1
|
Tong T, Huang M, Yan B, Lin B, Yu J, Teng Q, Li P, Pang J. Hippo signaling modulation and its biological implications in urological malignancies. Mol Aspects Med 2024; 98:101280. [PMID: 38870717 DOI: 10.1016/j.mam.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/27/2024] [Accepted: 05/19/2024] [Indexed: 06/15/2024]
Abstract
Although cancer diagnosis and treatment have rapidly advanced in recent decades, urological malignancies, which have high morbidity and mortality rates, are among the most difficult diseases to treat. The Hippo signaling is an evolutionarily conserved pathway in organ size control and tissue homeostasis maintenance. Its downstream effectors, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), are key modulators of numerous physiological and pathological processes. Recent work clearly indicates that Hippo signaling is frequently altered in human urological malignancies. In this review, we discuss the disparate viewpoints on the upstream regulators of YAP/TAZ and their downstream targets and systematically summarize the biological implications. More importantly, we highlight the molecular mechanisms involved in Hippo-YAP signaling to improve our understanding of its role in every stage of prostate cancer, bladder cancer and kidney cancer progression. A better understanding of the biological outcomes of YAP/TAZ modulation will contribute to the establishment of future therapeutic approaches.
Collapse
Affiliation(s)
- Tongyu Tong
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Mengjun Huang
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Binyuan Yan
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Bingbiao Lin
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China; Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Qiliang Teng
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Jun Pang
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
2
|
Yang S, Huang G, Liang X, Sun Y, Xian L. Curcumol reduces lower limb arteriosclerosis in rats by inhibiting human arterial smooth muscle cell activity. Clin Exp Pharmacol Physiol 2024; 51:e13867. [PMID: 38684457 DOI: 10.1111/1440-1681.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular diseases, particularly those involving arterial stenosis and smooth muscle cell proliferation, pose significant health risks. This study aimed to investigate the therapeutic potential of curcumol in inhibiting platelet-derived growth factor-BB (PDGF-BB)-induced human aortic smooth muscle cell (HASMC) proliferation, migration and autophagy. Using cell viability assays, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays and Western Blot analyses, we observed that curcumol effectively attenuated PDGF-BB-induced HASMC proliferation and migration in a concentration-dependent manner. Furthermore, curcumol mitigated PDGF-BB-induced autophagy, as evidenced by the downregulation of LC3-II/LC3-I ratio and upregulation of P62. In vivo experiments using an arteriosclerosis obliterans model demonstrated that curcumol treatment significantly ameliorated arterial morphology and reduced stenosis. Additionally, curcumol inhibited the activity of the KLF5/COX2 axis, a key pathway in vascular diseases. These findings suggest that curcumol has the potential to serve as a multi-target therapeutic agent for vascular diseases.
Collapse
MESH Headings
- Animals
- Sesquiterpenes/pharmacology
- Sesquiterpenes/therapeutic use
- Humans
- Rats
- Arteriosclerosis/drug therapy
- Arteriosclerosis/pathology
- Arteriosclerosis/metabolism
- Cell Proliferation/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Male
- Cell Movement/drug effects
- Lower Extremity/blood supply
- Autophagy/drug effects
- Rats, Sprague-Dawley
- Becaplermin/pharmacology
Collapse
Affiliation(s)
- Shengzhuang Yang
- Department of Cardiovascular Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gaosheng Huang
- Department of Cardiovascular Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiangsen Liang
- Department of Cardiovascular Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Sun
- Department of Cardiovascular Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lei Xian
- Department of Cardiovascular Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Kumar A, BharathwajChetty B, Manickasamy MK, Unnikrishnan J, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Natural compounds targeting YAP/TAZ axis in cancer: Current state of art and challenges. Pharmacol Res 2024; 203:107167. [PMID: 38599470 DOI: 10.1016/j.phrs.2024.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer has become a burgeoning global healthcare concern marked by its exponential growth and significant economic ramifications. Though advancements in the treatment modalities have increased the overall survival and quality of life, there are no definite treatments for the advanced stages of this malady. Hence, understanding the diseases etiologies and the underlying molecular complexities, will usher in the development of innovative therapeutics. Recently, YAP/TAZ transcriptional regulation has been of immense interest due to their role in development, tissue homeostasis and oncogenic transformations. YAP/TAZ axis functions as coactivators within the Hippo signaling cascade, exerting pivotal influence on processes such as proliferation, regeneration, development, and tissue renewal. In cancer, YAP is overexpressed in multiple tumor types and is associated with cancer stem cell attributes, chemoresistance, and metastasis. Activation of YAP/TAZ mirrors the cellular "social" behavior, encompassing factors such as cell adhesion and the mechanical signals transmitted to the cell from tissue structure and the surrounding extracellular matrix. Therefore, it presents a significant vulnerability in the clogs of tumors that could provide a wide window of therapeutic effectiveness. Natural compounds have been utilized extensively as successful interventions in the management of diverse chronic illnesses, including cancer. Owing to their capacity to influence multiple genes and pathways, natural compounds exhibit significant potential either as adjuvant therapy or in combination with conventional treatment options. In this review, we delineate the signaling nexus of YAP/TAZ axis, and present natural compounds as an alternate strategy to target cancer.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
4
|
Tang L, Xu H, Wu T, Wu W, Lu Y, Gu J, Wang X, Zhou M, Chen Q, Sun X, Cai H. Advances in tumor microenvironment and underlying molecular mechanisms of bladder cancer: a systematic review. Discov Oncol 2024; 15:111. [PMID: 38602556 PMCID: PMC11009183 DOI: 10.1007/s12672-024-00902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024] Open
Abstract
Bladder cancer is one of the most frequent malignant tumors of the urinary system. The prevalence of bladder cancer among men and women is roughly 5:2, and both its incidence and death have been rising steadily over the past few years. At the moment, metastasis and recurrence of advanced bladder cancer-which are believed to be connected to the malfunction of multigene and multilevel cell signaling network-remain the leading causes of bladder cancer-related death. The therapeutic treatment of bladder cancer will be greatly aided by the elucidation of these mechanisms. New concepts for the treatment of bladder cancer have been made possible by the advancement of research technologies and a number of new treatment options, including immunotherapy and targeted therapy. In this paper, we will extensively review the development of the tumor microenvironment and the possible molecular mechanisms of bladder cancer.
Collapse
Affiliation(s)
- Liu Tang
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Tong Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Wenhao Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Yuhao Lu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Jijia Gu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Xiaoling Wang
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Mei Zhou
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Qiuyang Chen
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Xuan Sun
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Chong Y, Xu S, Liu T, Guo P, Wang X, He D, Zhu G. Curcumin Inhibits Vasculogenic Mimicry via Regulating ETS-1 in Renal Cell Carcinoma. Curr Cancer Drug Targets 2024; 24:1031-1046. [PMID: 38299401 DOI: 10.2174/0115680096277126240102060617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Metastatic renal cell carcinoma (RCC) poses a huge challenge once it has become resistant to targeted therapy. Vasculogenic mimicry (VM) is a novel blood supply system formed by tumor cells that can circumvent molecular targeted therapies. As one of the herbal remedies, curcumin has been demonstrated to play antineoplastic effects in many different types of human cancers; however, its function and mechanism of targeting VM in RCC remains unknown. OBJECTIVE Here, in the work, we explored the role of curcumin and its molecular mechanism in the regulation of VM formation in RCC. METHODS RNA-sequencing analysis, immunoblotting, and immunohistochemistry were used to detect E Twenty Six-1(ETS-1), vascular endothelial Cadherin (VE-Cadherin), and matrix metallopeptidase 9 (MMP9) expressions in RCC cells and tissues. RNA sequencing was used to screen the differential expressed genes. Plasmid transfections were used to transiently knock down or overexpress ETS-1. VM formation was determined by tube formation assay and animal experiments. CD31-PAS double staining was used to label the VM channels in patients and xenograft samples. RESULTS Our results demonstrated that VM was positively correlated with RCC grades and stages using clinical patient samples. Curcumin inhibited VM formation in dose and time-dependent manner in vitro. Using RNA-sequencing analysis, we discovered ETS-1 as a potential transcriptional factor regulating VM formation. Knocking down or overexpression of ETS-1 decreased or increased the VM formation, respectively and regulated the expression of VE-Cadherin and MMP9. Curcumin could inhibit VM formation by suppressing ETS-1, VE-Cadherin, and MMP9 expression both in vitro and in vivo. CONCLUSION Our finding might indicate that curcumin could inhibit VM by regulating ETS-1, VE-Cadherin, and MMP9 expression in RCC cell lines. Curcumin could be considered as a potential anti-cancer compound by inhibiting VM in RCC progression.
Collapse
MESH Headings
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/metabolism
- Humans
- Curcumin/pharmacology
- Proto-Oncogene Protein c-ets-1/metabolism
- Proto-Oncogene Protein c-ets-1/genetics
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/pathology
- Kidney Neoplasms/metabolism
- Animals
- Mice
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Xenograft Model Antitumor Assays
- Mice, Nude
- Male
- Gene Expression Regulation, Neoplastic/drug effects
- Female
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinase 9/genetics
- Cadherins/metabolism
- Cadherins/genetics
- Cell Line, Tumor
- Mice, Inbred BALB C
- Cell Proliferation/drug effects
- Antigens, CD
Collapse
Affiliation(s)
- Yue Chong
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guodong Zhu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
6
|
Sanati M, Afshari AR, Ahmadi SS, Moallem SA, Sahebkar A. Modulation of the ubiquitin-proteasome system by phytochemicals: Therapeutic implications in malignancies with an emphasis on brain tumors. Biofactors 2023; 49:782-819. [PMID: 37162294 DOI: 10.1002/biof.1958] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Tabei A, Sakairi T, Hamatani H, Ohishi Y, Watanabe M, Nakasatomi M, Ikeuchi H, Kaneko Y, Kopp JB, Hiromura K. The miR-143/145 cluster induced by TGF-β1 suppresses Wilms' tumor 1 expression in cultured human podocytes. Am J Physiol Renal Physiol 2023; 325:F121-F133. [PMID: 37167274 PMCID: PMC10511167 DOI: 10.1152/ajprenal.00313.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023] Open
Abstract
Transforming growth factor (TGF)-β1 contributes to podocyte injury in various glomerular diseases, including diabetic kidney disease, probably at least in part by attenuating the expression of Wilms' tumor 1 (WT1). However, the precise mechanisms remain to be defined. We performed miRNA microarray analysis in a human podocyte cell line cultured with TGF-β1 to examine the roles of miRNAs in podocyte damage. The microarray analysis identified miR-143-3p as the miRNA with the greatest increase following exposure to TGF-β1. Quantitative RT-PCR confirmed a significant increase in the miR-143-3p/145-5p cluster in TGF-β1-supplemented cultured podocytes and demonstrated upregulation of miR-143-3p in the glomeruli of mice with type 2 diabetes. Ectopic expression of miR-143-3p and miR-145-5p suppressed WT1 expression in cultured podocytes. Furthermore, inhibition of Smad or mammalian target of rapamycin signaling each partially reversed the TGF-β1-induced increase in miR-143-3p/145-5p and decrease in WT1. In conclusion, TGF-β1 induces expression of miR-143-3p/145-5p in part through Smad and mammalian target of rapamycin pathways, and miR-143-3p/145-5p reduces expression of WT1 in cultured human podocytes. miR-143-3p/145-5p may contribute to TGF-β1-induced podocyte injury.NEW & NOTEWORTHY This study by miRNA microarray analysis demonstrated that miR-143-3p expression was upregulated in cultured human podocytes following exposure to transforming growth factor (TGF)-β1. Furthermore, we report that the miR-143/145 cluster contributes to decreased expression of Wilms' tumor 1, which represents a possible mechanism for podocyte injury induced by TGF-β1. This study is important because it presents a novel mechanism for TGF-β-associated glomerular diseases, including diabetic kidney disease (DKD), and suggests potential therapeutic strategies targeting miR-143-3p/145-5p.
