1
|
Zhao YH, Zhu WX, Ye QH, Zhang P, Wei BF. Correlation of serum and local CXCL13 levels with disease severity in patients with non-traumatic osteonecrosis of femoral head. J Orthop Surg Res 2024; 19:162. [PMID: 38429811 PMCID: PMC10908116 DOI: 10.1186/s13018-024-04645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
OBJECTIVE The primary aim of the present study was to explore the potential correlation of serum / local CXCL13 expressions and disease severity in non-traumatic osteonecrosis of the femoral head (NT-ONFH). METHODS In total, NT-ONFH patients (n = 130) together with healthy controls (HCs, n = 130) were included in this investigation. Radiographic progression was evaluated based on the imaging criteria outlined in the ARCO classification system. To assess the diagnostic value of serum CXCL13 in relation to radiographic progression, Receiver operating characteristic (ROC) curve analysis was conducted. Serum CXCL13 levels were quantified utilizing ELISA in all participants. Furthermore, local protein/mRNA expressions of CXCL13 were examined employing immunohistochemistry, western blot, as well as RT-PCR techniques. Clinical severity was appraised using the visual analogue scale (VAS), Harris Hip Score (HHS), and Western Ontario as well as McMaster Universities Osteoarthritis Index (WOMAC). RESULTS The findings revealed a significant reduction in serum CXCL13 levels among NT-ONFH patients in contrast with HCs. Moreover, both mRNA and protein expressions of CXCL13 were markedly decreased in the necrotic area (NA) than the non-necrotic area (NNA) as well as the healthy femoral head tissues. Additionally, serum CXCL13 levels were substantially lower among patients classified as ARCO stage 4 than those at ARCO stage 3. The concentrations of CXCL13 in stage 3 patients were notably diminished relative to those at ARCO stage 2. Notably, serum CXCL13 levels demonstrated a negative association with ARCO grade. Furthermore, these levels were also inversely linked to VAS scores as well as WOMAC scores while displaying a positive association with HHS scores. The findings of ROC curve suggested that reduced serum CXCL13 levels could be an underlying indicator for ARCO stage. CONCLUSIONS The reduced levels of either serum CXCL13 or local CXCL13 were intricately linked to disease severity for patients with NT-ONFH.
Collapse
Affiliation(s)
- Yong-Heng Zhao
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Department of Orthopedics, Linyi People's Hospital, Shandong Province, China
| | - Wen-Xiu Zhu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Department of Pain, Linyi People's Hospital, Shandong Province, China
| | - Qing-He Ye
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Department of Orthopedics, Linyi People's Hospital, Shandong Province, China
| | - Peng Zhang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Department of Orthopedics, Linyi People's Hospital, Shandong Province, China
| | - Biao-Fang Wei
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China.
- Department of Orthopedics, Linyi People's Hospital, Shandong Province, China.
| |
Collapse
|
2
|
Tian B, Zhang M, Kang X. Strategies to promote tendon-bone healing after anterior cruciate ligament reconstruction: Present and future. Front Bioeng Biotechnol 2023; 11:1104214. [PMID: 36994361 PMCID: PMC10040767 DOI: 10.3389/fbioe.2023.1104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
At present, anterior cruciate ligament (ACL) reconstruction still has a high failure rate. Tendon graft and bone tunnel surface angiogenesis and bony ingrowth are the main physiological processes of tendon-bone healing, and also the main reasons for the postoperative efficacy of ACL reconstruction. Poor tendon-bone healing has been also identified as one of the main causes of unsatisfactory treatment outcomes. The physiological process of tendon-bone healing is complicated because the tendon-bone junction requires the organic fusion of the tendon graft with the bone tissue. The failure of the operation is often caused by tendon dislocation or scar healing. Therefore, it is important to study the possible risk factors for tendon-bone healing and strategies to promote it. This review comprehensively analyzed the risk factors contributing to tendon-bone healing failure after ACL reconstruction. Additionally, we discuss the current strategies used to promote tendon-bone healing following ACL reconstruction.
