1
|
Cheng XR, Zhao ZW, Chen YY, Song J, Ma JH, Zhang CX, Amadou I, Lu NY, Tang X, Guan B. Interventional Effect of Donkey Bone Collagen Peptide Iron Chelate on Cyclophosphamide Induced Immunosuppressive Mice. Nutrients 2024; 16:2413. [PMID: 39125294 PMCID: PMC11314553 DOI: 10.3390/nu16152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Immunodeficiency can disrupt normal physiological activity and function. In this study, donkey bone collagen peptide (DP) and its iron chelate (DPI) were evaluated their potential as immunomodulators in cyclophosphamide (Cytoxan®, CTX)-induced Balb/c mice. The femoral tissue, lymphocytes, and serum from groups of mice were subjected to hematoxylin and eosin (H&E) staining, methylthiazolyldiphenyl-tetrazolium bromide (MTT) cell proliferation assays, and enzyme-linked immunosorbent assay (ELISA), respectively. Furthermore, a non-targeted metabolomics analysis based on UPLC-MS/MS and a reverse transcription polymerase chain reaction (RT-qPCR) technology were used to explore the specific metabolic pathways of DPI regulating immunocompromise. The results showed that CTX was able to significantly reduce the proliferative activity of mouse splenic lymphocytes and led to abnormal cytokine expression. After DP and DPI interventions, bone marrow tissue damage was significantly improved. In particular, DPI showed the ability to regulate the levels of immune factors more effectively than Fe2+ and DP. Furthermore, metabolomic analysis in both positive and negative ion modes showed that DPI and DP jointly regulated the levels of 20 plasma differential metabolites, while DPI and Fe2+ jointly regulated 14, and all 3 jointly regulated 10. Fe2+ and DP regulated energy metabolism and pyrimidine metabolism pathways, respectively. In contrast, DPI mainly modulated the purine salvage pathway and the JAK/STAT signaling pathway, which are the key to immune function. Therefore, DPI shows more effective immune regulation than Fe2+ and DP alone, and has good application potential in improving immunosuppression.
Collapse
Affiliation(s)
- Xiang-Rong Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zi-Wei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yu-Yao Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jie Song
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jia-Hui Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Chen-Xi Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Issoufou Amadou
- Faculty of Agriculture and Environment Sciences, Dan Dicko Dankoulodo University of Maradi, Maradi BP 465, Niger
| | - Nai-Yan Lu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Bin Guan
- Department of Pharmacy, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi 214011, China
- Department of Pharmacy, The Fifth People’s Hospital of Wuxi, Wuxi 214011, China
| |
Collapse
|
2
|
Yimam M, Horm T, O'Neal A, Jiao P, Hong M, Jia Q. An Aloe-Based Composition Constituting Polysaccharides and Polyphenols Protected Mice against D-Galactose-Induced Immunosenescence. J Immunol Res 2024; 2024:9307906. [PMID: 38516617 PMCID: PMC10957255 DOI: 10.1155/2024/9307906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/09/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
A decline in immune response, exhibited in the form of immunosenescence and inflammaging, is an age-associated disturbance of the immune system known to predispose the elderly to a greater susceptibility to infection and poor vaccine response. Polysaccharides and polyphenols from botanicals are known for their immune modulation effects. Here we evaluated a standardized mushroom-based composition, UP360, from Aloe barbadensis, Poria cocos, and Rosmarinus officinalis, as a natural nutritional supplement for a balanced immune response in an accelerated aging mouse model. Immunosenescence was induced by continual subcutaneous injection of D-galactose (D-gal) at a dose of 500 mg/kg/day to CD-1 mice. UP360 was administered at oral doses of 200 and 400 mg/kg to the mice starting on the 5th week of D-gal injection. The study lasted for a total of 9 weeks. All mice were given a quadrivalent influenza vaccine at 3 µg/animal via intramuscular injection 14 days before the end of the study. A group of D-gal-treated mice treated at 400 mg/kg/day UP360 was kept without vaccination. Whole blood, serum, spleen homogenate, and thymus tissues were used for analysis. UP360 was found to improve the immune response as evidenced by stimulation of innate and adaptive immune responses, increase antioxidant capacity as reflected by augmented SOD and Nrf2, and preserve vital immune organs, such as the thymus, from aging-associated damage. The findings depicted in this report show the effect of the composition in activating and maintaining homeostasis of the immune system both during active infections and as a preventive measure to help prime the immune system. These data warrant further clinical study to explore the potential application of the mushroom-based composition as an adjunct nutritional supplement for a balanced immune response.