Collapse
Affiliation(s)
- Akifumi Tabei
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Toru Sakairi
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hiroko Hamatani
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yuko Ohishi
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Mitsuharu Watanabe
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Masao Nakasatomi
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hidekazu Ikeuchi
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yoriaki Kaneko
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Keiju Hiromura
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
8
|
Zeng L, Zhu Y, Moreno CS, Wan Y. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin Cancer Biol 2023; 90:29-44. [PMID: 36806560 PMCID: PMC10023514 DOI: 10.1016/j.semcancer.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/04/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Despite the development of cancer therapies, the success of most treatments has been impeded by drug resistance. The crucial role of tumor cell plasticity has emerged recently in cancer progression, cancer stemness and eventually drug resistance. Cell plasticity drives tumor cells to reversibly convert their cell identity, analogous to differentiation and dedifferentiation, to adapt to drug treatment. This phenotypical switch is driven by alteration of the transcriptome. Several pluripotent factors from the KLF and SOX families are closely associated with cancer pathogenesis and have been revealed to regulate tumor cell plasticity. In this review, we particularly summarize recent studies about KLF4, KLF5 and SOX factors in cancer development and evolution, focusing on their roles in cancer initiation, invasion, tumor hierarchy and heterogeneity, and lineage plasticity. In addition, we discuss the various regulation of these transcription factors and related cutting-edge drug development approaches that could be used to drug "undruggable" transcription factors, such as PROTAC and PPI targeting, for targeted cancer therapy. Advanced knowledge could pave the way for the development of novel drugs that target transcriptional regulation and could improve the outcome of cancer therapy.
Collapse
Affiliation(s)
- Lidan Zeng
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Yueming Zhu
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Department of Biomedical Informatics, Winship Cancer Institute, Emory University School of Medicine, USA.
| | - Yong Wan
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA.
| |
Collapse
|
9
|
Dennis EP, Watson RN, McPate F, Briggs MD. Curcumin Reduces Pathological Endoplasmic Reticulum Stress through Increasing Proteolysis of Mutant Matrilin-3. Int J Mol Sci 2023; 24:ijms24021496. [PMID: 36675026 PMCID: PMC9867355 DOI: 10.3390/ijms24021496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The intracellular retention of mutant cartilage matrix proteins and pathological endoplasmic reticulum (ER) stress disrupts ossification and has been identified as a shared disease mechanism in a range of skeletal dysplasias including short limbed-dwarfism, multiple epiphyseal dysplasia type 5 (EDM5). Although targeting ER stress is an attractive avenue for treatment and has proven successful in the treatment of a related skeletal dysplasia, to date no drugs have proven successful in reducing ER stress in EDM5 caused by the retention of mutant matrilin-3. Our exciting findings show that by using our established luciferase ER stress screening assay, we can identify a "natural" chemical, curcumin, which is able to reduce pathological ER stress in a cell model of EDM5 by promoting the proteasomal degradation mutant matrilin-3. Therefore, this is an important in vitro study in which we describe, for the first time, the success of a naturally occurring chemical as a potential treatment for this currently incurable rare skeletal disease. As studies show that curcumin can be used as a potential treatment for range of diseases in vitro, current research is focused on developing novel delivery strategies to enhance its bioavailability. This is an important and exciting area of research that will have significant clinical impact on a range of human diseases including the rare skeletal disease, EDM5.
Collapse
|
10
|
The Roles of miRNAs in Predicting Bladder Cancer Recurrence and Resistance to Treatment. Int J Mol Sci 2023; 24:ijms24020964. [PMID: 36674480 PMCID: PMC9864802 DOI: 10.3390/ijms24020964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Bladder cancer (BCa) is associated with significant morbidity, with development linked to environmental, lifestyle, and genetic causes. Recurrence presents a significant issue and is managed in the clinical setting with intravesical chemotherapy or immunotherapy. In order to address challenges such as a limited supply of BCG and identifying cases likely to recur, it would be advantageous to use molecular biomarkers to determine likelihood of recurrence and treatment response. Here, we review microRNAs (miRNAs) that have shown promise as predictors of BCa recurrence. MiRNAs are also discussed in the context of predicting resistance or susceptibility to BCa treatment.
Collapse
|
11
|
Bhavnagari H, Raval A, Shah F. Deciphering Potential Role of Hippo Signaling Pathway in Breast Cancer: A Comprehensive Review. Curr Pharm Des 2023; 29:3505-3518. [PMID: 38141194 DOI: 10.2174/0113816128274418231215054210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/25/2023]
Abstract
Breast cancer is a heterogeneous disease and a leading malignancy around the world. It is a vital cause of untimely mortality among women. Drug resistance is the major challenge for effective cancer therapeutics. In contrast, cancer stem cells (CSCs) are one of the reasons for drug resistance, tumor progression, and metastasis. The small population of CSCs present in each tumor has the ability of self-renewal, differentiation, and tumorigenicity. CSCs are often identified and enriched using a variety of cell surface markers (CD44, CD24, CD133, ABCG2, CD49f, LGR5, SSEA-3, CD70) that exert their functions by different regulatory networks, i.e., Notch, Wnt/β-catenin, hedgehog (Hh), and Hippo signaling pathways. Particularly the Hippo signaling pathway is the emerging and very less explored cancer stem cell pathway. Here, in this review, the Hippo signaling molecules are elaborated with respect to their ability of stemness as epigenetic modulators and how these molecules can be targeted for better cancer treatment and to overcome drug resistance.
Collapse
Affiliation(s)
- Hunayna Bhavnagari
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Apexa Raval
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky Shah
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
12
|
Kruppel-like Factors in Skeletal Physiology and Pathologies. Int J Mol Sci 2022; 23:ijms232315174. [PMID: 36499521 PMCID: PMC9741390 DOI: 10.3390/ijms232315174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Kruppel-like factors (KLFs) belong to a large group of zinc finger-containing transcription factors with amino acid sequences resembling the Drosophila gap gene Krüppel. Since the first report of molecular cloning of the KLF family gene, the number of KLFs has increased rapidly. Currently, 17 murine and human KLFs are known to play crucial roles in the regulation of transcription, cell proliferation, cellular differentiation, stem cell maintenance, and tissue and organ pathogenesis. Recent evidence has shown that many KLF family molecules affect skeletal cells and regulate their differentiation and function. This review summarizes the current understanding of the unique roles of each KLF in skeletal cells during normal development and skeletal pathologies.
Collapse
|
13
|
Hashemi M, Mirzaei S, Barati M, Hejazi ES, Kakavand A, Entezari M, Salimimoghadam S, Kalbasi A, Rashidi M, Taheriazam A, Sethi G. Curcumin in the treatment of urological cancers: Therapeutic targets, challenges and prospects. Life Sci 2022; 309:120984. [PMID: 36150461 DOI: 10.1016/j.lfs.2022.120984] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022]
Abstract
Urological cancers include bladder, prostate and renal cancers that can cause death in males and females. Patients with urological cancers are mainly diagnosed at an advanced disease stage when they also develop resistance to therapy or poor response. The use of natural products in the treatment of urological cancers has shown a significant increase. Curcumin has been widely used in cancer treatment due to its ability to trigger cell death and suppress metastasis. The beneficial effects of curcumin in the treatment of urological cancers is the focus of current review. Curcumin can induce apoptosis in the three types of urological cancers limiting their proliferative potential. Furthermore, curcumin can suppress invasion of urological cancers through EMT inhibition. Notably, curcumin decreases the expression of MMPs, therefore interfering with urological cancer metastasis. When used in combination with chemotherapy agents, curcumin displays synergistic effects in suppressing cancer progression. It can also be used as a chemosensitizer. Based on pre-clinical studies, curcumin administration is beneficial in the treatment of urological cancers and future clinical applications might be considered upon solving problems related to the poor bioavailability of the compound. To improve the bioavailability of curcumin and increase its therapeutic index in urological cancer suppression, nanostructures have been developed to favor targeted delivery.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maryamsadat Barati
- Department of Biology, Faculty of Basic (Fundamental) Science, Shahr Qods Branch, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
14
|
Animal Models in Bladder Cancer. Biomedicines 2021; 9:biomedicines9121762. [PMID: 34944577 PMCID: PMC8698361 DOI: 10.3390/biomedicines9121762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Bladder cancer (urothelial cancer of the bladder) is the most common malignancy affecting the urinary system with an increasing incidence and mortality. Mouse models of bladder cancer should possess a high value of reproducibility, predictability, and translatability to allow mechanistic, chemo-preventive, and therapeutic studies that can be furthered into human clinical trials. OBJECTIVES To provide an overview and resources on the origin, molecular and pathological characteristics of commonly used animal models in bladder cancer. METHODS A PubMed and Web of Science search was performed for relevant articles published between 1980 and 2021 using words such as: "bladder" and/or "urothelial carcinoma" and animal models. Animal models of bladder cancer can be categorized as autochthonous (spontaneous) and non-autochthonous (transplantable). The first are either chemically induced models or genetically engineered models. The transplantable models can be further subclassified as syngeneic (murine bladder cancer cells implanted into immunocompetent or transgenic mice) and xenografts (human bladder cancer cells implanted into immune-deficient mice). These models can be further divided-based on the site of the tumor-as orthotopic (tumor growth occurs within the bladder) and heterotopic (tumor growth occurs outside of the bladder).