Collapse
|
3
|
Yang C, Teng Y, Geng B, Xiao H, Chen C, Chen R, Yang F, Xia Y. Strategies for promoting tendon-bone healing: Current status and prospects. Front Bioeng Biotechnol 2023; 11:1118468. [PMID: 36777256 PMCID: PMC9911882 DOI: 10.3389/fbioe.2023.1118468] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Tendon-bone insertion (TBI) injuries are common, primarily involving the rotator cuff (RC) and anterior cruciate ligament (ACL). At present, repair surgery and reconstructive surgery are the main treatments, and the main factor determining the curative effect of surgery is postoperative tendon-bone healing, which requires the stable combination of the transplanted tendon and the bone tunnel to ensure the stability of the joint. Fibrocartilage and bone formation are the main physiological processes in the bone marrow tract. Therefore, therapeutic measures conducive to these processes are likely to be applied clinically to promote tendon-bone healing. In recent years, biomaterials and compounds, stem cells, cell factors, platelet-rich plasma, exosomes, physical therapy, and other technologies have been widely used in the study of promoting tendon-bone healing. This review provides a comprehensive summary of strategies used to promote tendon-bone healing and analyses relevant preclinical and clinical studies. The potential application value of these strategies in promoting tendon-bone healing was also discussed.
Collapse
Affiliation(s)
- Chenhui Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China,Department of Orthopedic, Tianshui Hand and Foot Surgery Hospital, Tianshui, China
| | - Yuanjun Teng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Rongjin Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Fei Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China,*Correspondence: Yayi Xia,
| |
Collapse
|
4
|
Balne PK, Gupta S, Landon KM, Sinha NR, Hofmann AC, Hauser N, Sinha PR, Huang H, Kempuraj D, Mohan RR. Characterization of C-X-C chemokine receptor type 5 in the cornea and role in the inflammatory response after corneal injury. Exp Eye Res 2023; 226:109312. [PMID: 36400287 DOI: 10.1016/j.exer.2022.109312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
Abstract
C-X-C chemokine receptor type 5 (CXCR5) regulates inflammatory responses in ocular and non-ocular tissues. However, its expression and role in the cornea are still unknown. Here, we report the expression of CXCR5 in human cornea in vitro and mouse corneas in vivo, and its functional role in corneal inflammation using C57BL/6J wild-type (CXCR5+/+) and CXCR5-deficient (CXCR5-/-) mice, topical alkali injury, clinical eye imaging, histology, immunofluorescence, PCR, qRT-PCR, and western blotting. Human corneal epithelial cells, stromal fibroblasts, and endothelial cells demonstrated CXCR5 mRNA and protein expression in PCR, and Western blot analyses, respectively. To study the functional role of CXCR5 in vivo, mice were divided into four groups: Group-1 (CXCR5+/+ alkali injured cornea; n = 30), Group-2 (CXCR5-/- alkali injured cornea; n = 30), Group-3 (CXCR5+/+ naïve cornea; n = 30), and Group-4 (CXCR5-/- naïve cornea; n = 30). Only one eye was wounded with alkali. Clinical corneal evaluation and imaging were performed before and after injury. Mice were euthanized 4 h, 3 days, or 7 days after injury, eyes were excised and used for histology, immunofluorescence, and qRT-PCR. In clinical eye examinations, CXCR5-/- mouse corneas showed ocular health akin to the naïve corneas. Alkali injured CXCR5+/+ mouse corneas showed significantly increased mRNA (p < 0.001) and protein (p < 0.01 or p < 0.0001) levels of the CXCR5 compared to the naïve corneas. Likewise, alkali injured CXCR5-/- mouse corneas showed remarkably amplified inflammation in clinical eye exams in live animals. The histological and molecular analyses of these corneas post euthanasia exhibited markedly augmented inflammatory cells in H&E staining and significant CD11b + cells in immunofluorescence (p < 0.01 or < 0.05); and tumor necrosis factor-alpha (TNFα; p < 0.05), cyclooxygenase 2 (COX-2; p < 0.0001), interleukin (IL)-1β (p < 0.0001), and IL-6 (p < 0.0001 or < 0.01) mRNA expression compared to the CXCR5+/+ mouse corneas. Interestingly, CXCR5-/- alkali injured corneas also showed altered mRNA expression of fibrotic alpha smooth muscle actin (α-SMA; p > 0.05) and angiogenic vascular endothelial growth factor (VEGF; p < 0.01) compared to the CXCR5+/+ alkali injured corneas. In summary, the CXCR5 gene is expressed in all three major layers of the cornea and appears to influence corneal inflammatory and repair events post-injury in vivo. More studies are warranted to tease the mechanistic role of CXCR5 in corneal inflammation and wound healing.