Collapse
Affiliation(s)
- Mesfin Yimam
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Teresa Horm
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Alexandria O'Neal
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Ping Jiao
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Mei Hong
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Qi Jia
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| |
Collapse
|
3
|
Melenshia DS, Amirtham SM, Rebekah G, Vinod E, Kachroo U. Effect of reconstituted, lyophilized cold aqueous extract of Aloe vera on human whole blood clotting time - A pilot study. J Ayurveda Integr Med 2024; 15:100887. [PMID: 38479038 PMCID: PMC10950739 DOI: 10.1016/j.jaim.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 03/24/2024] Open
Affiliation(s)
| | | | - Grace Rebekah
- Department of Biostatistics, Christian Medical College, Vellore, India
| | - Elizabeth Vinod
- Department of Physiology, Christian Medical College, Vellore, India; Centre for Stem Cell Research, Christian Medical College, Vellore, India
| | - Upasana Kachroo
- Department of Physiology, Christian Medical College, Vellore, India.
| |
Collapse
|
4
|
Razia S, Park H, Shin E, Shim KS, Cho E, Kang MC, Kim SY. Synergistic effect of Aloe vera flower and Aloe gel on cutaneous wound healing targeting MFAP4 and its associated signaling pathway: In-vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115096. [PMID: 35182666 DOI: 10.1016/j.jep.2022.115096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aloe vera (L.) Burm. f. (Liliaceae family) is a well-known traditional medicinal plant, that has been used to treat a variety of illnesses, for decades ranging from cancer to skin disorders including wounds. It has been included in the traditional and herbal healthcare systems of many cultures around the world, as well as the pharmacopeia of different countries. Several in vitro and in vivo studies have also confirmed its potential antioxidant, anti-inflammatory, and wound-healing activities, etc. in the consistency of its historical and traditional uses. However, most studies to date are based on the A. vera gel and latex including its wound-healing effects. Very few studies have been focused on its flower, and rarely with its effects on cutaneous wound healing and its molecular mechanism. AIM OF THE STUDY To the best of our knowledge, this is the first study to report on the synergistic effect of the A. vera flower (AVF) and Aloe gel (PAG) on cutaneous wound-healing, as well as revealing its molecular mechanism targeting microfibril-associated glycoprotein 4 (MFAP4) and its associated signaling pathway. METHODS To investigate the synergistic effect of A. vera flower and Aloe gel in cutaneous wound healing, cell viability, and cell migration, as well proliferation assay was performed. This was followed by quantitative real-time polymerase chain reaction and Western blot analyses in wounded conditions to check the effects of this mixture on protein and mRNA levels in normal human dermal fibroblast (NHDF) cells. Moreover, small interfering RNA (siRNA) -mediated knockdown of MFAP4 in NHDF cells was performed followed by migration assay and cell cycle analysis, to confirm its role in cutaneous wound healing. Additionally, HaCaT cells were included in this study to evaluate its migratory and anti-inflammatory effects. RESULTS Based on our obtained results, the PAG and AVF mixture synergistically induced the proliferation, migration, and especially ECM formation of NHDF cells by enhancing the expression of MFAP4. Other extracellular components associated with MFAP4 signaling pathway, such as fibrillin, collagen, elastin, TGF β, and α-SMA, also increased at both the protein and mRNA levels. Subsequently, this mixture initiated the phosphorylation of the extracellular signal-regulated kinase (ERK) and AKT signaling pathways, and the S-phase of the cell cycle was also slightly modified. Also, the mixture induced the migration of HaCaT cells along with the suppression of inflammatory cytokines. Moreover, the siRNA-mediated knockdown highlighted the crucial role of MFAP4 in cutaneous wound healing in NHDF cells. CONCLUSION This study showed that the mixture of PAG and AVF has significant wound healing effects targeting MFAP4 and its associated signaling pathway. Additionally, MFAP4 was recognized as a new potential biomarker of wound healing, which can be confirmed by further in vivo studies.
