republic of China
| |
Collapse
|
5
|
Anti-Salmonella mode of action of natural L-phenyl lactic acid purified from Lactobacillus plantarum ZJ316. Appl Microbiol Biotechnol 2020; 104:5283-5292. [PMID: 32307571 DOI: 10.1007/s00253-020-10503-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022]
Abstract
Salmonella is a serious foodborne pathogen responsible for more than 90 million cases of gastroenteritis worldwide annually. Due to the gradual increase in antibiotic-resistant Salmonella strains, the identification of natural antibacterial substances is urgently needed. Herein, we purified natural L-phenyl lactic acid (L-PLA) from Lactobacillus plantarum ZJ316 and revealed its antimicrobial mode against Salmonella enterica subsp. enterica ATCC 14028. L-PLA (98.14% pure) was obtained using the macroporous resin XAD-16, solid-phase extraction (SPE), reverse-phase high-performance liquid chromatography (RP-HPLC), and chiral chromatography. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results showed that the cell morphology was severely compromised. Transmembrane electrical potential (ΔΨ), transmembrane pH gradient (ΔpH), intracellular ATP level, extracellular electrical conductivity (EC), and genomic DNA analyses were employed to evaluate the antibacterial mode of action of L-PLA. The proton motive force (PMF) and ATP of Salmonella cells rapidly dissipated, and the EC markedly increased. The gel retardation assay demonstrated that L-PLA could bind to genomic DNA and intercalate into the nucleic acids. The anti-Salmonella mode of action of L-PLA was attributed to the destruction of the cell membrane and genomic DNA binding. This research suggests that L-PLA has potential applications as an antimicrobial agent in food, medicine, and other fields. KEY POINTS: • Natural L-PLA was purified from L. plantarum ZJ316 with a purity of 98.14%. • L-PLA effectively inhibited Salmonella strains by antibacterial activities and MICs. • Membrane destruction and binding with DNA are the anti-Salmonella modes of L-PLA.
Collapse
|
6
|
Igrejas G, Correia S, Silva V, Hébraud M, Caniça M, Torres C, Gomes C, Nogueira F, Poeta P. Planning a One Health Case Study to Evaluate Methicillin Resistant Staphylococcus aureus and Its Economic Burden in Portugal. Front Microbiol 2018; 9:2964. [PMID: 30581421 PMCID: PMC6292916 DOI: 10.3389/fmicb.2018.02964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important multidrug-resistant nosocomial pathogens worldwide with infections leading to high rates of morbidity and mortality, a significant burden to human and veterinary clinical practices. The ability of S. aureus colonies to form biofilms on biotic and abiotic surfaces contributes further to its high antimicrobial resistance (AMR) rates and persistence in both host and non-host environments, adding a major ecological dimension to the problem. While there is a lot of information on MRSA prevalence in humans, data about MRSA in animal populations is scarce, incomplete and dispersed. This project is an attempt to evaluate the current epidemiological status of MRSA in Portugal by making a single case study from a One Health perspective. We aim to determine the prevalence of MRSA in anthropogenic sources liable to contaminate different animal habitats. The results obtained will be compiled with existing data on antibiotic resistant staphylococci from Portugal in a user-friendly database, to generate a geographically detailed epidemiological output for surveillance of AMR in MRSA. To achieve this, we will first characterize AMR and genetic lineages of MRSA circulating in northern Portugal in hospital wastewaters, farms near hospitals, farm animals that contact with humans, and wild animals. This will indicate the extent of the AMR problem in the context of local and regional human-animal-environment interactions. MRSA strains will then be tested for their ability to form biofilms. The proteomes of the strains will be compared to better elucidate their AMR mechanisms. Proteomics data will be integrated with the genomic and transcriptomic data obtained. The vast amount of information expected from this omics approach will improve our understanding of AMR in MRSA biofilms, and help us identify new vaccine candidates and biomarkers for early diagnosis and innovative therapeutic strategies to tackle MRSA biofilm-associated infections and potentially other AMR superbugs.