Collapse
Affiliation(s)
- Praveen K Balne
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Keele M Landon
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | | | - Nicholas Hauser
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Hu Huang
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
5
|
Feng W, Jin Q, Ming-Yu Y, Yang H, Xu T, You-Xing S, Xu-Ting B, Wan C, Yun-Jiao W, Huan W, Ai-Ning Y, Yan L, Hong T, Pan H, Mi-Duo M, Gang H, Mei Z, Xia K, Kang-Lai T. MiR-6924-5p-rich exosomes derived from genetically modified Scleraxis-overexpressing PDGFRα(+) BMMSCs as novel nanotherapeutics for treating osteolysis during tendon-bone healing and improving healing strength. Biomaterials 2021; 279:121242. [PMID: 34768151 DOI: 10.1016/j.biomaterials.2021.121242] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Osteolysis at the tendon-bone interface can impair pullout strength during tendon-bone healing and lead to surgery failure, but the effects of clinical treatments are not satisfactory. Mesenchymal stem cell (MSC)-derived exosomes have been used as potent and feasible natural nanocarriers for drug delivery and have been proven to enhance tendon-bone healing strength, indicating that MSC-derived exosomes could be a promising therapeutic strategy. In this study, we explored Scleraxis (Scx) dynamically expressed in PDGFRα(+) bone marrow-derived mesenchymal stem cells (BMMSCs) during natural tendon-bone healing. Then, we investigated the role of PDGFRα(+) BMMSCs in tendon-bone healing after Scx overexpression as well as the underlying mechanisms. Our data demonstrated that Scx-overexpressing PDGFRα(+) BMMSCs (BMMSCScx) could efficiently inhibit peritunnel osteolysis and enhance tendon-bone healing strength by preventing osteoclastogenesis in an exosomes-dependent manner. Exosomal RNA-seq revealed that the abundance of a novel miRNA, miR-6924-5p, was highest among miRNAs. miR-6924-5p could directly inhibit osteoclast formation by binding to the 3'-untranslated regions (3'UTRs) of OCSTAMP and CXCL12. Inhibition of miR-6924-5p expression reversed the prevention of osteoclastogenic differentiation by BMMSCScx derived exosomes (BMMSCScx-exos). Local injection of BMMSCScx-exos or miR-6924-5p dramatically reduced osteoclast formation and improved tendon-bone healing strength. Furthermore, delivery of miR-6924-5p efficiently inhibited the osteoclastogenesis of human monocytes. In brief, our study demonstrates that BMMSCScx-exos or miR-6924-5p could serve as a potential therapy for the treatment of osteolysis during tendon-bone healing and improve the outcome.
Collapse
Affiliation(s)
- Wang Feng
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Qian Jin
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China; Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Ming-Yu
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - He Yang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Tao Xu
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Shi You-Xing
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Bian Xu-Ting
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Chen Wan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Wang Yun-Jiao
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Wang Huan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Yang Ai-Ning
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Li Yan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Tang Hong
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Huang Pan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Mu Mi-Duo
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - He Gang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Zhou Mei
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Kang Xia
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China; Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Tang Kang-Lai
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China.
| |
Collapse
|
6
|
Li ZJ, Yang QQ, Zhou YL. Basic Research on Tendon Repair: Strategies, Evaluation, and Development. Front Med (Lausanne) 2021; 8:664909. [PMID: 34395467 PMCID: PMC8359775 DOI: 10.3389/fmed.2021.664909] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/30/2021] [Indexed: 01/07/2023] Open
Abstract
Tendon is a fibro-elastic structure that links muscle and bone. Tendon injury can be divided into two types, chronic and acute. Each type of injury or degeneration can cause substantial pain and the loss of tendon function. The natural healing process of tendon injury is complex. According to the anatomical position of tendon tissue, the clinical results are different. The wound healing process includes three overlapping stages: wound healing, proliferation and tissue remodeling. Besides, the healing tendon also faces a high re-tear rate. Faced with the above difficulties, management of tendon injuries remains a clinical problem and needs to be solved urgently. In recent years, there are many new directions and advances in tendon healing. This review introduces tendon injury and sums up the development of tendon healing in recent years, including gene therapy, stem cell therapy, Platelet-rich plasma (PRP) therapy, growth factor and drug therapy and tissue engineering. Although most of these therapies have not yet developed to mature clinical application stage, with the repeated verification by researchers and continuous optimization of curative effect, that day will not be too far away.