Collapse
Affiliation(s)
- Sultana Razia
- Department of Life Science, University of Seoul, Seoul, 02504, South Korea; Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| | - Hyunsung Park
- Department of Life Science, University of Seoul, Seoul, 02504, South Korea
| | - Eunju Shin
- Univera Co., Ltd., Seoul, 04782, Republic of Korea
| | - Kyu-Suk Shim
- Univera Co., Ltd., Seoul, 04782, Republic of Korea
| | - Eunae Cho
- Univera Co., Ltd., Seoul, 04782, Republic of Korea
| | - Min Chol Kang
- College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, South Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, South Korea.
| |
Collapse
|
5
|
Amanat S, Shal B, Kyoung Seo E, Ali H, Khan S. Icariin attenuates cyclophosphamide-induced cystitis via down-regulation of NF-кB and up-regulation of Nrf-2/HO-1 signaling pathways in mice model. Int Immunopharmacol 2022; 106:108604. [PMID: 35149295 DOI: 10.1016/j.intimp.2022.108604] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Cystitis is a chronic bladder pain associated with frequency and nocturia. In the present study, Icariin a prenylated flavonoid extracted from Epimedium koreanum, was investigated against cyclophosphamide (CYP)-induced cystitis pain in mice model. Preliminarily in an acute model, single dose of CYP (150 mg/kg; i.p) was administered followed by Icariin (5, 25 and 50 mg/kg, i.p.). The visceral sensitivity and nociceptive behaviors were significantly ameliorated by pretreatment with Icariin (25, 50 mg/kg) that were assessed by spontaneous pain scoring, von Frey test and clinical scoring. Further, in chronic model Icariin (25 mg/kg, i.p.) was administered for 10 consecutive days prior to CYP (75 mg/kg; i.p) challenged every 3rd day for the duration of 10 days. Icariin not only had a protective effect on edema including bladder wet weight and hemorrhage but also had a potential to reduce vascular permeability, mast cells infiltration and tissue fibrosis. Evidently, Icariin prevented the neutrophilia/lymphopenia caused by CYP, and markedly improved the antioxidant enzymes level including superoxide dismutase, glutathione sulfo-transferase, catalase, glutathione level and reduced Malondialdehyde level, myeloperoxidase activity and nitric oxide, and also decreased the production of tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) in bladder. Icariin markedly enhanced the Nrf-2, heme oxygenase (HO-1) and IкB-α expression, while attenuated the expression level of Keap1, TLR-4, NF-кB, i-NOS, COX-2 and TRPV1 as compared to negative group. This research illustrated the anti-inflammatory properties of Icariin and effectively improved CYP-induced cystitis pain.
Collapse
Affiliation(s)
- Safa Amanat
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Faculty of Health Sciences, IQRA University, Islamabad Campus, (Chak Shahzad), Islamabad, Pakistan
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
6
|
Yang Y, Hu T, Li J, Xin M, Zhao X. Structural characterization and effect on leukopenia of fucoidan from Durvillaea antarctica. Carbohydr Polym 2020; 256:117529. [PMID: 33483047 DOI: 10.1016/j.carbpol.2020.117529] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Fucoidans from brown seaweed shows various bioactive properties and promising prospects in biomedical field. Here, a novel fucoidan (F-4) was extracted and purified from Durvillaea antarctica. The structure of F-4 was characterized by HPLC, HPGPC, GC-MS, together with IR and NMR spectral analysis. F-4 is a sulfated polysaccharide mainly composed of fucose (Fuc), galactose (Gal), and glucose (Glc) in a molar ratio of 26.4: 7.1: 1.0. The backbone of F-4 is composed of (1→3) and (1→4)-linked-α-L-Fucp residues, which sulfated at C-4 or C-2 positions and branched with α-L-Fuc, β-D-Gal, and β-D-Glc residues. Furthermore, F-4 can effectively promote the growth of leukocyte in a mouse model induced by cyclophosphamide, possibly by activating hematopoietic progenitor cells and regulating the hematopoietic microenvironment of bone marrow. Our data provide useful information for further investigation of fucoidan in the treatment of chemotherapy-induced leukopenia.
Collapse
Affiliation(s)
- Yingjie Yang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Ting Hu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| | - Jianjie Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Meng Xin
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
7
|
Medicinal plants used by traditional medicine practitioners to boost the immune system in people living with HIV/AIDS in Uganda. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2019.101011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP. Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. Molecules 2020; 25:molecules25061324. [PMID: 32183224 PMCID: PMC7144722 DOI: 10.3390/molecules25061324] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 01/23/2023] Open
Abstract
Aloe vera has been traditionally used to treat skin injuries (burns, cuts, insect bites, and eczemas) and digestive problems because its anti-inflammatory, antimicrobial, and wound healing properties. Research on this medicinal plant has been aimed at validating traditional uses and deepening the mechanism of action, identifying the compounds responsible for these activities. The most investigated active compounds are aloe-emodin, aloin, aloesin, emodin, and acemannan. Likewise, new actions have been investigated for Aloe vera and its active compounds. This review provides an overview of current pharmacological studies (in vitro, in vivo, and clinical trials), written in English during the last six years (2014–2019). In particular, new pharmacological data research has shown that most studies refer to anti-cancer action, skin and digestive protective activity, and antimicrobial properties. Most recent works are in vitro and in vivo. Clinical trials have been conducted just with Aloe vera, but not with isolated compounds; therefore, it would be interesting to study the clinical effect of relevant metabolites in different human conditions and pathologies. The promising results of these studies in basic research encourage a greater number of clinical trials to test the clinical application of Aloe vera and its main compounds, particularly on bone protection, cancer, and diabetes.