Collapse
Affiliation(s)
- Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| | - Susana Correia
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Vanessa Silva
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Michel Hébraud
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR0454 MEDiS, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France.,Institut National de la Recherche Agronomique, Plate-Forme d'Exploration du Métabolisme Composante Protéomique, UR0370 QuaPA, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain.,Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Catarina Gomes
- Centro de Administração e Políticas Públicas, Instituto Superior de Ciências Sociais e Políticas, Universidade de Lisboa, Lisbon, Portugal
| | - Fernanda Nogueira
- Centro de Administração e Políticas Públicas, Instituto Superior de Ciências Sociais e Políticas, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Poeta
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
7
|
Correia S, Hébraud M, Chafsey I, Chambon C, Viala D, Torres C, Caniça M, Capelo JL, Poeta P, Igrejas G. Subproteomic signature comparison of in vitro selected fluoroquinolone resistance and ciprofloxacin stress in Salmonella Typhimurium DT104B. Expert Rev Proteomics 2017; 14:941-961. [PMID: 28871888 DOI: 10.1080/14789450.2017.1375856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Fluoroquinolone resistance in nontyphoidal Salmonella is a situation of serious and international concern, particularly in S. Typhimurium DT104B multiresistant strains. Although known to be multifactorial, fluoroquinolone resistance is still far from a complete understanding. METHODS Subproteome changes between an experimentally selected fluoroquinolone-resistant strain (Se6-M) and its parent strain (Se6), and also in Se6-M under ciprofloxacin (CIP) stress, were evaluated in order to give new insights into the mechanisms involved. Proteomes were compared at the intracellular and membrane levels by a 2-DE~LC-MS/MS and a shotgun LC-MS/MS approach, respectively. RESULTS In total, 35 differentially abundant proteins were identified when comparing Se6 with Se6-M (25 more abundant in Se6 and 10 more abundant in Se6-M) and 82 were identified between Se6-M and Se6-M+CIP (51 more abundant in Se6-M and 31 more abundant under ciprofloxacin stress). CONCLUSION Several proteins with known and possible roles in quinolone resistance were identified which provide important information about mechanism-related differential protein expression, supporting the current knowledge and also leading to new testable hypotheses on the mechanism of action of fluoroquinolone drugs.
Collapse
Affiliation(s)
- Susana Correia
- a Functional Genomics and Proteomics Unit , University of Trás-os-Montes and Alto Douro , Vila Real , Portugal.,b Department of Genetics and Biotechnology , University of Trás-os-Montes and Alto Douro , Vila Real , Portugal.,c Veterinary Science Department , University of Trás-os-Montes and Alto Douro , Vila Real , Portugal.,d UCIBIO-REQUIMTE, Faculty of Science and Technology , Nova University of Lisbon , Caparica , Portugal
| | - Michel Hébraud
- e UR454 Microbiology , Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes , site de Theix , Saint-Genès Champanelle , France.,f Plate-Forme d'Exploration du Métabolisme composante protéomique, UR370 QuaPA , Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes , site de Theix , Saint-Genès Champanelle , France
| | - Ingrid Chafsey