Collapse
Affiliation(s)
- Zhi Jie Li
- Research for Frontier Medicine and Hand Surgery Research Center, The Nanomedicine Research Laboratory, Research Center of Clinical Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Qian Qian Yang
- Research for Frontier Medicine and Hand Surgery Research Center, The Nanomedicine Research Laboratory, Research Center of Clinical Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - You Lang Zhou
- Research for Frontier Medicine and Hand Surgery Research Center, The Nanomedicine Research Laboratory, Research Center of Clinical Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| |
Collapse
|
7
|
Zhang YL, Liu L, Peymanfar Y, Anderson P, Xian CJ. Roles of MicroRNAs in Osteogenesis or Adipogenesis Differentiation of Bone Marrow Stromal Progenitor Cells. Int J Mol Sci 2021; 22:ijms22137210. [PMID: 34281266 PMCID: PMC8269269 DOI: 10.3390/ijms22137210] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) are multipotent cells which can differentiate into chondrocytes, osteoblasts, and fat cells. Under pathological stress, reduced bone formation in favour of fat formation in the bone marrow has been observed through a switch in the differentiation of BMSCs. The bone/fat switch causes bone growth defects and disordered bone metabolism in bone marrow, for which the mechanisms remain unclear, and treatments are lacking. Studies suggest that small non-coding RNAs (microRNAs) could participate in regulating BMSC differentiation by disrupting the post-transcription of target genes, leading to bone/fat formation changes. This review presents an emerging concept of microRNA regulation in the bone/fat formation switch in bone marrow, the evidence for which is assembled mainly from in vivo and in vitro human or animal models. Characterization of changes to microRNAs reveals novel networks that mediate signalling and factors in regulating bone/fat switch and homeostasis. Recent advances in our understanding of microRNAs in their control in BMSC differentiation have provided valuable insights into underlying mechanisms and may have significant potential in development of new therapeutics.
Collapse
|
8
|
Chen P, Wu B, Ji L, Zhan Y, Li F, Cheng L, Cao J, Chen H, Ke Y, Min Z, Sun L, Hua F, Chen H, Cheng Y. Cytokine Consistency Between Bone Marrow and Peripheral Blood in Patients With Philadelphia-Negative Myeloproliferative Neoplasms. Front Med (Lausanne) 2021; 8:598182. [PMID: 34249954 PMCID: PMC8264196 DOI: 10.3389/fmed.2021.598182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/09/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Inflammation might play a critical role in the pathogenesis and progression of Philadelphia-negative myeloproliferative neoplasms (Ph−MPNs) with elevated inflammatory cytokines in peripheral blood (PB). However, the inflammatory status inside the bone marrow (BM), which is the place of malignancy origin and important microenvironment of neoplasm evolution, has not yet been elucidated. Methods: Inflammatory cytokine profiles in PB and BM of 24 Ph-MPNs patients were measured by a multiplex quantitative inflammation array. Cytokines that correlated between PB and BM were selected and then validated by ELISA in a separate cohort of 52 MPN patients. Furthermore, a panel of cytokines was identified and examined for potential application as non-invasive markers for the diagnosis and prediction of fibrosis progress of MPN subtypes. Results: The levels of G-CSF, I-309, IL-1β, IL-1ra, IL-12p40, IL-15, IL-16, M-CSF, MIG, PDGF-BB, and TIMP-1 in BM supernatants were significantly higher than those in PB (all p < 0.05). Linear correlations between BM and PB levels were found in 13 cytokines, including BLC, Eotaxin-2, I-309, sICAM-1, IL-15, M-CSF, MIP-1α, MIP-1δ, RANTES, TIMP-1, TIMP-2, sTNFRI, and sTNFRII (all R > 0.4 and p < 0.05). Levels of BLC, Eotaxin-2, M-CSF, and TIMP-1 in PB were significantly different from those in health controls (all p < 0.05). In PB, levels of TIMP-1 and Eotaxin-2 in essential thrombocythemia (ET) group were significantly lower than those in groups of prefibrotic primary myelofibrosis (pre-PMF) [TIMP-1: 685.2 (322.2–1,229) ng/ml vs. 1,369 (1,175–1,497) ng/ml, p = 0.0221; Eotaxin-2: 531.4 (317.9–756.6) pg/ml vs. 942.4 (699.3–1,474) pg/ml, p = 0.0393] and primary myelofibrosis (PMF) [TIMP-1: 685.2 (322.2–1229) ng/ml vs. 1,365 (1,115–1,681) ng/ml, p = 0.0043; Eotaxin-2: 531.4 (317.9–756.6) pg/ml vs. 1,010 (818–1,556) pg/ml, p = 0.0030]. The level of TIMP-1 in myelofibrosis (MF) >1 group was significantly higher than that in MF ≤ 1 group. Conclusion: Abnormal inflammatory status is present in MPN, especially in its BM microenvironment. Consistency between PB and BM levels was found in multiple inflammatory cytokines. Circulating cytokine levels of BLC, M-CSF, Eotaxin-2, and TIMP-1 reflected inflammation inside BM niche, suggesting potential diagnostic value for MPN subtypes and prognostic value for fibrosis progression.