Collapse
|
15
|
Cinar B, Alp E, Al-Mathkour M, Boston A, Dwead A, Khazaw K, Gregory A. The Hippo pathway: an emerging role in urologic cancers. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:301-317. [PMID: 34541029 PMCID: PMC8446764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The Hippo pathway controls several biological processes, including cell growth, differentiation, motility, stemness, cell contact, immune cell maturation, organ size, and tumorigenesis. The Hippo pathway core kinases MST1/2 and LATS1/2 in mammals phosphorylate and inactivate YAP1 signaling. Increasing evidence indicates that loss of MST1/2 and LATS1/2 function is linked to the biology of many cancer types with poorer outcomes, likely due to the activation of oncogenic YAP1/TEAD signaling. Therefore, there is a renewed interest in blocking the YAP1/TEAD functions to prevent cancer growth. This review introduces the Hippo pathway components and examines their role and therapeutic potentials in prostate, kidney, and bladder cancer.
Collapse
Affiliation(s)
- Bekir Cinar
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Esma Alp
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Marwah Al-Mathkour
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Ava Boston
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Abdulrahman Dwead
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Kezhan Khazaw
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Alexis Gregory
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| |
Collapse
|
16
|
Luo Y, Zhou J, Tang J, Zhou F, He Z, Liu T, Liu T. MINDY1 promotes bladder cancer progression by stabilizing YAP. Cancer Cell Int 2021; 21:395. [PMID: 34315490 PMCID: PMC8314533 DOI: 10.1186/s12935-021-02095-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/15/2021] [Indexed: 12/04/2022] Open
Abstract
Background Bladder cancer is one of the most commonly diagnosed urological malignant tumor. The Hippo tumor suppressor pathway is highly conserved in mammals and plays an important role in carcinogenesis. YAP is one of major key effectors of the Hippo pathway. However, the mechanism supporting abnormal YAP expression in bladder cancer remains to be characterized. Methods Western blot was used to measure the expression of MINDY1 and YAP, while the YAP target genes were measured by real-time PCR. CCK8 assay was used to detect the cell viability. The xeno-graft tumor model was used for in vivo study. Protein stability assay was used to detect YAP protein degradation. Immuno-precipitation assay was used to detect the interaction domain between MINDY1 and YAP. The ubiquitin-based Immuno-precipitation assays were used to detect the specific ubiquitination manner happened on YAP. Results In the present study, we identified MINDY1, a DUB enzyme in the motif interacting with ubiquitin-containing novel DUB family, as a bona fide deubiquitylase of YAP in bladder cancer. MINDY1 was shown to interact with, deubiquitylate, and stabilize YAP in a deubiquitylation activity-dependent manner. MINDY1 depletion significantly decreased bladder cancer cell proliferation. The effects induced by MINDY1 depletion could be rescued by further YAP overexpression. Depletion of MINDY1 decreased the YAP protein level and the expression of YAP/TEAD target genes in bladder cancer, including CTGF, ANKRD1 and CYR61. Conclusion In general, our findings establish a previously undocumented catalytic role for MINDY1 as a deubiquitinating enzyme of YAP and provides a possible target for the therapy of bladder cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02095-4.
Collapse
Affiliation(s)
- Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Zhou
- The Interventional Diagnosis and Treatment Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianing Tang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fengfang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiwen He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
OuYang C, Xie Y, Fu Q, Xu G. SYNPO2 suppresses hypoxia-induced proliferation and migration of colorectal cancer cells by regulating YAP-KLF5 axis. Tissue Cell 2021; 73:101598. [PMID: 34333382 DOI: 10.1016/j.tice.2021.101598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common tumors that has a high incidence worldwide. Targeted therapy for CRC has received much attention recently. It is still necessary to develop novel and promising therapeutic targets to improve the prognosis. SYNPO2, also known as synapsopoprotein 2 or myopod, encodes actin binding proteins and has been characterized as a tumor suppressor for aggressive cancers. SYNPO2 has been reported to inhibit the activity of YAP/TAZ. However, whether SYNPO2 could regulate the progression of CRC through the YAP/YAZ signaling pathway remains unclear. Herein, it was found that the expression of SYNPO2 was low in hypoxia-exposed CRC cells, consistent with the data from TCGA database. SYNPO2 inhibited the growth of CRC cells upon hypoxia treatment and promoted the cell apoptosis. Additionally, SYNPO2 inhibited the migration and epithelial-mesenchymal transformation (EMT) CRC cell upon hypoxia treatment. Mechanically, the results demonstrated that SYNPO2 suppressed hypoxia-induced progression of CRC by regulating YAP-Kruppel like factor 5 (KLF5) axis. Therefore, SYNPO2 can serve as a promising therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Canhui OuYang
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| | - Yun Xie
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| | - Qubo Fu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| | - Guofeng Xu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China.
| |
Collapse
|
18
|
Ashrafizadeh M, Yaribeygi H, Sahebkar A. Therapeutic Effects of Curcumin against Bladder Cancer: A Review of Possible Molecular Pathways. Anticancer Agents Med Chem 2021; 20:667-677. [PMID: 32013836 DOI: 10.2174/1871520620666200203143803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/22/2022]
Abstract
There are concerns about the increased incidence of cancer both in developing and developed countries. In spite of recent progress in cancer therapy, this disease is still one of the leading causes of death worldwide. Consequently, there have been rigorous attempts to improve cancer therapy by looking at nature as a rich source of naturally occurring anti-tumor drugs. Curcumin is a well-known plant-derived polyphenol found in turmeric. This compound has numerous pharmacological effects such as antioxidant, anti-inflammatory, antidiabetic and anti-tumor properties. Curcumin is capable of suppressing the growth of a variety of cancer cells including those of bladder cancer. Given the involvement of various signaling pathways such as PI3K, Akt, mTOR and VEGF in the progression and malignancy of bladder cancer, and considering the potential of curcumin in targeting signaling pathways, it seems that curcumin can be considered as a promising candidate in bladder cancer therapy. In the present review, we describe the molecular signaling pathways through which curcumin inhibits invasion and metastasis of bladder cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Luo Y, Chen C. The roles and regulation of the KLF5 transcription factor in cancers. Cancer Sci 2021; 112:2097-2117. [PMID: 33811715 PMCID: PMC8177779 DOI: 10.1111/cas.14910] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Krüppel‐like factor 5 (KLF5) is a member of the KLF family. Recent studies have suggested that KLF5 regulates the expression of a large number of new target genes and participates in diverse cellular functions, such as stemness, proliferation, apoptosis, autophagy, and migration. In response to multiple signaling pathways, various transcriptional modulation and posttranslational modifications affect the expression level and activity of KLF5. Several transgenic mouse models have revealed the physiological and pathological functions of KLF5 in different cancers. Studies of KLF5 will provide prognostic biomarkers, therapeutic targets, and potential drugs for cancers.
Collapse
Affiliation(s)
- Yao Luo
- Medical Faculty of Kunming University of Science and Technology, Kunming, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
20
|
New Insights into YES-Associated Protein Signaling Pathways in Hematological Malignancies: Diagnostic and Therapeutic Challenges. Cancers (Basel) 2021; 13:cancers13081981. [PMID: 33924049 PMCID: PMC8073623 DOI: 10.3390/cancers13081981] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary YES-associated protein (YAP) is a co-transcriptional activator that binds to transcriptional factors to increase the rate of transcription of a set of genes, and it can intervene in the onset and progression of different tumors. Most of the data in the literature refer to the effects of the YAP system in solid neoplasms. In this review, we analyze the possibility that YAP can also intervene in hematological neoplasms such as lymphomas, multiple myeloma, and acute and chronic leukemias, modifying the phenomena of cell proliferation and cell death. The possibilities of pharmacological intervention related to the YAP system in an attempt to use its modulation therapeutically are also discussed. Abstract The Hippo/YES-associated protein (YAP) signaling pathway is a cell survival and proliferation-control system with its main activity that of regulating cell growth and organ volume. YAP operates as a transcriptional coactivator in regulating the onset, progression, and treatment response in numerous human tumors. Moreover, there is evidence suggesting the involvement of YAP in the control of the hematopoietic system, in physiological conditions rather than in hematological diseases. Nevertheless, several reports have proposed that the effects of YAP in tumor cells are cell-dependent and cell-type-determined, even if YAP usually interrelates with extracellular signaling to stimulate the onset and progression of tumors. In the present review, we report the most recent findings in the literature on the relationship between the YAP system and hematological neoplasms. Moreover, we evaluate the possible therapeutic use of the modulation of the YAP system in the treatment of malignancies. Given the effects of the YAP system in immunosurveillance, tumorigenesis, and chemoresistance, further studies on interactions between the YAP system and hematological malignancies will offer very relevant information for the targeting of these diseases employing YAP modifiers alone or in combination with chemotherapy drugs.
Collapse
|
21
|
Pourhanifeh MH, Mottaghi R, Razavi ZS, Shafiee A, Hajighadimi S, Mirzaei H. Therapeutic Applications of Curcumin and its Novel Formulations in the Treatment of Bladder Cancer: A Review of Current Evidence. Anticancer Agents Med Chem 2021; 21:587-596. [PMID: 32767956 DOI: 10.2174/1871520620666200807223832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/26/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
Bladder cancer, a life-threatening serious disease, is responsible for thousands of cancer-associated deaths worldwide. Similar to other malignancies, standard treatments of bladder cancer, such as Chemoradiotherapy, are not efficient enough in the affected patients. It means that, according to recent reports in the case of life quality as well as the survival time of bladder cancer patients, there is a critical requirement for exploring effective treatments. Recently, numerous investigations have been carried out to search for appropriate complementary treatments or adjuvants for bladder cancer therapy. Curcumin, a phenolic component with a wide spectrum of biological activities, has recently been introduced as a potential anti-cancer agent. It has been shown that this agent exerts its therapeutic effects via targeting a wide range of cellular and molecular pathways involved in bladder cancer. Herein, the current data on curcumin therapy for bladder cancer are summarized.