Collapse
|
9
|
Sheng Y, Chen YJ, Qian ZM, Zheng J, Liu Y. Cyclophosphamide induces a significant increase in iron content in the liver and spleen of mice. Hum Exp Toxicol 2020; 39:973-983. [PMID: 32129080 DOI: 10.1177/0960327120909880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective: Oxidative stress is one of the major mechanisms of cyclophosphamide (CPX)-induced toxicities. However, it is unknown how CPX induces oxidative stress. Based on the available information, we speculated that CPX could increase iron content in the tissues and then induce oxidative stress. Method: We tested this hypothesis by investigating the effects of CPX on iron and ferritin contents, expression of transferrin receptor 1 (TfR1), ferroportin 1 (Fpn1), iron regulatory proteins (IRPs), hepcidin, and nuclear factor erythroid 2-related factor-2 (Nrf2) in the liver and spleen, and also on reticulocyte count, immature reticulocyte fraction, and hemoglobin (Hb) in the blood in c57/B6 mouse. Results: We demonstrated that CPX could induce a significant increase in iron contents and ferritin expression in the liver and spleen, notably inhibit erythropoiesis and Hb synthesis and lead to a reduction in iron usage. The reduced expression in TfR1 and Fpn1 is a secondary effect of CPX-induced iron accumulation in the liver and spleen and also partly associated with the suppressed IRP/iron-responsive element system, upregulation of hepcidin, and downregulation of Nrf2. Conclusions: The reduced iron usage is one of the causes for iron overload in the liver and spleen and the increased tissue iron might be one of the mechanisms for CPX to induce oxidative stress and toxicities.
Collapse
Affiliation(s)
- Y Sheng
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Y-J Chen
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Z-M Qian
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Translational & Precision Medicine, Nantong University, Nantong, China
| | - J Zheng
- Institute of Translational & Precision Medicine, Nantong University, Nantong, China
| | - Y Liu
- Department of Pain and Rehabilitation, The Second Affiliated Hospital, The Army Medical University, Chongqing, China
| |
Collapse
|
10
|
Na K, Lkhagva‐Yondon E, Kim M, Lim Y, Shin E, Lee C, Jeon M. Oral treatment with Aloe polysaccharide ameliorates ovalbumin‐induced atopic dermatitis by restoring tight junctions in skin. Scand J Immunol 2019; 91:e12856. [DOI: 10.1111/sji.12856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Kwangmin Na
- Translational Research Center Department of Molecular Biomedicine IRIMS, and College of Medicine Inha University Incheon Republic of Korea
| | - Enkhmaa Lkhagva‐Yondon
- Translational Research Center Department of Molecular Biomedicine IRIMS, and College of Medicine Inha University Incheon Republic of Korea
| | - Minha Kim
- Translational Research Center Department of Molecular Biomedicine IRIMS, and College of Medicine Inha University Incheon Republic of Korea
| | - Yu‐Ree Lim
- Translational Research Center Department of Molecular Biomedicine IRIMS, and College of Medicine Inha University Incheon Republic of Korea
| | | | - Chong‐Kil Lee
- College of Pharmacy Chungbuk National University Cheongju Republic of Korea
| | - Myung‐Shin Jeon
- Translational Research Center Department of Molecular Biomedicine IRIMS, and College of Medicine Inha University Incheon Republic of Korea
- Convergent Research Center for Metabolism and Immunoregulation Inha University Incheon Republic of Korea
| |
Collapse
|
11
|
Two different fucosylated chondroitin sulfates: Structural elucidation, stimulating hematopoiesis and immune-enhancing effects. Carbohydr Polym 2019; 230:115698. [PMID: 31887892 DOI: 10.1016/j.carbpol.2019.115698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/14/2023]
Abstract
Two fucosylated chondroitin sulfates FCShp and FCSht were isolated from the sea cucumber Holothuria polii and Holothuria tubulosa, respectively. The NMR spectroscopy and HILIC-FTMS methods were applied for their detailed structural characterization. Chemical analysis indicated that the two FCSs all contained a chondroitin sulfate backbone chondroitin sulfate-like core and fucosyl branches of α-L-Fuc2,4S, α-L-Fuc4S or α-L-Fuc3,4S linked to O-3 of glucuronic acid residues. The main branches of FCShp and FCSht were monofucose, and the small amounts of di-, tri- and tetrafucose with α-1,3-linkage type were also detected. Finally, we investigated the immunomodulatory function of FCShp and FCSht in cyclophosphamide (CTX)-induced immunosuppressed mouse models. The results showed that FCShp and FCSht had beneficial effects on hematopoietic function recovery in CTX-induced bone marrow suppression mice. Notably, the α-L-Fuc2,4S was more important to the activity than α-L-Fuc3,4S. These results provided basis for developing the drugs to reduce side effects of chemotherapy.