Collapse
Affiliation(s)
- Pu Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Boting Wu
- Department of Transfusion Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lili Ji
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Luya Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingjing Cao
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hehui Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Ke
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Min
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lihua Sun
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Fanli Hua
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Hao Chen
- Department of Thoracic Surgery, Zhongshan Hospital Xuhui Branch, Fudan University, Shanghai, China
| | - Yunfeng Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
WNT5A inhibition alters the malignant peripheral nerve sheath tumor microenvironment and enhances tumor growth. Oncogene 2021; 40:4229-4241. [PMID: 34079083 PMCID: PMC8217297 DOI: 10.1038/s41388-021-01773-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/21/2020] [Accepted: 03/29/2021] [Indexed: 02/05/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft-tissue sarcomas that cause significant mortality in adults with neurofibromatosis type 1. We compared gene expression of growth factors in normal human nerves to MPNST and normal human Schwann cells to MPNST cell lines. We identified WNT5A as the most significantly upregulated ligand-coding gene and verified its protein expression in MPNST cell lines and tumors. In many contexts WNT5A acts as an oncogene. However, inhibiting WNT5A expression using shRNA did not alter MPNST cell proliferation, invasion, migration, or survival in vitro. Rather, shWNT5A-treated MPNST cells upregulated mRNAs associated with the remodeling of extracellular matrix and with immune cell communication. In addition, these cells secreted increased amounts of the proinflammatory cytokines CXCL1, CCL2, IL6, CXCL8, and ICAM1. Versus controls, shWNT5A-expressing MPNST cells formed larger tumors in vivo. Grafted tumors contained elevated macrophage/stromal cells, larger and more numerous blood vessels, and increased levels of Mmp9, Cxcl13, Lipocalin-1, and Ccl12. In some MPNST settings, these effects were mimicked by targeting the WNT5A receptor ROR2. These data suggest that the non-canonical Wnt ligand WNT5A inhibits MPNST tumor formation by modulating the MPNST microenvironment, so that blocking WNT5A accelerates tumor growth in vivo.
Collapse
|
10
|
The transition of M-CSF-derived human macrophages to a growth-promoting phenotype. Blood Adv 2021; 4:5460-5472. [PMID: 33166408 DOI: 10.1182/bloodadvances.2020002683] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022] Open
Abstract
Stimulated macrophages are potent producers of inflammatory mediators. This activity is highly regulated, in part, by resolving molecules to prevent tissue damage. In this study, we demonstrate that inflammation induced by Toll-like receptor stimulation is followed by the upregulation of receptors for adenosine (Ado) and prostaglandin E2 (PGE2), which help terminate macrophage activation and initiate tissue remodeling and angiogenesis. Macrophages can be hematopoietically derived from monocytes in response to 2 growth factors: macrophage colony-stimulating factor (M-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF). We examine how exposure to either of these differentiation factors shapes the macrophage response to resolving molecules. We analyzed the transcriptomes of human monocyte-derived macrophages stimulated in the presence of Ado or PGE2 and demonstrated that, in macrophages differentiated in M-CSF, Ado and PGE2 induce a shared transcriptional program involving the downregulation of inflammatory mediators and the upregulation of growth factors. In contrast, macrophages generated in GM-CSF fail to convert to a growth-promoting phenotype, which we attribute to the suppression of receptors for Ado and PGE2 and lower production of these endogenous regulators. These observations indicate that M-CSF macrophages are better prepared to transition to a program of tissue repair, whereas GM-CSF macrophages undergo more profound activation. We implicate the differential sensitivity to pro-resolving mediators as a contributor to these divergent phenotypes. This research highlights a number of molecular targets that can be exploited to regulate the strength and duration of macrophage activation.