- e UR454 Microbiology , Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes , site de Theix , Saint-Genès Champanelle , France
| | - Christophe Chambon
- f Plate-Forme d'Exploration du Métabolisme composante protéomique, UR370 QuaPA , Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes , site de Theix , Saint-Genès Champanelle , France
| | - Didier Viala
- f Plate-Forme d'Exploration du Métabolisme composante protéomique, UR370 QuaPA , Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes , site de Theix , Saint-Genès Champanelle , France
| | - Carmen Torres
- g Área de Bioquímica y Biología Molecular , Universidad de La Rioja , Logroño , Spain
| | - Manuela Caniça
- h National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases , National Health Institute Doutor Ricardo Jorge (INSA) , Lisbon , Portugal
| | - José Luis Capelo
- d UCIBIO-REQUIMTE, Faculty of Science and Technology , Nova University of Lisbon , Caparica , Portugal.,i Faculty of Sciences and Technology , ProteoMass Scientific Society , Caparica , Portugal
| | - Patrícia Poeta
- c Veterinary Science Department , University of Trás-os-Montes and Alto Douro , Vila Real , Portugal.,d UCIBIO-REQUIMTE, Faculty of Science and Technology , Nova University of Lisbon , Caparica , Portugal
| | - Gilberto Igrejas
- a Functional Genomics and Proteomics Unit , University of Trás-os-Montes and Alto Douro , Vila Real , Portugal.,b Department of Genetics and Biotechnology , University of Trás-os-Montes and Alto Douro , Vila Real , Portugal.,d UCIBIO-REQUIMTE, Faculty of Science and Technology , Nova University of Lisbon , Caparica , Portugal
| |
Collapse
|
8
|
Correia S, Hébraud M, Chafsey I, Chambon C, Viala D, Sáenz Y, Capelo JL, Poeta P, Igrejas G. Comparative subproteomic analysis of clinically acquired fluoroquinolone resistance and ciprofloxacin stress in Salmonella Typhimurium DT104B. Proteomics Clin Appl 2017; 11. [PMID: 28314077 DOI: 10.1002/prca.201600107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/21/2017] [Accepted: 03/07/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE Antimicrobial resistance is a worldwide public health threat and Salmonella enterica subsp. enterica serotype Typhimurium phage type DT104B multiresistant strains with additional quinolone resistance have been responsible for global outbreaks and high mortality. Quinolone resistance is known to be multifactorial but is still far from a complete understanding. To give new insights about the resistance mechanisms involved, this work aimed to evaluate subproteome changes between an S. Typhimurium DT104B clinical strain that acquired fluoroquinolone resistance after treatment (Se20) and its pretreatment parental strain (Se6), and also subproteome variations in Se20 under ciprofloxacin (CIP) stress (Se20+CIP). EXPERIMENTAL DESIGN The proteomes were compared at the intracellular and membrane levels by a 2-DE∼LC-MS/MS and a shotgun LC-MS/MS approach, respectively. RESULTS In total, 14 differentially abundant proteins were identified when comparing Se6 with Se20 and 91 were identified between Se20 and Se20+CIP. Several proteins with known and possible roles in quinolone resistance (AAC(6')-Ib-cr4, OmpD, OmpX, GlmS, GlmU, H-NS, etc.) were identified and discussed. CONCLUSIONS AND CLINICAL RELEVANCE The great number of proteins identified in this study provides important information about mechanism-related differential protein expression which supports the current knowledge and might lead to new testable hypotheses on the mechanism of action of fluoroquinolone drugs.