Collapse
Affiliation(s)
| | - Reza Mottaghi
- Department of Oral and Maxillofacial Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra S Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
22
|
Moon JY, Ediriweera MK, Ryu JY, Kim HY, Cho SK. Catechol enhances chemo‑ and radio‑sensitivity by targeting AMPK/Hippo signaling in pancreatic cancer cells. Oncol Rep 2021; 45:1133-1141. [PMID: 33650657 PMCID: PMC7860010 DOI: 10.3892/or.2021.7924] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Overcoming chemo‑ and radio‑resistance is a major challenge in pancreatic cancer treatment. Therefore, there is an urgent need to discover novel therapeutic approaches to avoid chemo‑ and radio‑resistance in pancreatic cancer. Catechol is a phytochemical found in some fruits and vegetables. A few studies have reported on the potential anticancer effects of pure catechol. The present study aimed to explore the chemo‑ and radio‑sensitizing effects of catechol in Panc‑1 human pancreatic cancer cells. The effects of catechol on Panc‑1 cell proliferation, clonogenic survival, invasion, and migration were assessed using MTT, cell migration, and Transwell invasion assays. The chemo‑ and radio‑sensitizing effects of catechol on Panc‑1 cells were evaluated via MTT assay and flow cytometry. Western blotting was conducted to analyze the expression of proteins involved in several mechanisms induced by catechol in Panc‑1 cells, including growth inhibition, apoptosis, suppression of epithelial‑mesenchymal transition (EMT), and chemo‑ and radio‑sensitizing activities. The results indicated that catechol inhibited proliferation, promoted apoptosis, and suppressed cell migration, invasion, and EMT in Panc‑1 cells in a dose‑dependent manner. Catechol treatment also induced the phosphorylation of AMP‑activated protein kinase (AMPK) with a concomitant reduction in the expression of Hippo signaling pathway components, including Yes‑associated protein, cysteine‑rich angiogenic inducer 61, and connective tissue growth factor. In addition, catechol enhanced the chemosensitivity of Panc‑1 cells to gemcitabine, a commonly used chemotherapy in pancreatic cancer treatment. A combination of catechol and radiation enhanced apoptosis and increased the expression of two radiation‑induced DNA damage markers, p‑ATM and p‑Chk2. Collectively, the present results demonstrated that catechol, a naturally occurring compound, could suppress the proliferation of pancreatic cancer cells, reduce the expression of EMT‑related proteins, and enhance the chemo‑ and radio‑sensitivity of Panc‑1 cells by targeting AMPK/Hippo signaling.
Collapse
Affiliation(s)
- Jeong Yong Moon
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju Special Self‑Governing Province 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju Special Self‑Governing Province 63243, Republic of Korea
| | - Ji Yeon Ryu
- School of Biomaterials Science and Technology, College of Applied Life Sciences, Jeju National University, Jeju Special Self‑Governing Province 63243, Republic of Korea
| | - Hee Young Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self‑Governing Province 63243, Republic of Korea
| | - Somi Kim Cho
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju Special Self‑Governing Province 63243, Republic of Korea
| |
Collapse
|
23
|
Chestnut C, Subramaniam D, Dandawate P, Padhye S, Taylor J, Weir S, Anant S. Targeting Major Signaling Pathways of Bladder Cancer with Phytochemicals: A Review. Nutr Cancer 2020; 73:2249-2271. [DOI: 10.1080/01635581.2020.1856895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Connor Chestnut
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Subhash Padhye
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Interdisciplinary Science and Technology Research Academy, University of Pune, Pune, India
| | - John Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Scott Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
24
|
Samji P, Rajendran MK, Warrier VP, Ganesh A, Devarajan K. Regulation of Hippo signaling pathway in cancer: A MicroRNA perspective. Cell Signal 2020; 78:109858. [PMID: 33253912 DOI: 10.1016/j.cellsig.2020.109858] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies have suggested that Hippo signaling is not only involved in controlling organ size in Drosophila but can also regulate cell proliferation, tissue homeostasis, differentiation, apoptosis and regeneration. Any dysregulation of Hippo signaling, especially the hyper activation of its downstream effectors YAP/TAZ, can lead to uncontrolled cell proliferation and malignant transformation. In majority of cancers, expression of YAP/TAZ is extremely high and this increased expression of YAP/TAZ has been shown to be an independent predictor of prognosis and indicator of increased cell proliferation, metastasis and poor survival. In this review, we have summarized the most recent findings about the cross talk of Hippo signaling pathway with other signaling pathways and its regulation by different miRNAs in various cancer types. Recent evidence has suggested that Hippo pathway is also involved in mediating the resistance of different cancer cells to chemotherapeutic drugs and in a few cancer types, this is brought about by regulating miRNAs. Therefore, the delineation of the underlying mechanisms regulating the chemotherapeutic resistance might help in developing better treatment options. This review has attempted to provide an overview of different drugs/options which can be utilized to target oncogenic YAP/TAZ proteins for therapeutic interventions.
Collapse
Affiliation(s)
- Priyanka Samji
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India.
| | - Manoj K Rajendran
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Vidya P Warrier
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Akshayaa Ganesh
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Karunagaran Devarajan
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| |
Collapse
|
25
|
Zhang Z, Zhou L, Xie N, Nice EC, Zhang T, Cui Y, Huang C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct Target Ther 2020; 5:113. [PMID: 32616710 PMCID: PMC7331117 DOI: 10.1038/s41392-020-00213-8] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Ever present hurdles for the discovery of new drugs for cancer therapy have necessitated the development of the alternative strategy of drug repurposing, the development of old drugs for new therapeutic purposes. This strategy with a cost-effective way offers a rare opportunity for the treatment of human neoplastic disease, facilitating rapid clinical translation. With an increased understanding of the hallmarks of cancer and the development of various data-driven approaches, drug repurposing further promotes the holistic productivity of drug discovery and reasonably focuses on target-defined antineoplastic compounds. The "treasure trove" of non-oncology drugs should not be ignored since they could target not only known but also hitherto unknown vulnerabilities of cancer. Indeed, different from targeted drugs, these old generic drugs, usually used in a multi-target strategy may bring benefit to patients. In this review, aiming to demonstrate the full potential of drug repurposing, we present various promising repurposed non-oncology drugs for clinical cancer management and classify these candidates into their proposed administration for either mono- or drug combination therapy. We also summarize approaches used for drug repurposing and discuss the main barriers to its uptake.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Tao Zhang
- The School of Biological Science and Technology, Chengdu Medical College, 610083, Chengdu, China.
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, Sichuan, China.
| | - Yongping Cui
- Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, and Cancer Institute, Shenzhen Bay Laboratory Shenzhen, 518035, Shenzhen, China.
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
26
|
Ma JB, Bai JY, Zhang HB, Gu L, He D, Guo P. Downregulation of Collagen COL4A6 Is Associated with Prostate Cancer Progression and Metastasis. Genet Test Mol Biomarkers 2020; 24:399-408. [PMID: 32551898 DOI: 10.1089/gtmb.2020.0009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aims: To determine the association between collagen type IV alpha 6 (COL4A6) expression levels and prostate cancer invasion and metastasis. Methods: We analyzed three Gene Expression Omnibus (GEO) datasets through the GEO2R online tool to obtain the set of differentially expressed genes (DEGs) between malignant and nonmalignant prostate tissues, and further analyzed the COL4A6 gene's expression in databases. Western blot assays, real-time quantitative polymerase chain reaction analysis, and immunofluorescence staining were used to detect COL4A6 gene expression. Wound healing assays and cell invasion transwell assays were performed to measure cell invasion and siRNA was used to knock down COL4A6 gene expression. Results: Through the use of bioinformatic tools we showed that the COL4A6 gene is one of the highly downregulated genes in prostate cancer; additionally, hypermethylation of the COL4A6 promoter in prostate cancer is correlated with lower expression levels. We also showed that downregulation of COL4A6, which activates the p-FAK/MMP-9 signaling pathway in prostate cancer cells, is associated with prostate cancer cell metastasis based on data retrieved from The Cancer Genome Atlas (TCGA) and GEO databases. Finally, we found that the COL4A6 protein is localized extracellularly and its expression is positively correlated with disease-free survival of prostate cancer patients. Conclusion: Our results indicate that downregulation of COL4A6 may promote prostate cancer progression and invasion. Additionally, COL4A6 and its promoter methylation status could be valuable markers for prostate cancer prognoses.
Collapse
Affiliation(s)
- Jian-Bin Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ji-Yu Bai
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hai-Bao Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lijiang Gu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Rutz J, Janicova A, Woidacki K, Chun FKH, Blaheta RA, Relja B. Curcumin-A Viable Agent for Better Bladder Cancer Treatment. Int J Mol Sci 2020; 21:ijms21113761. [PMID: 32466578 PMCID: PMC7312715 DOI: 10.3390/ijms21113761] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Although the therapeutic armamentarium for bladder cancer has considerably widened in the last few years, severe side effects and the development of resistance hamper long-term treatment success. Thus, patients turn to natural plant products as alternative or complementary therapeutic options. One of these is curcumin, the principal component of Curcuma longa that has shown chemopreventive effects in experimental cancer models. Clinical and preclinical studies point to its role as a chemosensitizer, and it has been shown to protect organs from toxicity induced by chemotherapy. These properties indicate that curcumin could hold promise as a candidate for additive cancer treatment. This review evaluates the relevance of curcumin as an integral part of therapy for bladder cancer.
Collapse
Affiliation(s)
- Jochen Rutz
- Department of Urology, Goethe-University, 60438 Frankfurt am Main, Germany; (J.R.); (F.K.-H.C.)
| | - Andrea Janicova
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, 39106 Magdeburg, Germany; (A.J.); (K.W.); (B.R.)
| | - Katja Woidacki
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, 39106 Magdeburg, Germany; (A.J.); (K.W.); (B.R.)
| | - Felix K.-H. Chun
- Department of Urology, Goethe-University, 60438 Frankfurt am Main, Germany; (J.R.); (F.K.-H.C.)
| | - Roman A. Blaheta
- Department of Urology, Goethe-University, 60438 Frankfurt am Main, Germany; (J.R.); (F.K.-H.C.)