Collapse
|
11
|
Morkmued S, Clauss F, Schuhbaur B, Fraulob V, Mathieu E, Hemmerlé J, Clevers H, Koo BK, Dollé P, Bloch-Zupan A, Niederreither K. Deficiency of the SMOC2 matricellular protein impairs bone healing and produces age-dependent bone loss. Sci Rep 2020; 10:14817. [PMID: 32908163 PMCID: PMC7481257 DOI: 10.1038/s41598-020-71749-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Secreted extracellular matrix components which regulate craniofacial development could be reactivated and play roles in adult wound healing. We report a patient with a loss-of-function of the secreted matricellular protein SMOC2 (SPARC related modular calcium binding 2) presenting severe oligodontia, microdontia, tooth root deficiencies, alveolar bone hypoplasia, and a range of skeletal malformations. Turning to a mouse model, Smoc2-GFP reporter expression indicates SMOC2 dynamically marks a range of dental and bone progenitors. While germline Smoc2 homozygous mutants are viable, tooth number anomalies, reduced tooth size, altered enamel prism patterning, and spontaneous age-induced periodontal bone and root loss are observed in this mouse model. Whole-genome RNA-sequencing analysis of embryonic day (E) 14.5 cap stage molars revealed reductions in early expressed enamel matrix components (Odontogenic ameloblast-associated protein) and dentin dysplasia targets (Dentin matrix acidic phosphoprotein 1). We tested if like other matricellular proteins SMOC2 was required for regenerative repair. We found that the Smoc2-GFP reporter was reactivated in adjacent periodontal tissues 4 days after tooth avulsion injury. Following maxillary tooth injury, Smoc2−/− mutants had increased osteoclast activity and bone resorption surrounding the extracted molar. Interestingly, a 10-day treatment with the cyclooxygenase 2 (COX2) inhibitor ibuprofen (30 mg/kg body weight) blocked tooth injury-induced bone loss in Smoc2−/− mutants, reducing matrix metalloprotease (Mmp)9. Collectively, our results indicate that endogenous SMOC2 blocks injury-induced jaw bone osteonecrosis and offsets age-induced periodontal decay.
Collapse
Affiliation(s)
- Supawich Morkmued
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Faculty of Dentistry, Pediatrics Division, Preventive Department, Khon Kaen University, Khon Kaen, Thailand
| | - François Clauss
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O Rares, Filière TETECOU, ERN CRANIO, 1 place de l'Hôpital, 67000, Strasbourg, France.,Regenerative NanoMedicine, INSERM UMR1260, FMTS, Hôpitaux Universitaires de Strasbourg, 11 rue Humann, 67000, Strasbourg, France
| | - Brigitte Schuhbaur
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Valérie Fraulob
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Eric Mathieu
- Biomaterials and Bioengineering, Université de Strasbourg, INSERM UMR1121, 11 rue Humann, 67000, Strasbourg, France
| | - Joseph Hemmerlé
- Biomaterials and Bioengineering, Université de Strasbourg, INSERM UMR1121, 11 rue Humann, 67000, Strasbourg, France
| | - Hans Clevers
- Hubrecht Institute, University Medical Center Utrecht, and University Utrecht, Utrecht, The Netherlands
| | - Bon-Kyoung Koo
- Hubrecht Institute, University Medical Center Utrecht, and University Utrecht, Utrecht, The Netherlands
| | - Pascal Dollé
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Faculté de Médecine, Université de Strasbourg, FMTS, 4 Rue Kirschleger, 67000, Strasbourg, France
| | - Agnès Bloch-Zupan
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France. .,Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000, Strasbourg, France. .,Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O Rares, Filière TETECOU, ERN CRANIO, 1 place de l'Hôpital, 67000, Strasbourg, France. .,Eastman Dental Institute, University College London, London, UK.