Collapse
Affiliation(s)
- Susana Correia
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,UCIBIO-REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal
| | - Michel Hébraud
- Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne (UCA), UMR Microbiologie Environnement Digestif et Santé (MEDiS), site de Theix, France.,Institut National de la Recherche Agronomique (INRA), UR370 QuaPA, Plate-Forme d'Exploration du Métabolisme composante protéomique, site de Theix, France
| | - Ingrid Chafsey
- Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne (UCA), UMR Microbiologie Environnement Digestif et Santé (MEDiS), site de Theix, France
| | - Christophe Chambon
- Institut National de la Recherche Agronomique (INRA), UR370 QuaPA, Plate-Forme d'Exploration du Métabolisme composante protéomique, site de Theix, France
| | - Didier Viala
- Institut National de la Recherche Agronomique (INRA), UR370 QuaPA, Plate-Forme d'Exploration du Métabolisme composante protéomique, site de Theix, France
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logrono, Spain
| | - José Luis Capelo
- UCIBIO-REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal.,ProteoMass Scientific Society, Faculty of Sciences and Technology, Caparica Campus, Caparica, Portugal
| | - Patrícia Poeta
- Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,UCIBIO-REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal
| | - Gilberto Igrejas
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,UCIBIO-REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal
| |
Collapse
|
9
|
Zhi XY, Jiang Z, Yang LL, Huang Y. The underlying mechanisms of genetic innovation and speciation in the family Corynebacteriaceae: A phylogenomics approach. Mol Phylogenet Evol 2017; 107:246-255. [DOI: 10.1016/j.ympev.2016.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 01/01/2023]
|
10
|
Magalhães P, Pinto L, Gonçalves A, Araújo JE, Santos HM, Capelo JL, Saénz Y, de Toro M, Torres C, Chambon C, Hébraud M, Poeta P, Igrejas G. Could transformation mechanisms of acetylase-harboring pMdT1 plasmid be evaluated through proteomic tools in Escherichia coli? J Proteomics 2016; 145:103-111. [PMID: 27072110 DOI: 10.1016/j.jprot.2016.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 11/19/2022]
Abstract
UNLABELLED Escherichia coli is a commensal microorganism of the gastrointestinal tract of animals and humans and it is an excellent model organism for the study of antibiotic resistance mechanisms. The resistance transmission and other characteristics of bacteria are based on different types of gene transfer occurring throughout the bacterial evolution. One of which is horizontal gene transfer that allows us to understand the ability of bacteria to acquire new genes. One dimensional and two dimensional electrophoresis (2-DE) techniques were performed in order to identify and characterize the proteome of two E. coli strains: Electromax DH10B, a transformation-ready strain; and TF-Se20, the Electromax DH10B that contains the aac(6')-Ib-cr4-harboring pMdT1 plasmid. After 2-DE and subsequent analysis by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), it was possible to identify 76 distinct proteins on the TF-Se20 strain, whereas 71 had a known function. From Electromax DH10B strain, 72 different proteins were identified of which 71 were associated with a biological process. The protein of interest, aminoglycoside N-(6')-acetyltransferase type 1, was identified by MALDI-TOF MS. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique was performed to determine its sequence. Seventy six percent of the acetylase sequence was reconstructed only in the TF-Se20 strain, representing the single protein associated to antibiotic resistance. MALDI-TOF MS and LC-MS/MS approaches allowed us to determine the total proteome of both strains, as well as the acetylase sequence. Both of them enhance the ability to obtain more accurate information about the mechanisms of antimicrobial resistance. The pMdT1 plasmid brings a new perspective in understanding the metabolic processes that lead to antibiotic resistance. BIOLOGICAL SIGNIFICANCE This study highlights the importance of proteomics and bioinformatics in understanding mechanisms of gene transfer and antibiotic resistance. These two approaches allow to compare the protein expression in different samples, as well as different biological processes related to each protein.
Collapse
Affiliation(s)
- Pedro Magalhães
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Luís Pinto
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Alexandre Gonçalves
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - José Eduardo Araújo
- UCIBIO-REQUIMTE, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal
| | - Hugo M Santos
- UCIBIO-REQUIMTE, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal; ProteoMass Scientific Society, Faculty of Sciences and Technology, Caparica, Portugal
| | - José Luis Capelo
- UCIBIO-REQUIMTE, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal; ProteoMass Scientific Society, Faculty of Sciences and Technology, Caparica, Portugal
| | - Yolanda Saénz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - María de Toro
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain; Instituto de Biomedicina y Biotecnologia de Cantabria IBBTEC, Universidad de Cantabria/CSIC, Santander, Spain
| | - Carmen Torres
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain; Department of Food and Agriculture, Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Christophe Chambon
- Institut National de la Recherche Agronomique, Centre Auvergne-Rhône-Alpes, Plate-Forme d'Exploration du Métabolisme composante protéomique (PFEMcp), France
| | - Michel Hébraud
- Institut National de la Recherche Agronomique, Centre Auvergne-Rhône-Alpes, Plate-Forme d'Exploration du Métabolisme composante protéomique (PFEMcp), France; Institut National de la Recherche Agronomique, Centre Auvergne-Rhône-Alpes, UR454 Microbiologie, France
| | - Patrícia Poeta
- UCIBIO-REQUIMTE, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal; Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Gilberto Igrejas
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; UCIBIO-REQUIMTE, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal.