Collapse
|
12
|
Li C, Niu Q, Li S, Zhang X, Liu C, Cai C, Li G, Yu G. Fucoidan from sea cucumber Holothuria polii: Structural elucidation and stimulation of hematopoietic activity. Int J Biol Macromol 2019; 154:1123-1131. [PMID: 31751735 DOI: 10.1016/j.ijbiomac.2019.11.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
The structural elucidation of polysaccharides is essential for understanding their structure-bioactivity relationship and related drug development. In this study, fucoidan (Fuchp) was extracted and purified from sea cucumber Holothuria polii. Its sulfate content was 39.5 ± 1.4%, and the "weight-average" molecular mass was 103.1 ± 2.8 kDa. The primary structure of Fuchp was clarified using a combination of acid degradation, tandem mass spectrometry, and nuclear magnetic resonance spectroscopy analysis. As a result, Fuchp was found to be composed of a tetrafucose repeating unit [→3-α-l-Fucp-1 → 3-α-l-Fucp2(OSO3-)-1 → 3-α-l-Fucp2(OSO3-)-1 → 3-α-l-Fucp2,4(OSO3-)-1→]. The stimulating hematopoiesis was further evaluated in a mouse model induced by cyclophosphamide. Based on these findings, intraperitoneally administered Fuchp may accelerate the recovery of white blood cells and neutrophils, in which its activity exceeded that of recombinant human granulocyte colony-stimulating factor (rhG-CSF). Meanwhile, in the background of cyclophosphamide-induced immunosuppression, treatment with Fuchp reduces platelet aggregation caused by CTX, so it might have the effect of reducing the risk of thrombosis. Therefore, Fuchp can be exploited as potentially promising stimulator of hematopoiesis in the future.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Qingfeng Niu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Shijie Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Xin Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Chanjuan Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
13
|
Bai Y, Huang F, Zhang R, Dong L, Jia X, Liu L, Yi Y, Zhang M. Longan pulp polysaccharides relieve intestinal injury in vivo and in vitro by promoting tight junction expression. Carbohydr Polym 2019; 229:115475. [PMID: 31826430 DOI: 10.1016/j.carbpol.2019.115475] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/07/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023]
Abstract
The integrity of the intestinal mucosal barrier is important for the health of the host. In this study, longan pulp polysaccharides (LP) prevented the intestinal mucosal injury by increasing the expression of mucin 2, tight junction proteins zonulae occludens-1 (ZO-1), claudin-1, claudin-4, and adherens junction E-cadherin in cyclophosphamide-treated mice. To further identify the principle bioactive component of LP, four acidic polysaccharides (LPIa, LPIIa, LPIIIa, and LPIVa) were purified, and their intestinal protection activity in vitro was compared. LPIa, LPIIa, and LPIIIa displayed an ability to increase mRNA expression of ZO-1, claudin-1, occludin, and E-cadherin in differentiated Caco-2 cells, especially LPIa. LPIa has specific structure characteristics: porous surface structure, a high molecular weight (1.47 × 105 Da), and two specific glycosidic linkages of α-Araf-(1→ and →5)-α-Araf-(1→. These structure characteristics might primarily contribute to greater intestinal barrier protective effect of LPIa.