- Correspondence:
| | - Borna Relja
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, 39106 Magdeburg, Germany; (A.J.); (K.W.); (B.R.)
| |
Collapse
|
28
|
Moloudizargari M, Asghari MH, Nabavi SF, Gulei D, Berindan-Neagoe I, Bishayee A, Nabavi SM. Targeting Hippo signaling pathway by phytochemicals in cancer therapy. Semin Cancer Biol 2020; 80:183-194. [PMID: 32428716 DOI: 10.1016/j.semcancer.2020.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
The current era of cancer research has been continuously advancing upon identifying novel aspects of tumorigenesis and the principal mechanisms behind the unleashed proliferation, invasion, drug resistance and immortality of cancer cells in hopes of exploiting these findings to achieve a more effective treatment for cancer. In pursuit of this goal, the identification of the first components of an extremely important regulatory pathway in Drosophila melanogaster that largely determines cell fate during the developmental stages, ended up in the discovery of the highly sophisticated Hippo signaling cascade. Soon after, it was revealed that deregulation of the components of this pathway either via mutations or through epigenetic alterations can be observed in a vast variety of tumors and these alterations greatly contribute to the neoplastic transformation of cells, their survival, growth and resistance to therapy. As more hidden aspects of this pathway such as its widespread entanglement with other major cellular signaling pathways are continuously being uncovered, many researchers have sought over the past decade to find ways of therapeutic interventions targeting the major components of the Hippo cascade. To date, various approaches such as the use of exogenous targeting miRNAs and different molecular inhibitors have been recruited herein, among which naturally occurring compounds have shown a great promise. On such a basis, in the present work we review the current understanding of Hippo pathway and the most recent evidence on targeting its components using natural plant-derived phytochemicals.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol 4717647745, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 4717647745, Iran.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Diana Gulei
- MedFuture - Research Center for Advanced Medicine, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania
| | - Ioana Berindan-Neagoe
- MedFuture - Research Center for Advanced Medicine, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Department of Functional Genomics and Experimental Pathology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca 400337, Romania
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran.
| |
Collapse
|
29
|
Shen Y, Han Z, Liu S, Jiao Y, Li Y, Yuan H. Curcumin Inhibits the Tumorigenesis of Breast Cancer by Blocking Tafazzin/Yes-Associated Protein Axis. Cancer Manag Res 2020; 12:1493-1502. [PMID: 32161501 PMCID: PMC7051254 DOI: 10.2147/cmar.s246691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/14/2020] [Indexed: 01/10/2023] Open
Abstract
Purpose This study was aimed to explore the anti-tumor effect of curcumin on breast cancer (BC) and the underlying mechanism involving Tafazzin (TAZ)/Yes-associated protein (YAP) axis. Methods Different concentrations of curcumin (0, 10, 20 and 30 μM) were used to treat BC cells (MCF-7 and MDA-MB-231 cells). The viability, colony formation, apoptosis, migration, and invasion of BC cells were detected by MTT, colony formation, flow cytometry, wound-healing and transwell assay, respectively. The protein expression of TAZ and YAP (effectors of Hippo signaling pathway) was detected by Western blot. MDA-MB-231 cells were injected into mice to verify the anti-tumor effect of curcumin in vivo. Results Curcumin (20 and 30 μM) inhibited the proliferation, migration and invasion, and promoted the apoptosis of MCF-7 and MDA-MB-231 cells. Curcumin decreased the protein expression of TAZ and YAP in MCF-7 and MDA-MB-231 cells. Overexpression of YAP reversed the anti-tumor effect of curcumin on MDA-MB-231 cells. In addition, curcumin (100, 200 and 300 mg/kg/d) inhibited the growth of tumor xenografts in mice, and down-regulated the protein expression of TAZ and YAP in tumor xenografts. However, curcumin at a concentration of 300 mg/kg/d slowed the increasing of body weight in mice. Conclusion Curcumin inhibited the tumorigenesis of BC by blocking TAZ/YAP axis.
Collapse
Affiliation(s)
- Yuxiu Shen
- Department of Pharmacology, Affiliated Hospital of Beihua University, Jilin City, Jilin Province 132000, People's Republic of China
| | - Zaigang Han
- Department of Pharmacology, Affiliated Hospital of Beihua University, Jilin City, Jilin Province 132000, People's Republic of China
| | - Shuang Liu
- Department of Pharmacology, Affiliated Hospital of Beihua University, Jilin City, Jilin Province 132000, People's Republic of China
| | - Yang Jiao
- Department of Pharmacology, Affiliated Hospital of Beihua University, Jilin City, Jilin Province 132000, People's Republic of China
| | - Ying Li
- Department of Pharmacology, Affiliated Hospital of Beihua University, Jilin City, Jilin Province 132000, People's Republic of China
| | - Hongyan Yuan
- Department of Pharmacology, Affiliated Hospital of Beihua University, Jilin City, Jilin Province 132000, People's Republic of China
| |
Collapse
|
30
|
Liu R, Chen H, Zhao P, Chen CH, Liang H, Yang C, Zhou Z, Zhi X, Liu S, Chen C. Mifepristone Derivative FZU-00,003 Suppresses Triple-negative Breast Cancer Cell Growth partially via miR-153-KLF5 axis. Int J Biol Sci 2020; 16:611-619. [PMID: 32025209 PMCID: PMC6990921 DOI: 10.7150/ijbs.39491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most malignant breast cancers lacking targeted therapeutics currently. We recently reported that mifepristone (MIF), a drug regularly used for abortion, suppresses TNBC cell growth by inhibiting KLF5 expression via inducing miR-153. However, its anticancer efficacy is only modest at high dose. In order to enhance the anticancer activities, a focused compound library containing 17 compounds by altering the sensitive metabolic region of mifepristone has been designed and synthesized. We first tested the cell growth inhibitory effects of these compounds in TNBC cell lines. Among them, FZU-00,003 displayed the most potent efficiency. FZU-00,003 suppresses TNBC cell growth, cell cycle progression and induces apoptosis more effectively than MIF does. Consistently, FZU-00,003 induces miR-153 expression and suppressed KLF5 expression at much lower dosages than MIF does. Furthermore, FZU-00,003 inhibits tumor growth more potently than MIF does. Taken together, the MIF derivative, FZU-00,003 may serve as a better therapeutic compound for TNBC than MIF.
Collapse
Affiliation(s)
- Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, PR China
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ping Zhao
- Department of Breast Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Chuan-Huizi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Huichun Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Suling Liu
- Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan 650223, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| |
Collapse
|
31
|
Plewes MR, Hou X, Zhang P, Liang A, Hua G, Wood JR, Cupp AS, Lv X, Wang C, Davis JS. Yes-associated protein 1 is required for proliferation and function of bovine granulosa cells in vitro†. Biol Reprod 2019; 101:1001-1017. [PMID: 31350850 PMCID: PMC6877782 DOI: 10.1093/biolre/ioz139] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Yes-associated protein 1 (YAP1) is a major component of the Hippo signaling pathway. Although the exact extracellular signals that control the Hippo pathway are currently unknown, increasing evidence supports a critical role for the Hippo pathway in embryonic development, regulation of organ size, and carcinogenesis. Granulosa cells (GCs) within the ovarian follicle proliferate and produce steroids and growth factors, which facilitate the growth of follicle and maturation of the oocyte. We hypothesize that YAP1 plays a role in proliferation and estrogen secretion of GCs. In the current study, we examined the expression of the Hippo signaling pathway in bovine ovaries and determined whether it was important for GC proliferation and estrogen production. Mammalian STE20-like protein kinase 1 (MST1) and large tumor suppressor kinase 2 (LATS2) were identified as prominent upstream components of the Hippo pathway expressed in granulosa and theca cells of the follicle and large and small cells of the corpus luteum. Immunohistochemistry revealed that YAP1 was localized to the nucleus of growing follicles. In vitro, nuclear localization of the downstream Hippo signaling effector proteins YAP1 and transcriptional co-activator with PDZ-binding motif (TAZ) was inversely correlated with GC density, with greater nuclear localization under conditions of low cell density. Treatment with verteporfin and siRNA targeting YAP1 or TAZ revealed a critical role for these transcriptional co-activators in GC proliferation. Furthermore, knockdown of YAP1 in GCs inhibited follicle-stimulating hormone (FSH)-induced estradiol biosynthesis. The data indicate that Hippo pathway transcription co-activators YAP1/TAZ play an important role in GC proliferation and estradiol synthesis, two processes necessary for maintaining normal follicle development.
Collapse
Affiliation(s)
- Michele R Plewes
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE, USA
| | - Xiaoying Hou
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pan Zhang
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aixin Liang
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, USA
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guohua Hua
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, USA
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jennifer R Wood
- Department of Animal Sciences, University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Andrea S Cupp
- Department of Animal Sciences, University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Xiangmin Lv
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cheng Wang
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - John S Davis
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
32
|
Zhu J, Zhao L, Luo B, Sheng W. Shikonin regulates invasion and autophagy of cultured colon cancer cells by inhibiting yes-associated protein. Oncol Lett 2019; 18:6117-6125. [PMID: 31788086 PMCID: PMC6865637 DOI: 10.3892/ol.2019.10980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/06/2019] [Indexed: 01/14/2023] Open
Abstract
Colon cancer is a common malignancy, and its morbidity and mortality have been increasing in recent years in China. Shikonin (Shi), a naturally occurring naphthoquinone, exhibits anticancer activity. However, the mechanisms of action of Shi remain unclear. The aim of the present study was to investigate the antitumor mechanism of Shi in colon cancer cells. The effects of different Shi concentrations on the viability of colon cancer cells using MTT, colony formation and wound-healing assays were assessed. Western blot analysis was performed to detect the expression of LC3-II, p62. Shi effectively suppressed viability and cell migration, and induced autophagy in colon cancer cells. Yes-associated protein (YAP) increases cell viability, and inhibits cell apoptosis and cell contact. Expression of YAP is downregulated by Shi. The cytotoxic effects of Shi were further investigated on YAP overexpression and on YAP knockout cell lines. The findings revealed that Shi suppressed the viability and induced autophagy of colon cancer cells. Additionally, YAP expression reversed the effects of Shi. The results of the present study suggest that Shi may be a promising anticancer treatment for colon cancer, and YAP may be a potential diagnostic marker for colon cancer.