| |
Collapse
|
11
|
Impacts of experimentally induced and clinically acquired quinolone resistance on the membrane and intracellular subproteomes of Salmonella Typhimurium DT104B. J Proteomics 2016; 145:46-59. [PMID: 27063838 DOI: 10.1016/j.jprot.2016.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/23/2022]
Abstract
UNLABELLED Antimicrobial resistance is a growing public health threat worldwide that is still far from a complete understanding. Salmonella Typhimurium DT104 multiresistant strains with additional quinolone resistance are highly adaptive and have been responsible for global outbreaks and high mortality. In order to give new insights about the resistance mechanisms involved, the developed work aimed to point out subproteome changes between a DT104B clinical strain (Se20) that acquired quinolone resistance after patient treatment and an in vitro induced clonally related highly-resistant mutant (Se6-M). The intracellular subproteomes were compared by a 2-DE/LC-MS/MS approach and a total of 50 unique proteins were identified (32 more abundant in Se20 and 18 more abundant in Se6-M). The membrane subproteomes were analysed by a shotgun LC-MS/MS approach, where 7 differentially abundant proteins were identified (5 more abundant in Se6-M and 2 more abundant in Se20). Several proteins known to be directly related to quinolone resistance mechanisms (AAC(6')-Ib-cr4, OmpC, OmpD, OmpX, etc.) and MipA, recently reported as novel antibiotic resistance-related protein, were identified. Other proteins (Fur, SodA, SucB, AtpD/AtpG, OmpC, GltI, CheM/CheB, etc.) reflecting the metabolic re-adjustments occurred in each strain in order to acquire quinolone resistance were also identified. Moreover, proteins involved in lipopolysaccharide biosynthesis (RfbF, RfbG, GmhA) and export (LptA) were detected, supporting the importance of exploring these proteins as targets for the development of new antimicrobial agents. In conclusion, this study provides new insights into the mechanisms involved in the acquisition of antibiotic resistance, which can be highly valuable for the development of improved therapeutic strategies. BIOLOGICAL SIGNIFICANCE This comparative proteomic study revealed a large number of differentially regulated proteins involved in antibiotic resistance which can be of great value to drug discovery, research and development programmes.
Collapse
|
12
|
Caniça M, Manageiro V, Jones-Dias D, Clemente L, Gomes-Neves E, Poeta P, Dias E, Ferreira E. Current perspectives on the dynamics of antibiotic resistance in different reservoirs. Res Microbiol 2015; 166:594-600. [PMID: 26247891 DOI: 10.1016/j.resmic.2015.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 01/18/2023]
Abstract
Antibiotic resistance consists of a dynamic web. In this review, we describe the path by which different antibiotic residues and antibiotic resistance genes disseminate among relevant reservoirs (human, animal, and environmental settings), evaluating how these events contribute to the current scenario of antibiotic resistance. The relationship between the spread of resistance and the contribution of different genetic elements and events is revisited, exploring examples of the processes by which successful mobile resistance genes spread across different niches. The importance of classic and next generation molecular approaches, as well as action plans and policies which might aid in the fight against antibiotic resistance, are also reviewed.
Collapse
Affiliation(s)
- Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal.
| | - Daniela Jones-Dias
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal.
| | - Lurdes Clemente
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Lisbon, Portugal.
| | - Eduarda Gomes-Neves
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Oporto, Portugal.
| | - Patrícia Poeta
- Department of Animal and Veterinary Sciences (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Elsa Dias
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal; Department of Environmental Health, National Institute of Health, Lisbon, Portugal.
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.
| |
Collapse
|