1
|
Liu T, Xia S. The Proteostasis of Thymic Stromal Cells in Health and Diseases. Protein J 2024; 43:447-463. [PMID: 38622349 DOI: 10.1007/s10930-024-10197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
The thymus is the key immune organ for the development of T cells. Different populations of thymic stromal cells interact with T cells, thereby controlling the dynamic development of T cells through their differentiation and function. Proteostasis represents a balance between protein expression, folding, and modification and protein clearance, and its fluctuation usually depends at least partially on related protein regulatory systems for further survival and effects. However, in terms of the substantial requirement for self-antigens and their processing burden, increasing evidence highlights that protein regulation contributes to the physiological effects of thymic stromal cells. Impaired proteostasis may expedite the progression of thymic involution and dysfunction, accompanied by the development of autoimmune diseases or thymoma. Hence, in this review, we summarize the regulation of proteostasis within different types of thymic stromal cells under physiological and pathological conditions to identify potential targets for thymic regeneration and immunotherapy.
Collapse
Affiliation(s)
- Ting Liu
- Department of Immunology, School of Medicine, Jiangsu University, 301, Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, 301, Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
2
|
Centa M, Thermidor C, Fiel MI, Alexandropoulos K. Profiling of mouse and human liver diseases identifies targets for therapeutic treatment of autoimmune hepatitis. Clin Immunol 2023; 256:109807. [PMID: 37821072 DOI: 10.1016/j.clim.2023.109807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Autoimmune hepatitis (AIH), primary sclerosing cholangitis (PSC), and non-alcoholic steatohepatitis (NASH) are chronic liver diseases (CLDs) of distinct etiologies that represent a public health risk with limited therapeutic options. A common feature among CLDs is an aggressive T cell response resulting in destruction of liver tissue and fibrosis. Here, we assessed the presence and nature of T cell inflammation in late-stage human AIH, PSC and NASH and examined whether targeting the T cell response can improve disease pathology in a mouse model (Traf6ΔTEC) of spontaneous AIH. T cell infiltration and ensuing inflammatory pathways were present in human AIH and PSC and to a lesser extent in NASH. However, we observed qualitative differences in infiltrating T cell subsets and upregulation of inflammatory pathways among these diseases, while mouse and human AIH exhibited similar immunogenic signatures. While gene expression profiles differed among diseases, we identified 52 genes commonly upregulated across all diseases that included the JAK3 tyrosine kinase. Therapeutic targeting of chronic AIH with the JAK inhibitor tofacitinib reduced hepatic T cell infiltration, AIH histopathology and associated immune parameters in treated Traf6ΔTEC mice. Our results indicate that targeting T cell responses in established hepatic autoimmune inflammation is a feasible strategy for developing novel therapeutic approaches to treat AIH and possibly other CLDs irrespective of etiology.
Collapse
Affiliation(s)
- Monica Centa
- Department of Medicine, Division of Clinical Immunology, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christelle Thermidor
- Department of Medicine, Division of Clinical Immunology, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Konstantina Alexandropoulos
- Department of Medicine, Division of Clinical Immunology, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Liu QR, Aseer KR, Yao Q, Zhong X, Ghosh P, O’Connell JF, Egan JM. Anti-Inflammatory and Pro-Autophagy Effects of the Cannabinoid Receptor CB2R: Possibility of Modulation in Type 1 Diabetes. Front Pharmacol 2022; 12:809965. [PMID: 35115945 PMCID: PMC8804091 DOI: 10.3389/fphar.2021.809965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease resulting from loss of insulin-secreting β-cells in islets of Langerhans. The loss of β-cells is initiated when self-tolerance to β-cell-derived contents breaks down, which leads to T cell-mediated β-cell damage and, ultimately, β-cell apoptosis. Many investigations have demonstrated the positive effects of antagonizing cannabinoid receptor 1 (CB1R) in metabolic diseases such as fatty liver disease, obesity, and diabetes mellitus, but the role of cannabinoid receptor 2 (CB2R) in such diseases is relatively unknown. Activation of CB2R is known for its immunosuppressive roles in multiple sclerosis, rheumatoid arthritis, Crohn’s, celiac, and lupus diseases, and since autoimmune diseases can share common environmental and genetic factors, we propose CB2R specific agonists may also serve as disease modifiers in diabetes mellitus. The CNR2 gene, which encodes CB2R protein, is the result of a gene duplication of CNR1, which encodes CB1R protein. This ortholog evolved rapidly after transitioning from invertebrates to vertebrate hundreds of million years ago. Human specific CNR2 isoforms are induced by inflammation in pancreatic islets, and a CNR2 nonsynonymous SNP (Q63R) is associated with autoimmune diseases. We collected evidence from the literature and from our own studies demonstrating that CB2R is involved in regulating the inflammasome and especially release of the cytokine interleukin 1B (IL-1β). Furthermore, CB2R activation controls intracellular autophagy and may regulate secretion of extracellular vesicles from adipocytes that participate in recycling of lipid droplets, dysregulation of which induces chronic inflammation and obesity. CB2R activation may play a similar role in islets of Langerhans. Here, we will discuss future strategies to unravel what roles, if any, CB2R modifiers potentially play in T1DM.