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France. .,Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000, Strasbourg, France.
| |
Collapse
|
12
|
Vadivel S, Vincent P, Sekaran S, Visaga Ambi S, Muralidar S, Selvaraj V, Palaniappan B, Thirumalai D. Inflammation in myocardial injury- Stem cells as potential immunomodulators for myocardial regeneration and restoration. Life Sci 2020; 250:117582. [PMID: 32222465 DOI: 10.1016/j.lfs.2020.117582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
The ineffective immunosuppressant's and targeted strategies to neutralize inflammatory mediators have worsened the scenario of heart failure and have opened many questions for debate. Stem cell therapy has proven to be a promising approach for treating heart following myocardial infarction (MI). Adult stem cells, induced pluripotent stem cells and embryonic stem cells are possible cell types and have successfully shown to regenerate damaged myocardial tissue in pre-clinical and clinical studies. Current implications of using mesenchymal stem cells (MSCs) owing to their immunomodulatory functions and paracrine effects could serve as an effective alternative treatment option for rejuvenating the heart post MI. The major setback associated with the use of MSCs is reduced cell retention, engraftment and decreased effectiveness. With a few reports on understanding the role of inflammation and its dual effects on the structure and function of heart, this review focuses on these missing insights and further exemplifies the role of MSCs as an alternative therapy in treating the pathological consequences in myocardial infarction (MI).
Collapse
Affiliation(s)
- Sajini Vadivel
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India
| | - Preethi Vincent
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India
| | - Saravanan Sekaran
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India.
| | - Senthil Visaga Ambi
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India.
| | - Shibi Muralidar
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India
| | - Vimalraj Selvaraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Balamurugan Palaniappan
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India
| | - Diraviyam Thirumalai
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
13
|
Study of bone repair mediated by recombination BMP-2/ recombination CXC chemokine Ligand-13-loaded hollow hydroxyapatite microspheres/chitosan composite. Life Sci 2019; 234:116743. [PMID: 31408660 DOI: 10.1016/j.lfs.2019.116743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 01/14/2023]
Abstract
AIMS The present study aimed to investigate the mechanism of bone repair mediated by recombination BMP-2 (rhBMP-2)/recombination CXC chemokine ligand-13 (rhCXCL13)-loaded hollow hydroxyapatite (HA) microspheres/chitosan (CS) composite. MATERIALS AND METHODS Firstly, the biological activity of rhBMP-2 and rhCXCL13 released from the complex was investigated. Secondly, the effect of rhBMP-2 sustained release solution on ALP activity and rhCXCL13 sustained release solution on cell migration of rat bone marrow mesenchyme stem cells was tested. Thirdly, osteoblasts differentiation test, X-ray scoring and three-point bending test were performed. Finally, the mRNAs expression of osteogenic marker genes and the protein expression of Runx2 was tested by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting (WB), respectively. KEY FINDINGS RhBMP-2 could significantly promote the proliferation and differentiation, and RhCXCL13 could promote the migration of rat bone marrow MSCs. Detection of ALP activity and calcium salt deposition showed that rhBMP-2 and rhCXCL13 could significantly improve the biological activity and promote cell differentiation ability. X-ray scoring of radius and flexural strength test showed that rhBMP-2 and rhCXCL13 could promote bone healing and improve the bending resistance of bone tissue. The in vitro molecular experiments including RT-PCR and WB further demonstrated the roles of rhBMP-2 and rhCXCL13 in bone formation and bone repair. SIGNIFICANCE Our results indicated that the hollow HA microspheres/CS composite could be effective as a delivery vehicle for rhBMP-2 and rhCXCL13 in bone regeneration and bone repair. In this process, rhBMP-2 may promote bone regeneration by regulating bone marrow MSCs cells recruited by rhCXCL13.
Collapse
|
14
|
Current trends in tendinopathy: consensus of the ESSKA basic science committee. Part II: treatment options. J Exp Orthop 2018; 5:38. [PMID: 30251203 PMCID: PMC6153202 DOI: 10.1186/s40634-018-0145-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/26/2018] [Indexed: 01/01/2023] Open
Abstract
The treatment of painful chronic tendinopathy is challenging. Multiple non-invasive and tendon-invasive methods are used. When traditional non-invasive treatments fail, the injections of platelet-rich plasma autologous blood or cortisone have become increasingly favored. However, there is little scientific evidence from human studies supporting injection treatment. As the last resort, intra- or peritendinous open or endoscopic surgery are employed even though these also show varying results. This ESSKA basic science committee current concepts review follows the first part on the biology, biomechanics and anatomy of tendinopathies, to provide a comprehensive overview of the latest treatment options for tendinopathy as reported in the literature.