Collapse
Affiliation(s)
- Jing Zhu
- Laboratory of Cancer, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P.R. China.,Department of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Lei Zhao
- Reproductive Medicine Centre, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Bin Luo
- Department of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wang Sheng
- Laboratory of Cancer, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P.R. China
| |
Collapse
|
33
|
Abstract
The Hippo-YAP (Yes-associated protein) pathway is an evolutionarily and functionally conserved regulator of organ size and growth with crucial roles in cell proliferation, apoptosis, and differentiation. This pathway has great potential for therapeutic manipulation in different disease states and to promote organ regeneration. In this Review, we summarize findings from the past decade revealing the function and regulation of the Hippo-YAP pathway in cardiac development, growth, homeostasis, disease, and regeneration. In particular, we highlight the roles of the Hippo-YAP pathway in endogenous heart muscle renewal, including the pivotal role of the Hippo-YAP pathway in regulating cardiomyocyte proliferation and differentiation, stress response, and mechanical signalling. The human heart lacks the capacity to self-repair; therefore, the loss of cardiomyocytes after injury such as myocardial infarction can result in heart failure and death. Despite substantial advances in the treatment of heart failure, an enormous unmet clinical need exists for alternative treatment options. Targeting the Hippo-YAP pathway has tremendous potential for developing therapeutic strategies for cardiac repair and regeneration for currently intractable cardiovascular diseases such as heart failure. The lessons learned from cardiac repair and regeneration studies will also bring new insights into the regeneration of other tissues with limited regenerative capacity.
Collapse
|
34
|
Jia J, Zhang HB, Shi Q, Yang C, Ma JB, Jin B, Wang X, He D, Guo P. KLF5 downregulation desensitizes castration-resistant prostate cancer cells to docetaxel by increasing BECN1 expression and inducing cell autophagy. Am J Cancer Res 2019; 9:5464-5477. [PMID: 31534497 PMCID: PMC6735397 DOI: 10.7150/thno.33282] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022] Open
Abstract
KLF5 is frequently deleted or downregulated in prostate cancer. However, it is not known whether downregulation of KLF5 is associated with the response of prostate cancer cells to chemotherapy and/or prognosis of patients. Methods: We monitored cell growth by MTT and colony formation assays, and cell autophagy through tandem fluorescence microscopy and transmission electron microscopy. Gene expression was analyzed by RT-qPCR and Western blotting. We determined the binding of KLF5 together with HDAC3 on the beclin-1 (BECN1) promoter by the ChIP assay, oligonucleotides pulldown, and co-immunoprecipitation. The effect of docetaxel on cell growth in vivo was examined in a CWR22RV1 xenograft tumor mouse model. Results: In the present study, we found that KLF5 down-regulation was associated with progression of prostate cancer and poor prognosis of patients. KLF5 knockdown reduced the sensitivity of prostate cancer cells to docetaxel in vitro and in vivo, and docetaxel treatment decreased the expression of KLF5. Moreover, we confirmed that docetaxel treatment inhibited cell death by inducing autophagy in prostate cancer cells. Thus, we hypothesized that KLF5 could be a regulator of cell autophagy. Interestingly, KLF5 could inhibit prostate cancer cell autophagy by suppressing the transcription of BECN1 cooperatively with HDAC3. Another significant finding was that docetaxel treatment repressed KLF5 expression through AMPK/mTOR/p70S6K signaling pathway resulting in increased BECN1, induction of cell autophagy, and promotion of cell survival in castration-resistant prostate cancer cells. Conclusions: Our results indicated that downregulation of KLF5 promoted cell autophagy in prostate cancer. Furthermore, reduced KLF5 also facilitated cell autophagy induced by docetaxel resulting in desensitization to the drug and cell survival. Decreased levels of KLF5 led to increased BECN1 via AMPK/mTOR/p70S6K signaling. Thus, repression of BECN1 and cell autophagy was critical for KLF5 to increase the sensitivity of prostate cancer cells to docetaxel.
Collapse
|
35
|
Chen CH, Yang N, Zhang Y, Ding J, Zhang W, Liu R, Liu W, Chen C. Inhibition of super enhancer downregulates the expression of KLF5 in basal-like breast cancers. Int J Biol Sci 2019; 15:1733-1742. [PMID: 31360115 PMCID: PMC6643226 DOI: 10.7150/ijbs.35138] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
The transcription factor KLF5 (Krüpple-like factor 5) is highly expressed in basal-like breast cancer (BLBC), which promotes cell proliferation, survival, migration and stemness, serving as a potential therapeutic target. In the current study, a super-enhancer (SE) was identified to be located downstream of the KLF5 gene in BLBC cell lines, HCC1806 and HCC1937. JQ-1, a BRD4 inhibitor, inhibits the expression and activity of KLF5 in both HCC1806 and HCC1937 cells in a time- and dose-dependent manner. Compound 870, an in-house BRD4 inhibitor, exhibited higher potency than JQ-1 to inhibit KLF5 and BLBC growth by arresting cells in G1 phase. Additionally, THZ1, a CDK7 inhibitor, also inhibits KLF5 and BLBC growth in a similar manner. Our findings suggested that KLF5 is regulated by SE, and modulation of SE could be an effective therapeutic strategy for treating BLBC.
Collapse
Affiliation(s)
- Chuan-Huizi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.,School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, 410013, China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, 410013, China
| | - Jiancheng Ding
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Wenjuan Zhang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Wen Liu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China, 510095
| |
Collapse
|
36
|
Chang Y, Fu XR, Cui M, Li WM, Zhang L, Li X, Li L, Sun ZC, Zhang XD, Li ZM, You XY, Nan FF, Wu JJ, Wang XH, Zhang MZ. Activated hippo signal pathway inhibits cell proliferation and promotes apoptosis in NK/T cell lymphoma cells. Cancer Med 2019; 8:3892-3904. [PMID: 31124291 PMCID: PMC6639190 DOI: 10.1002/cam4.2174] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/15/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022] Open
Abstract
Background Natural Killer T–Cell Lymphoma (NKTCL) is a subtype of Non‐Hodgkin's Lymphoma, and its morbidity is ranked the first of T‐Cell Lymphoma. Hippo signaling pathway is involved in the pathogenesis of tumors. However, the role of Hippo signaling pathway in the oncogenesis of NKTCL still remains unclear. Methods The expressions of mammalian sterile 20‐like kinase 1 (MST1) and Yes‐associated protein (YAP) were investigated by RT‐PCR and Western blotting. Cell viability was detected by MTT assays. Cell cycle and cell apoptosis were determined by flow cytometry. Cell proliferative capacity was detected by colony formation assay. Nude mice xenograft models were established and the tumor sections were analyzed by immunohistochemistry (IHC) staining. Results The expression of MST1 was significantly down‐regulated in NKTCL tissues (n = 30) and cell lines, while the expression of YAP was significantly up‐regulated, and the phosphorylation of YAP was inhibited. Overexpression of MST1, knockdown of YAP, or verteporfin (VP) treatment could inhibit cell proliferation, and promote cell cycle arrest and apoptosis in NKTCL cells, while knockdown of MST1 and overexpression of YAP promoted cell proliferation. Additionally, Bcl‐2/Bax ratio and downstream effectors of Hippo signaling pathway (c‐myc, survivin, cyclinD1, CTGF, and TEAD) were significantly decreased when MST1 was overexpressed and YAP was knocked down or after VP treatment. Furthermore, our mice model demonstrated that activation of Hippo signal pathway suppressed the tumorigenesis of NKTCL. Conclusion The activation of Hippo signal pathway via overexpressing MST1 or down‐regulating YAP can inhibit the tumorigenesis of NKTCL.
Collapse
Affiliation(s)
- Yu Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Rui Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Cui
- Department of Head & Neck and Thyroid, The Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Wei-Ming Li
- Department of Oncology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen-Chang Sun
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu-Dong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhao-Ming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Yan You
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Fei-Fei Nan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Jing Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Hua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming-Zhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Abstract
Cancer is a serious health issue in the world due to a large body of cancer-related human deaths, and there is no current treatment available to efficiently treat the disease as the tumor is often diagnosed at a serious stage. Moreover, Cancer cells are often resistant to chemotherapy, radiotherapy, and molecular-targeted therapy. Upon further knowledge of mechanisms of tumorigenesis, aggressiveness, metastasis, and resistance to treatments, it is necessary to detect the disease at an earlier stage and for a better response to therapy. The hippo pathway possesses the unique capacity to lead to tumorigenesis. Mutations and altered expression of its core components (MST1/2, LATS1/2, YAP and TAZ) promote the migration, invasion, malignancy of cancer cells. The biological significance and deregulation of it have received a large body of interests in the past few years. Further understanding of hippo pathway will be responsible for cancer treatment. In this review, we try to discover the function of hippo pathway in different diversity of cancers, and discuss how Hippo pathway contributes to other cellular signaling pathways. Also, we try to describe how microRNAs, circRNAs, and ZNFs regulate hippo pathway in the process of cancer. It is necessary to find new therapy strategies for cancer.
Collapse
Affiliation(s)
- Yanyan Han
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
38
|
Shi Y, Cao T, Sun Y, Xia J, Wang P, Ma J. Nitidine Chloride inhibits cell proliferation and invasion via downregulation of YAP expression in prostate cancer cells. Am J Transl Res 2019; 11:709-720. [PMID: 30899373 PMCID: PMC6413267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Nitidine chloride (NC) exhibits tumor suppressive function in a variety of human cancers. However, the molecular mechanism of NC-triggered anti-cancer activity has not been fully elucidated. In the present study, we aim to investigate the anti-tumor molecular basis of NC in prostate cancer cells. Multiple approaches including MTT, FACS, wound healing assay, Transwell invasion assay, Transfection, and Western blotting were performed. We found that NC inhibited cell growth and induced apoptosis in prostate cancer cells. Moreover, NC suppressed cell migration and invasion in prostate cancer cells. Notably, we found that NC decreased the expression of YAP oncoprotein in prostate cancer cells. Downregulation of YAP enhanced the anti-tumor function mediated by NC in prostate cancer cells. On the contrary, upregulation of YAP abrogated the anti-cancer activity of NC treatment in prostate cancer cells. Our findings indicate that NC could be useful as a YAP inhibitor for the treatment of prostate cancer cells.