Collapse
Affiliation(s)
- Yajuan Bai
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Lei Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
14
|
Qu S, Dai C, Yang F, Huang T, Hao Z, Tang Q, Wang H, Zhang Y. Cefquinome-Loaded Microsphere Formulations in Protection against Pneumonia with Klebsiella pneumonia Infection and Inflammatory Response in Rats. Pharm Res 2019; 36:74. [PMID: 30923922 DOI: 10.1007/s11095-019-2614-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 03/22/2019] [Indexed: 01/02/2023]
Abstract
PURPOSE This study aimed to compare in vivo activity between cefquinome (CEQ)-loaded poly lactic-co-glycolic acid (PLGA) microspheres (CEQ-PLGA-MS) and CEQ injection (CEQ-INJ) against Klebsiella pneumonia in a rat lung infection model. METHODS Forty-eight rats were divided into control group (sham operated without infection and drug treatment), Klebsiella pneumonia model group (KPD + Saline), CEQ-PLGA-MS and CEQ-INJ therapy groups (KPD + CEQ-PLGA-MS and KPD + INJ, respectively). In the KPD + Saline group, rats were infected with Klebsiella pneumonia ATCC 10031. In the KPD + CEQ-PLGA-MS and KPD + INJ groups, infected rats were intravenously injected with 12.5 mg/kg body weight CEQ-PLGA-MS and CEQ-INJ, respectively. RESULTS Compared to CEQ-INJ treatment group, CEQ-PLGA-MS treatment further decreased the number of bacteria colonies (decreased to 1.94 lg CFU/g) in lung tissues and the levels of inflammatory cytokine including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-4 (p < 0.05 or p < 0.01) in bronchoalveolar lavage fluid at 48 h. Consistently, a significant decreases of scores of inflammation severity were showed at 48 h in the KPD + CEQ-PLGA-MS treatment group, compared to the KPD + CEQ-INJ treatment group. CONCLUSION Our results reveal that CEQ-PLGA-MS has the better therapeutic effect than CEQ-INJ for Klebsiella pneumonia lung infections in rats. The vehicle of CEQ-PLGA-MS as the promising alternatives to control the lung infections with the important pathogens.
Collapse
Affiliation(s)
- Shaoqi Qu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical Technology, Qingdao, 266109, China
| | - Cunchun Dai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical Technology, Qingdao, 266109, China
| | - Fenfang Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical Technology, Qingdao, 266109, China
| | - Tingting Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical Technology, Qingdao, 266109, China
| | - Zhihui Hao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China. .,National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical Technology, Qingdao, 266109, China.
| | - Qihe Tang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical Technology, Qingdao, 266109, China
| | - Haixia Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical Technology, Qingdao, 266109, China
| | - Yanping Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical Technology, Qingdao, 266109, China
| |
Collapse
|
15
|
Qu S, Dai C, Zhu J, Zhao L, Li Y, Hao Z. Cefquinome-loaded microsphere formulations against Klebsiella pneumonia infection during experimental infections. Drug Deliv 2018; 25:909-915. [PMID: 29649952 PMCID: PMC6058672 DOI: 10.1080/10717544.2018.1461958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/07/2023] Open
Abstract
The aim of this study was to prepare cefquinome-loaded polylactic acid microspheres and to evaluate their in vitro and in vivo characteristics and pharmacodynamics for the therapy of pneumonia in a rat model. Microspheres were prepared using a 0.7 mm two-fluid nozzle spray drier in one step resulting in spherical and smooth microspheres of uniform size (9.8 ± 3.6 μm). The encapsulation efficiency and drug loading of cefquinome were 91.6 ± 2.6% and 18.7 ± 1.2%, respectively. In vitro release of cefquinome from the microspheres was sustained for 36 h. Cefquinome-loaded polylactic acid microspheres as a drug delivery system was successful for clearing experimental Klebsiella pneumonia lung infections. A decrease in inflammatory cells and an inhibition of inflammatory cytokines TNF-α, IL-1β and IL-8 after microspheres treatment was found. Changes in cytokine levels and types are secondary manifestations of drug bactericidal effects. Rats were considered to be microbiologically cured because the bacterial load was less than 100 CFU/g. These results also indicated that the spray-drying method of loading therapeutic drug into polylactic acid microspheres is a straightforward and safe method for lung-targeting therapy in animals.