Collapse
|
15
|
Wang LL, Yin XF, Chu XC, Zhang YB, Gong XN. Platelet-derived growth factor subunit B is required for tendon-bone healing using bone marrow-derived mesenchymal stem cells after rotator cuff repair in rats. J Cell Biochem 2018; 119:8897-8908. [PMID: 30105826 DOI: 10.1002/jcb.27143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022]
Abstract
As a common cause of shoulder pain and disability, rotator cuff injury (RCI) represents a debilitating condition affecting an individual's quality of life. Although surgical repair has been shown to be somewhat effective, many patients may still suffer from reduced shoulder function. The aim of the current study was to identify a more effective mode of RCI treatment by investigating the effect of platelet-derived growth factor subunit B (PDGF-B) on tendon-bone healing after RCI repair by modifying bone marrow-derived mesenchymal stem cells (BMSCs). Surface markers of BMSCs were initially detected by means of flow cytometry, followed by establishment of the rat models and construction of the lentiviral vector. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, Thiazolyl Blue Tetrazolium Bromide (MTT) assay, alizarin red staining, and oil red O staining were used to provide verification that PDGF-B was indeed capable of promoting BMSC viability, osteogenic and adipogenic differentiation capability. Furthermore, biomechanical assessment results indicated that PDGF-B could increase the ultimate load and stiffness of the tendon tissue. Real-time reverse-transcription quantitative polymerase chain reaction and Western blot analysis methods provided evidence suggesting that PDGF-B facilitated the expression of tendon-bone healing-related genes and proteins, while contrasting results were obtained after PDGF-B silencing. Taken together, the key findings of the current study provided evidence suggesting that overexpressed PDGF-B could act to enhance tendon-bone healing after RCI repair, thus highlighting the potential of the functional promotion of PDGF-B as a future RCI therapeutic approach.
Collapse
Affiliation(s)
- Lin-Liang Wang
- Department of Joint Surgery, Dongying City People's Hospital, Dongying, China
| | - Xue-Feng Yin
- Department of Joint Surgery, Dongying City People's Hospital, Dongying, China
| | - Xiu-Cheng Chu
- Department of Joint Surgery, Dongying City People's Hospital, Dongying, China
| | - Yong-Bing Zhang
- Department of Joint Surgery, Dongying City People's Hospital, Dongying, China
| | - Xiao-Nan Gong
- Department of Joint Surgery, Dongying City People's Hospital, Dongying, China
| |
Collapse
|
16
|
Baicalein Accelerates Tendon-Bone Healing via Activation of Wnt/ β-Catenin Signaling Pathway in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3849760. [PMID: 29693006 PMCID: PMC5859801 DOI: 10.1155/2018/3849760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/26/2017] [Indexed: 01/05/2023]
Abstract
Background Tendon-bone healing is a reconstructive procedure which requires a tendon graft healing to a bone tunnel or to the surface of bone after the junction injury between tendon, ligament, and bone. The surgical reattachment of tendon to bone often fails due to regeneration failure of the specialized tendon-bone junction. Materials and Methods An extra-articular tendon-bone healing rat model was established to discuss the effect of the baicalein 10 mg/(kg·d) in accelerating tendon-bone healing progress. Also, tendon-derived stem cells (TDSCs) were treated with various concentrations of baicalein or dickkopf-1 (DKK-1) to stimulate differentiation for 14 days. Results In vivo, tendon-bone healing strength of experiment group was obviously stronger than the control group in 3 weeks as well as in 6 weeks. And there were more mature fibroblasts, more Sharpey fibers, and larger new bone formation area treated intragastrically with baicalein compared with rats that were treated with vehicle for 3 weeks and 6 weeks. In vitro, after induction for 14 days, the expressions of osteoblast differentiation markers, that is, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), osterix (OSX), and collagen I, were upregulated and Wnt/β-catenin signaling pathway was enhanced in TDSCs. The effect of DKK-1 significantly reduced the effect of baicalein on the osteogenic differentiation. Conclusion These data suggest that baicalein may stimulate TDSCs osteogenic differentiation via activation of Wnt/β-catenin signaling pathway to accelerate tendon-bone healing.
Collapse
|
17
|
CXCL13 inhibits microRNA-23a through PI3K/AKT signaling pathway in adipose tissue derived-mesenchymal stem cells. Biomed Pharmacother 2016; 83:876-880. [DOI: 10.1016/j.biopha.2016.07.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 01/08/2023] Open
|