Collapse
Affiliation(s)
- Ying Shi
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Tong Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical CollegeBengbu 233004, Anhui, China
| | - Yu Sun
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| |
Collapse
|
39
|
Pang J, Li Z, Wang G, Li N, Gao Y, Wang S. miR-214-5p targets KLF5 and suppresses proliferation of human hepatocellular carcinoma cells. J Cell Biochem 2019; 120:1850-1859. [PMID: 30206974 DOI: 10.1002/jcb.27498] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/20/2018] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are small endogenous conserved RNAs regulating genes expression through base pairing with the 3'-untranslated region (3'-UTR) of target messenger RNAs. MiR-214-5p is a newly identified miRNA with its biological role largely unknown. In this study, we explored miR-214-5p expression status in 78 paired tumor and nontumor tissues obtained from patients with hepatocellular carcinoma (HCC) by RT-qPCR. The effects of miR-214-5p expression on HCC cell proliferation, cell cycle progression, and cell migration were measured by CCK-8 assay, flow cytometry, and wound-healing assay. A dual-luciferase activity assay was performed to identify whether KLF5 was a target of miR-214-5p. Kaplan-Meier curve and log-rank test were used to investigate the effects of miR-214-5p and KLF5 on overall survival and disease-free survival of patients with HCC. We found miR-214-5p expression was sharply reduced in HCC tissues and cell lines compared with the normal tissues and cell lines. Functional assay revealed that miR-214-5p overexpression could downregulate cell proliferation, cell migration, and arrested cell cycle at G0/G1 phase. Further, we validated Krüppel-like factor 5 (KLF5) as a direct target of miR-214-5p, and was upregulated in HCC and inversely correlated with the expression of miR-214-5p. Moreover, we found the low expression of miR-214-5p and high expression of KLF5 were correlated with tumor size, tumor stage, and poorer 5-year overall survival and disease-free survival of patients with HCC. In conclusion, our results suggested miR-214-5p functions as a tumor suppressor through targeting KLF5 in HCC. Also, miR-214-5p and KLF5 were identified as potential prognostic markers and might be therapeutic targets in HCC.
Collapse
Affiliation(s)
- Jinzhong Pang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University (West Coast District), Qingdao, China
| | - Zheng Li
- The No. 2 Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, China
| | - Guangjun Wang
- The No. 2 Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, China
| | - Ningbo Li
- The No. 2 Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, China
| | - Yan Gao
- The No. 2 Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, China
| | - Shuhui Wang
- The No. 2 Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, China
| |
Collapse
|
40
|
Zhu J, Zhao B, Xiong P, Wang C, Zhang J, Tian X, Huang Y. Curcumin Induces Autophagy via Inhibition of Yes-Associated Protein (YAP) in Human Colon Cancer Cells. Med Sci Monit 2018; 24:7035-7042. [PMID: 30281585 PMCID: PMC6354647 DOI: 10.12659/msm.910650] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Colon cancer is one of the most common cancers and it is the fourth leading cause of cancer-related deaths worldwide. YAP can promote cell proliferation and inhibit apoptosis, leading to loss of cell contact inhibition and promoting malignant cell transformation. MATERIAL AND METHODS In this study we analyzed the effects of different curcumin concentrations on the proliferation of colon cancer cells using MTT and colony formation assays. Western blot detection was performed to confirm the YAP, LC3-II, and P62 expression. RESULTS Curcumin inhibited proliferation and promoted colon cancer cell autophagy. In addition, Western blot results indicated that curcumin suppressed YAP expression in colon cancer cells. To assess the mechanism, we treated the cell lines with curcumin and assessed YAP overexpression and YAP knockdown. The results revealed that curcumin inhibits the proliferation and promotes autophagy of these cell lines. Western blot results showed that curcumin reversed the effect of YAP in colon cancer cells. CONCLUSIONS Our results suggest that YAP has great promise for treatment of colon cancer and that it might be a potential diagnostic marker for colon cancer.
Collapse
Affiliation(s)
- Jing Zhu
- Laboratory of Cancer, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China (mainland).,Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Bangxia Zhao
- Reproductive Medicine Centre, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Pingan Xiong
- Reproductive Medicine Centre, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Chaoyun Wang
- Reproductive Medicine Centre, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Juanjuan Zhang
- Reproductive Medicine Centre, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Xiaohua Tian
- Reproductive Medicine Centre, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Yinghui Huang
- Laboratory of Cancer, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China (mainland)
| |
Collapse
|
41
|
Shibata M, Ham K, Hoque MO. A time for YAP1: Tumorigenesis, immunosuppression and targeted therapy. Int J Cancer 2018; 143:2133-2144. [PMID: 29696628 DOI: 10.1002/ijc.31561] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022]
Abstract
YAP1 is one of the most important effectors of the Hippo pathway and has crosstalk with other cancer promoting pathways. YAP1 contributes to cancer development in various ways that include promoting malignant phenotypes, expansion of cancer stem cells and drug resistance of cancer cells. Because pharmacologic or genetic inhibition of YAP1 suppresses tumor progression and increases the drug sensitivity, targeting YAP1 may open a fertile avenue for a novel therapeutic approach in relevant cancers. Recent enormous studies have established the efficacy of immunotherapy, and several immune checkpoint blockades are in clinical use or in the phase of development to treat various cancer types. Immunosuppression in the tumor microenvironment (TME) induced by cancer cells, immune cells and associated stromal cells promotes tumor progression and causes drug resistance. Accumulated evidences of scientific efforts from the last few years suggest that YAP1 influences macrophages, myeloid-derived suppressor cells and regulatory T-cells to facilitate immunosuppressive TME. Although the underlying mechanisms is not clearly discerned, it is evident that YAP1 activating pathways in different cellular components induce immunosuppressive TME. In this review, we summarize the evidences involved in the dual roles of YAP1 in cancer development and immunosuppression in the TME. We also discuss the possibility of YAP1 as a novel therapeutic target.
Collapse
Affiliation(s)
- Masahiro Shibata
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kendall Ham
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mohammad Obaidul Hoque
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
42
|
Zhang L, Yang G, Zhang R, Dong L, Chen H, Bo J, Xue W, Huang Y. Curcumin inhibits cell proliferation and motility via suppression of TROP2 in bladder cancer cells. Int J Oncol 2018; 53:515-526. [PMID: 29901071 PMCID: PMC6017220 DOI: 10.3892/ijo.2018.4423] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022] Open
Abstract
Bladder cancer (BC) has become a serious health prob-lem and represents the second most commonly diagnosed urological tumor. Curcumin is a principal active natural component of turmeric and has long been used in Asia as a traditional herbal medicine. Curcumin suppresses cell growth in various types of cancer, including BC, by regulating numerous molecular signaling pathways. The human trophoblast cell surface antigen 2 (Trop2) belongs to the tumor-associated calcium signal transducer gene family. Trop2 has been described as a cancer driver and is deregulated in various types of cancer. However, whether Trop2 is involved in curcumin-induced BC cell inhibition remains to be elucidated. The present study hypothesized that Trop2 may be a promising target of curcumin in BC cells. It was found that Trop2 was closely involved in curcumin-induced cell proliferation suppression, mobility inhibition, apoptosis, and cell cycle arrest in BC cells. Curcumin decreased the expression of Trop2 and its downstream target cyclin E1, and increased the level of p27. The overexpression of Trop2 enhanced the oncogenic activity of BC cells, whereas downregulation of the expression of Trop2 suppressed cell proliferation and mobility, increased apoptosis, and sensitized BC cells to curcumin treatment. Therefore, Trop2 may be a promising target of curcumin in BC cells and the inhibition of Trop2 may be an important method for the therapeutic management of patients with BC.
Collapse
Affiliation(s)
- Lianhua Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Guoliang Yang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Ruiyun Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Liang Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Haige Chen
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Juanjie Bo
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
43
|
Liu H, Du S, Lei T, Wang H, He X, Tong R, Wang Y. Multifaceted regulation and functions of YAP/TAZ in tumors (Review). Oncol Rep 2018; 40:16-28. [PMID: 29749524 PMCID: PMC6059739 DOI: 10.3892/or.2018.6423] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
The Hippo pathway, initially identified through screenings for mutant tumor suppressors in Drosophila, is an evolutionarily conserved signaling pathway that controls organ size by regulating cell proliferation and apoptosis. Abnormal regulation of the Hippo pathway may lead to cancer in mammals. As the major downstream effectors of the Hippo pathway, unphosphorylated Yes-associated protein (YAP) and its homolog transcriptional co-activator TAZ (also called WWTR1) (hereafter called YAP/TAZ) are translocated into the nucleus. In the nucleus, in order to induce target gene expression, YAP/TAZ bind to the TEA domain (TEAD) proteins, and this binding subsequently promotes cell proliferation and inhibits apoptosis. In contrast, as key regulators of tumorigenesis and development, YAP/TAZ are phosphorylated and regulated by multiple molecules and pathways including Lats1/2 of Hippo, Wnt and G-protein-coupled receptor (GPCR) signaling, with a regulatory role in cell physiology, tumor cell development and pathological abnormalities simultaneously. In particular, the crucial role of YAP/TAZ in tumors ensures their potential as targets in designing anticancer drugs. To date, mounting research has elucidated the suppression of YAP/TAZ via effective inhibitors, which significantly highlights their application in cancer treatment. In the present review, we focus on the functions of YAP/TAZ in cancer, discuss their potential as new therapeutic target for tumor treatment, and provide valuable suggestions for further study in this field.