Collapse
Affiliation(s)
- Shaoqi Qu
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- National-Local Joint Engineering Laboratory, Agricultural Bio-pharmaceutical Technology, Qingdao, China
| | - Cunchun Dai
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- National-Local Joint Engineering Laboratory, Agricultural Bio-pharmaceutical Technology, Qingdao, China
| | - Jiajia Zhu
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- National-Local Joint Engineering Laboratory, Agricultural Bio-pharmaceutical Technology, Qingdao, China
| | - Li Zhao
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- National-Local Joint Engineering Laboratory, Agricultural Bio-pharmaceutical Technology, Qingdao, China
| | - Yuwen Li
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- National-Local Joint Engineering Laboratory, Agricultural Bio-pharmaceutical Technology, Qingdao, China
| | - Zhihui Hao
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- National-Local Joint Engineering Laboratory, Agricultural Bio-pharmaceutical Technology, Qingdao, China
| |
Collapse
|
16
|
Anisimova NY, Ustyuzhanina NE, Bilan MI, Donenko FV, Ushakova NA, Usov AI, Kiselevskiy MV, Nifantiev NE. Influence of Modified Fucoidan and Related Sulfated Oligosaccharides on Hematopoiesis in Cyclophosphamide-Induced Mice. Mar Drugs 2018; 16:E333. [PMID: 30216993 PMCID: PMC6164909 DOI: 10.3390/md16090333] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 12/20/2022] Open
Abstract
Immunosuppression derived after cytostatics application in cancer chemotherapy is considered as an adverse side effect that leads to deterioration of quality of life and risk of infectious diseases. A linear sulfated (1→3)-α-l-fucan M-Fuc prepared by chemical modification of a fucoidan isolated from the brown seaweed Chordaria flagelliformis, along with two structurally related synthetic sulfated oligosaccharides, were studied as stimulators of hematopoiesis on a model of cyclophosphamide immunosuppression in mice. Recombinant granulocyte colony-stimulating factor (r G-CSF), which is currently applied in medicine to treat low blood neutrophils, was used as a reference. Polysaccharide M-Fuc and sulfated difucoside DS did not demonstrate significant effect, while sulfated octasaccharide OS showed higher activity than r G-CSF, causing pronounced neutropoiesis stimulation. In addition, production of erythrocytes and platelets was enhanced after the octasaccharide administration. The assessment of populations of cells in blood and bone marrow of mice revealed the difference in mechanisms of action of OS and r G-CSF.
Collapse
Affiliation(s)
- Natalia Yu Anisimova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478 Moscow, Russia.
| | - Nadezhda E Ustyuzhanina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| | - Maria I Bilan
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| | - Fedor V Donenko
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478 Moscow, Russia.
| | - Natalia A Ushakova
- V.N. Orekhovich Research Institute of Biomedical Chemistry, Pogodinskaya str. 10, 119121 Moscow, Russia.
| | - Anatolii I Usov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| | - Mikhail V Kiselevskiy
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478 Moscow, Russia.
| | - Nikolay E Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
17
|
Lee D, Kim HS, Shin E, Do SG, Lee CK, Kim YM, Lee MB, Min KY, Koo J, Kim SJ, Nam ST, Kim HW, Park YH, Choi WS. Polysaccharide isolated from Aloe vera gel suppresses ovalbumin-induced food allergy through inhibition of Th2 immunity in mice. Biomed Pharmacother 2018; 101:201-210. [PMID: 29494957 DOI: 10.1016/j.biopha.2018.02.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 12/15/2022] Open
Abstract
An allergic reaction occurs when the immune system overreacts to harmless substance called allergen that gains access to the body. Food allergy is a hypersensitive immune reaction to food proteins and the number of patients with food allergy has recently increased. Aloe Vera is used for wellness and medicinal purposes. In particular, Aloe vera has been reported to enhance immunity. However, the effect of Aloe vera on food allergy is not yet known. In this study, we investigated the effects of processed Aloe vera gel (PAG) containing low molecular weight Aloe polysaccharide (AP) on ovalbumin (OVA)-induced food allergy in mice. Allergic symptoms, rectal temperature, and diarrhea were measured in OVA-induced food allergy mice. Other allergic parameters were also analyzed by RT-PCR, ELISA, flow cytometry, and other biochemical methods. As the results, PAG suppressed the decrease of body temperature, diarrhea, and allergic symptoms in OVA-induced food allergy mice. PAG also reduced serum concentrations of type 2 helper T cell (Th2) cytokines (Interleukin-(IL)-4, IL-5, and IL-13) as well as histamine, mast cell protease-1 (MCP-1), and immunoglobulin (Ig)E. PAG blocked the degranulation of mast cells and infiltration of eosinophils in intestine. Furthermore, PAG suppressed the population of Th2 cells in spleen and mesenteric lymph nodes. PAG also increased the production of IL-10 and population of type 1 regulatory T (Tr1) cells in mice with food allergy. Taken together, our findings suggest that PAG suppressed Th2 immune responses through, at least partially, stimulating the secretion of IL-10 in food allergy mice.