Collapse
Affiliation(s)
- Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
- *Correspondence: Qing-Rong Liu, ; Josephine M. Egan,
| | - Kanikkai Raja Aseer
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Qin Yao
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Xiaoming Zhong
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Paritosh Ghosh
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Jennifer F. O’Connell
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
- *Correspondence: Qing-Rong Liu, ; Josephine M. Egan,
| |
Collapse
|
4
|
Wang H, Feng X, Yan W, Tian D. Regulatory T Cells in Autoimmune Hepatitis: Unveiling Their Roles in Mouse Models and Patients. Front Immunol 2020; 11:575572. [PMID: 33117375 PMCID: PMC7575771 DOI: 10.3389/fimmu.2020.575572] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a severe and chronic liver disease, and its incidence has increased worldwide in recent years. Research into the pathogenesis of AIH remains limited largely owing to the lack of suitable mouse models. The concanavalin A (ConA) mouse model is a typical and well-established model used to investigate T cell-dependent liver injury. However, ConA-induced hepatitis is acute and usually disappears after 48 h; thus, it does not mimic the pathogenesis of AIH in the human body. Several studies have explored various AIH mouse models, but as yet there is no widely accepted and valid mouse model for AIH. Immunosuppression is the standard clinical therapy for AIH, but patient side effects and recurrence limit its use. Regulatory T cells (Tregs) play critical roles in the maintenance of immune homeostasis and in the prevention of autoimmune diseases, which may provide a potential therapeutic target for AIH therapy. However, the role of Tregs in AIH has not yet been clarified, partly because of difficulties in diagnosing AIH and in collecting patient samples. In this review, we discuss the studies related to Treg in various AIH mouse models and patients with AIH and provide some novel insights for this research area.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxia Feng
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Assis DN. Immunopathogenesis of Autoimmune Hepatitis. Clin Liver Dis (Hoboken) 2020; 15:129-132. [PMID: 32257125 PMCID: PMC7128031 DOI: 10.1002/cld.873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/12/2019] [Indexed: 02/04/2023] Open
Abstract
http://aasldpubs.onlinelibrary.wiley.com/hub/journal/10.1002/(ISSN)2046-2484/video/15-3-reading-assis a video presentation of this article http://aasldpubs.onlinelibrary.wiley.com/hub/journal/10.1002/(ISSN)2046-2484/video/15-3-interview-assis the interview with the author.
Collapse
Affiliation(s)
- David N. Assis
- Department of Medicine, Section of Digestive DiseasesYale School of MedicineNew HavenCT
| |
Collapse
|
6
|
Christen U. Animal models of autoimmune hepatitis. Biochim Biophys Acta Mol Basis Dis 2018; 1865:970-981. [PMID: 29857050 DOI: 10.1016/j.bbadis.2018.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Many animal models for autoimmune hepatitis (AIH) have been described in the past. Most models had to deal with the relative immunosuppressive environment of the liver. Therefore, some models used a combination of several triggering factors often on a susceptible background to generate an aggressive immune response that targets the liver. In addition, in order to be able to track the immune response the models used specific model autoantigens as targets that are either not present or have not been identified as a natural autoantigen in AIH patients. Thereby the feasibility of such models is somewhat questionable. Although many historic approaches included challenges of experimental animals with liver homogenates it was only in the last decade that natural occurring liver autoantigens have been used in animal models. This article reflects on the requirements for breaking liver tolerance and on how an ideal experimental model for AIH would look like. In addition, it discusses historic as well as recent animal models in the context of feasibility of induction, similarity of the clinical outcome to human AIH, and gain of knowledge for possible future therapies.