Collapse
Affiliation(s)
- Huirong Liu
- Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Suya Du
- School of Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan 610054, P.R. China
| | - Tiantian Lei
- School of Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan 610054, P.R. China
| | - Hailian Wang
- Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Xia He
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Yi Wang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
44
|
Doello K, Ortiz R, Alvarez PJ, Melguizo C, Cabeza L, Prados J. Latest in Vitro and in Vivo Assay, Clinical Trials and Patents in Cancer Treatment using Curcumin: A Literature Review. Nutr Cancer 2018; 70:569-578. [DOI: 10.1080/01635581.2018.1464347] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kevin Doello
- Medical Oncology Service, Virgen de las Nieves Hospital, Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Health Science, University of Jaén, Jaén, Spain
| | - Pablo J. Alvarez
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain
| |
Collapse
|
45
|
Hui K, Wu S, Yue Y, Gu Y, Guan B, Wang X, Hsieh JT, Chang LS, He D, Wu K. RASAL2 inhibits tumor angiogenesis via p-AKT/ETS1 signaling in bladder cancer. Cell Signal 2018; 48:38-44. [PMID: 29702203 DOI: 10.1016/j.cellsig.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 01/08/2023]
Abstract
Muscle-invasive or metastatic bladder cancer (BCa) is a life-threatening disease for patients, and tumor angiogenesis is believed to play a critical role in the progression of BCa. However, its underlying mechanism of tumor angiogenesis is still poorly understood. In this study, we discovered that RASAL2, a RAS GTPase activating protein, could inhibit BCa angiogenesis based on our shRNA/siRNA knockdown or ectopic cDNA expression experiments. Mechanistically, RASAL2 downregulation could enhance the phosphorylation of AKT and then subsequently upregulate the expression of ETS1 and VEGFA. Furthermore, there was a negative correlation between RASAL2 and VEGFA or CD31 expression in subcutaneous xenograft and human BCa specimens. Taken together, we provide a new insight into the molecular mechanism of BCa progression, in which RASAL2 can be a new therapeutic target.
Collapse
Affiliation(s)
- Ke Hui
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Shiqi Wu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yangyang Yue
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yanan Gu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Bing Guan
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xinyang Wang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas 75235, TX, USA
| | - Luke S Chang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Dalin He
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Kaijie Wu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
46
|
Dong L, Lin F, Wu W, Liu Y, Huang W. Verteporfin inhibits YAP-induced bladder cancer cell growth and invasion via Hippo signaling pathway. Int J Med Sci 2018; 15:645-652. [PMID: 29725256 PMCID: PMC5930467 DOI: 10.7150/ijms.23460] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
The highly conserved Hippo signaling pathway is one of the most important pathways involved in tumorigenesis and progress. Previous studies show that YAP, the transcriptional coactivator of Hippo pathway, is expressed highly in many clinical bladder cancer tissues and plays crucial role on bladder cancer progress. To find the YAP-specific target drug and its molecular mechanism in bladder cancer, we apply Verteporfin (VP), a YAP specific inhibitor to function as anti-bladder cancer drug and discover that VP is able to inhibit bladder cancer cell growth and invasion in a dosage dependent manner. Moreover, we demonstrate that VP may inhibit bladder cancer cell growth and invasion via repressing target genes' expression of the Hippo signaling pathway. In further study, we provide evidence that VP is able to inhibit excessive YAP induced bladder cancer cell growth and invasion. To address the repressive function of VP against YAP in bladder cancer, we check the target genes' expression and find VP can dramatically repress YAP overexpression induced Hippo pathway target genes' expression. Taken together, we discover that VP inhibits YAP-induced bladder cancer cell growth and invasion via repressing the target genes' expression of Hippo signaling pathway.
Collapse
Affiliation(s)
- Liang Dong
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518039, PR China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Fan Lin
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518039, PR China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, PR China
| | - Wanjun Wu
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518039, PR China
| | - Yuchen Liu
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518039, PR China
| | - Weiren Huang
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518039, PR China
| |
Collapse
|
47
|
Zhou X, Su J, Feng S, Wang L, Yin X, Yan J, Wang Z. Antitumor activity of curcumin is involved in down-regulation of YAP/TAZ expression in pancreatic cancer cells. Oncotarget 2018; 7:79076-79088. [PMID: 27738325 PMCID: PMC5346699 DOI: 10.18632/oncotarget.12596] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/26/2016] [Indexed: 01/28/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive human malignancies worldwide and is the fourth leading cause of cancer-related deaths. Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Certain studies have demonstrated that curcumin exerts its anti-tumor function in a variety of human cancers including PC, via targeting multiple therapeutically important cancer signaling pathways. However, the detailed molecular mechanisms are not fully understood. Two transcriptional co-activators, YAP (Yes-associated protein) and its close paralog TAZ (transcriptional coactivator with PDZ-binding motif) exert oncogenic activities in various cancers. Therefore, in this study we aimed to determine the molecular basis of curcumin-induced cell proliferation inhibition in PC cells. First, we detected the anti-tumor effects of curcumin on PC cell lines using CTG assay, Flow cytometry, clonogenic assay, wound healing assay and Transwell invasion assay. We found that curcumin significantly suppressed cell growth, weakened clonogenic potential, inhibited migration and invasion, and induced apoptosis and cell cycle arrest in PC cells. We further measured that overexpression of YAP enhanced cell proliferation and abrogated the cytotoxic effects of curcumin on PC cells. Moreover, we found that curcumin markedly down-regulated YAP and TAZ expression and subsequently suppressed Notch-1 expression. Collectively, these findings suggest that pharmacological inhibition of YAP and TAZ activity may be a promising anticancer strategy for the treatment of PC patients.
Collapse
Affiliation(s)
- Xiuxia Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Jingna Su
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Shaoyan Feng
- Department of Otolaryngology, The fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519020, China
| | - Lixia Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Xuyuan Yin
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Jingzhe Yan
- Department of Abdominal Oncosurgery, Jilin province Cancer Hospital, Changchun, Jilin, 130012, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
48
|
Mithramycin A suppresses basal triple-negative breast cancer cell survival partially via down-regulating Krüppel-like factor 5 transcription by Sp1. Sci Rep 2018; 8:1138. [PMID: 29348684 PMCID: PMC5773554 DOI: 10.1038/s41598-018-19489-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 12/31/2022] Open
Abstract
As the most malignant breast cancer subtype, triple-negative breast cancer (TNBC) does not have effective targeted therapies clinically to date. As a selective Sp1 inhibitor, Mithramycin A (MIT) has been reported to have anti-tumor activities in multiple cancers. However, the efficacy and the mechanism of MIT in breast cancer, especially TNBC, have not been studied. In this study, we demonstrated that MIT suppressed breast cancer cell survival in a dosage-dependent manner. Interestingly, TNBC cells were more sensitive to MIT than non-TNBC cells. MIT inhibited TNBC cell proliferation and promoted apoptosis in vitro in time- and dosage-dependent manners. MIT suppressed TNBC cell survival, at least partially, by transcriptionally down-regulating KLF5, an oncogenic transcription factor specifically expressed in basal TNBC. Finally, MIT suppressed TNBC cell growth in a xenograft mouse model. Taken together, our findings suggested that MIT inhibits basal TNBC via the Sp1/KLF5 axis and that MIT may be used for TNBC treatment.
Collapse
|
49
|
Shi J, Ning H, He G, Huang Y, Wu Z, Jin L, Jiang X. Rottlerin inhibits cell growth, induces apoptosis and cell cycle arrest, and inhibits cell invasion in human hepatocellular carcinoma. Mol Med Rep 2017; 17:459-464. [PMID: 29115596 DOI: 10.3892/mmr.2017.7924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/01/2017] [Indexed: 11/06/2022] Open
Abstract
Rottlerin, a polyphenolic compound, has been demonstrated to exhibit antitumor activity in various types of human cancer. Several studies have revealed that rottlerin exerts its anticancer function through PKC‑dependent and independent pathways. The transcriptional co‑activator with PDZ‑binding motif (TAZ) oncopreotein is an important molecule in regulation of the Hippo pathway in human cancer. The present study investigated whether rottlerin has a tumor suppressive role via inhibiting the expression of TAZ, using cell viability assay, apoptosis and cell cycle analyses, western blot analysis and Tanswell invasion assay. The results demonstrated that rottlerin suppressed cell growth, triggered cell apoptosis and induced cell cycle arrest. In addition, rottlerin inhibited cell migration and invasion in hepatocellular carcinoma (HCC) cells. Mechanistically, the results demonstrated that rottlerin exerted its antitumor activity partly through the inhibition of TAZ. In addition, the depletion of TAZ led to inhibited cell growth and invasion, whereas the overexpression of TAZ enhanced cell growth and invasion in the HCC cells. Taken together, these findings indicated that the inhibition of TAZ by rottlerin may be a novel strategy for treating HCC.
Collapse
Affiliation(s)
- Jichan Shi
- Department of Infectious Disease, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Hongye Ning
- Department of Infectious Disease, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Guiqing He
- Department of Infectious Disease, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Yitong Huang
- Department of Gynecologic Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhengxing Wu
- Department of Infectious Disease, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Lingling Jin
- Department of Infectious Disease, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiangao Jiang
- Department of Infectious Disease, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
50
|
Tang X, Jia J, Li F, Liu W, Yang C, Jin B, Shi Q, Wang X, He D, Guo P. Salen-Mn compounds induces cell apoptosis in human prostate cancer cells through promoting AMPK activity and cell autophagy. Oncotarget 2017; 8:86277-86286. [PMID: 29156794 PMCID: PMC5689684 DOI: 10.18632/oncotarget.21138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/26/2017] [Indexed: 01/21/2023] Open
Abstract
Currently only docetaxel has been approved to be used in the chemotherapy of prostate cancer and new drugs are urgent need. Salen-Mn is a novel type of synthetic reagent bionic and exerts remarkable anticancer activities. However, the effect of Salen-Mn on human prostate cancer has not been elucidated yet. In this study, we found that treatment of PC-3 and DU145 human prostate cancer cells with Salen-Mn inhibited cell growth in dose and time dependent manner. Moreover, Salen-Mn induced cell apoptosis, and increased the expression of apoptotic proteins, such as cleaved caspase-3, cleaved PARP, and Bax, in PC-3 and DU145 prostate cancer cells. Furthermore, we found that Salen-Mn induced expression of LC3-I/II, which is protein marker of cell autophagy, in both dose and time dependent manners; in addition, Salen-Mn increased the phosphorylation of AMPK, suggesting that Salen-Mn increase cell autophagy through activating AMPK pathway. On the other hand, when PC-3 and DU145 cells were treated with Salen-Mn and 3-MA, an inhibitor of cell autophagy, the inhibitory effect of Salen-Mn on cell growth and the induction of apoptotic proteins were decreased. In addition, we found that Salen-Mn inhibited the growth of PC-3 cell xenografts in nude mice. In summary, our results indicate that Salen-Mn suppresses cell growth through inducing AMPK activity and autophagic cell death related cell apoptosis in prostate cancer cells and suggest that Salen-Mn and its derivatives could be new options for the chemical therapeutics in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Xiaoshuang Tang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Jia
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Feng Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chao Yang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bin Jin
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Shi
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|