Collapse
Affiliation(s)
- Dajeong Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyuk Soon Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Eunju Shin
- Univera Inc., Seoul 04782, Republic of Korea
| | - Seon-Gil Do
- Univera Inc., Seoul 04782, Republic of Korea
| | - Chong-Kil Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Min Bum Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Keun Young Min
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Jimo Koo
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Su Jeong Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Seung Taek Nam
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyun Woo Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Hwan Park
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea.
| |
Collapse
|
18
|
Fucoidan and Fucosylated Chondroitin Sulfate Stimulate Hematopoiesis in Cyclophosphamide-Induced Mice. Mar Drugs 2017; 15:md15100301. [PMID: 28973980 PMCID: PMC5666409 DOI: 10.3390/md15100301] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 12/13/2022] Open
Abstract
Application of cytostatics in cancer patients’ chemotherapy results in a number of side effects, including the inhibition of various parts of hematopoiesis. Two sulfated polysaccharides, fucoidan from the seaweed Chordaria flagelliformis (PS-Fuc) and fucosylated chondroitin sulfate from the sea cucumber Massinium magnum (PS-FCS), were studied as stimulators of hematopoiesis after cyclophosphamide immunosuppression in mice. Recombinant granulocyte colony-stimulating factor (r G-CSF) was applied as a reference. Both tested polysaccharides PS-Fuc and PS-FCS have a similar activity to r G-CSF, causing pronounced neutropoiesis stimulation in animals with myelosuppression induced by cyclophosphamide (CPh). Moreover, these compounds are also capable to enhance thrombopoiesis and erythropoiesis. It should be noted that PS-FCS demonstrated a greater activity than r G-CSF. The results indicate the perspective of further studies of PS-Fuc and PS-FCS, since these compounds can be considered as potentially promising stimulators of hematopoiesis. Such drugs are in demand for the accompanying treatment of cancer patients who suffer from hematological toxicity during chemo and/or radiation therapy.
Collapse
|
19
|
Guidetti G, Di Cerbo A, Giovazzino A, Rubino V, Palatucci AT, Centenaro S, Fraccaroli E, Cortese L, Bonomo MG, Ruggiero G, Canello S, Terrazzano G. In Vitro Effects of Some Botanicals with Anti-Inflammatory and Antitoxic Activity. J Immunol Res 2016; 2016:5457010. [PMID: 27597982 PMCID: PMC5002466 DOI: 10.1155/2016/5457010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/15/2022] Open
Abstract
Several extrinsic factors, like drugs and chemicals, can foster autoimmunity. Tetracyclines, in particular oxytetracycline (OTC), appear to correlate with the emergence of immune-mediated diseases. Accumulation of OTC, the elective drug for gastrointestinal and respiratory infectious disease treatment in broiler chickens, was reported in chicken edible tissues and could represent a potential risk for pets and humans that could assume this antibiotic as residue in meat or in meat-derived byproducts. We investigated the in vitro anti-inflammatory properties of a pool of thirteen botanicals as a part of a nutraceutical diet, with proven immunomodulatory activity. In addition, we evaluated the effect of such botanicals in contrasting the in vitro proinflammatory toxicity of OTC. Our results showed a significant reduction in interferon- (INF-) γ production by human and canine lymphocytes in presence of botanicals ((⁎) p < 0.05). Increased INF-γ production, dependent on 24-hour OTC-incubation of T lymphocytes, was significantly reduced by the coincubation with Haematococcus pluvialis, with Glycine max, and with the mix of all botanicals ((⁎) p < 0.05). In conclusion, the use of these botanicals was shown to be able to contrast OTC-toxicity and could represent a new approach for the development of functional foods useful to enhance the standard pharmacological treatment in infections as well as in preventing or reducing the emergence of inflammatory diseases.
Collapse
Affiliation(s)
- Gianandrea Guidetti
- Division of Research and Development, SANYpet SpA, 35023 Bagnoli di Sopra, Italy
| | - Alessandro Di Cerbo
- School of Specialization in Clinical Biochemistry, “G. d'Annunzio” University, 66100 Chieti, Italy
| | - Angela Giovazzino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Valentina Rubino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | | | - Sara Centenaro
- Division of Research and Development, SANYpet SpA, 35023 Bagnoli di Sopra, Italy
| | - Elena Fraccaroli
- Division of Research and Development, SANYpet SpA, 35023 Bagnoli di Sopra, Italy
| | - Laura Cortese
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80100 Naples, Italy
| | | | - Giuseppina Ruggiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Sergio Canello
- Division of Research and Development, SANYpet SpA, 35023 Bagnoli di Sopra, Italy
| | - Giuseppe Terrazzano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
20
|
Omega-3 fatty acids are able to modulate the painful symptoms associated to cyclophosphamide-induced-hemorrhagic cystitis in mice. J Nutr Biochem 2016; 27:219-32. [DOI: 10.1016/j.jnutbio.2015.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/30/2022]
|