Collapse
Affiliation(s)
- Urs Christen
- Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Christen U, Hintermann E. Immunopathogenic Mechanisms of Autoimmune Hepatitis: How Much Do We Know from Animal Models? Int J Mol Sci 2016; 17:ijms17122007. [PMID: 27916939 PMCID: PMC5187807 DOI: 10.3390/ijms17122007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
Autoimmune hepatitis (AIH) is characterized by a progressive destruction of the liver parenchyma and a chronic fibrosis. The current treatment of autoimmune hepatitis is still largely dependent on the administration of corticosteroids and cytostatic drugs. For a long time the development of novel therapeutic strategies has been hampered by a lack of understanding the basic immunopathogenic mechanisms of AIH and the absence of valid animal models. However, in the past decade, knowledge from clinical observations in AIH patients and the development of innovative animal models have led to a situation where critical factors driving the disease have been identified and alternative treatments are being evaluated. Here we will review the insight on the immunopathogenesis of AIH as gained from clinical observation and from animal models.
Collapse
Affiliation(s)
- Urs Christen
- Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | - Edith Hintermann
- Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Herbin O, Bonito AJ, Jeong S, Weinstein EG, Rahman AH, Xiong H, Merad M, Alexandropoulos K. Medullary thymic epithelial cells and CD8α + dendritic cells coordinately regulate central tolerance but CD8α + cells are dispensable for thymic regulatory T cell production. J Autoimmun 2016; 75:141-149. [PMID: 27543048 DOI: 10.1016/j.jaut.2016.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
In the thymus, antigen presenting cells (APCs) namely, medullary thymic epithelial cells (mTECs) and thymic dendritic cells (tDCs) regulate T cell tolerance through elimination of autoreactive T cells and production of thymic T regulatory (tTreg) cells. How the different APCs in the thymus share the burden of tolerazing the emerging T cell repertoire remains unclear. For example, while mutations that inhibit mTEC development or function associate with peripheral autoimmunity, the role of tDCs in organ-specific autoimmunity and tTreg cell production remains controversial. In this report we used mice depleted of mTECs and/or CD8α+ DCs, to examine the contributions of these cell populations in thymic tolerance. We found that while mice depleted of CD8α+ DCs or mTECs were normal or developed liver inflammation respectively, combined depletion of mTECs and CD8α+ DCs resulted in overt peripheral autoimmunity. The autoimmune manifestations in mice depleted of both mTECs and CD8α+ cDCs associated with increased percentages of CD4+ and CD8+ T cells in the thymus. In contrast, while mTEC depletion resulted in reduced percentages of tTreg cells, no additional effect was observed when CD8α+ DCs were also depleted. These results reveal that: 1) mTECs and CD8α+ DCs cooperatively safeguard against peripheral autoimmunity through thymic T cell deletion; 2) CD8α+ DCs are dispensable for tTreg cell production, whereas mTECs play a non-redundant role in this process; 3) mTECs and CD8α+ DCs make unique contributions to tolerance induction that cannot be compensated for by other thymic APCs such as migratory SIRPα+ or plasmacytoid DCs.
Collapse
Affiliation(s)
- Olivier Herbin
- Department of Medicine/Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anthony J Bonito
- Department of Medicine/Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seihwan Jeong
- Department of Medicine/Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erica G Weinstein
- Department of Medicine/Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adeeb H Rahman
- Department of Medicine/Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute/Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Huabao Xiong
- Department of Medicine/Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Medicine/Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute/Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Konstantina Alexandropoulos
- Department of Medicine/Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Expression of cell cycle and apoptosis regulators in thymus and thymic epithelial tumors. Clin Exp Med 2015; 16:147-59. [PMID: 25794494 DOI: 10.1007/s10238-015-0344-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/05/2015] [Indexed: 12/15/2022]
Abstract
The human thymus supports the production of self-tolerant T cells with competent and regulatory functions. Various cellular components of the thymic microenvironment such as thymic epithelial cells (TEC) and dendritic cells play essential roles in thymic T cell differentiation. The multiple cellular events occurring during thymic T cell and TEC differentiation involve proteins regulating cell cycle and apoptosis. Dysregulation of the cell cycle and apoptosis networks is involved in the pathogenesis of thymic epithelial tumors (TET) which are divided into two broad categories, thymomas and thymic carcinomas. The present review focuses on the usefulness of the analysis of the expression patterns of major cell cycle and apoptosis regulators in order to gain insight in the histophysiology of thymus and the histopathology, the clinical behavior and the biology of TET.
Collapse
|