1
|
Domentean S, Paisana E, Cascão R, Faria CC. Role of UBE2C in Brain Cancer Invasion and Dissemination. Int J Mol Sci 2023; 24:15792. [PMID: 37958776 PMCID: PMC10650073 DOI: 10.3390/ijms242115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Glioblastoma (GB) and brain metastases (BM) are the most common brain tumors in adults and are invariably associated with a dismal outcome. These highly malignant tumors share common features including increased invasion and migration of the primary or metastatic brain cancer cells, whose triggering mechanisms are largely unknown. Emerging evidence has suggested that the ubiquitin-conjugating enzyme E2C (UBE2C), essential for controlling cell cycle progression, is overexpressed in diverse malignancies, including brain cancer. This review highlights the crucial role of UBE2C in brain tumorigenesis and its association with higher proliferative phenotype and histopathological grade, with autophagy and apoptosis suppression, epithelial-to-mesenchymal transition (EMT), invasion, migration, and dissemination. High expression of UBE2C has been associated with patients' poor prognosis and drug resistance. UBE2C has also been proven as a promising therapeutic target, despite the lack of specific inhibitors. Thus, there is a need to further explore the role of UBE2C in malignant brain cancer and to develop effective targeted therapies for patients with this deadly disease.
Collapse
Affiliation(s)
- Stefani Domentean
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Eunice Paisana
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Claudia C. Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
2
|
Long J, Zhu B, Tian T, Ren L, Tao Y, Zhu H, Li D, Xu Y. Activation of UBEC2 by transcription factor MYBL2 affects DNA damage and promotes gastric cancer progression and cisplatin resistance. Open Med (Wars) 2023; 18:20230757. [PMID: 37840753 PMCID: PMC10571520 DOI: 10.1515/med-2023-0757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 10/17/2023] Open
Abstract
Ubiquitin-conjugating enzyme E2 C (UBE2C) plays a carcinogenic role in gastric cancer (GC); yet, its role in cisplatin (DDP) resistance in GC is enigmatic. This study sought to probe into the impact of UBE2C on DDP resistance in GC and its concrete molecular mechanism in GC progression. Bioinformatics analysis was used to analyze differentially expressed mRNAs and predict upstream regulatory molecules in GC. Real-time quantitative reverse transcriptase polymerase chain reaction and western blot were used to detect the expression of UBE2C and MYB proto-oncogene like 2 (MYBL2). Dual luciferase and chromatin immunoprecipitation (ChIP) assays were used to verify the binding relationship. Cell counting kit-8 was used to detect cell viability and calculate IC50 values. Flow cytometry was used to detect the cell cycle. Comet assay was used to detect DNA damage. Western blot was used to detect the expression of DNA loss-related proteins (γ-H2AX, ATM/p-ATM). The knockdown of highly expressed UBE2C in GC cell lines could reduce cell viability, induce G2/M arrest, induce apoptosis, and promote DNA damage and DDP sensitivity. Bioinformatics analysis predicted that the substantially upregulated MYBL2 was an upstream transcription factor in UBE2C. The binding relationship between the UBE2C promoter region and MYBL2 was verified by dual luciferase and ChIP. Overexpression of UBE2C in the rescue experiment was found to reverse the inhibited GC progression and promoted DDP sensitivity brought by the knockdown of MYBL2. In conclusion, the MYBL2/UBE2C regulatory axis may be a potential way to overcome DDP resistance in GC.
Collapse
Affiliation(s)
- Jiegen Long
- Department of General Surgery, Affiliated Banan Hospital of Chongqing Medical University, Chongqing, 401320, China
| | - Bin Zhu
- Department of General Surgery, Affiliated Banan Hospital of Chongqing Medical University, Chongqing, 401320, China
| | - Tao Tian
- Department of General Surgery, Affiliated Banan Hospital of Chongqing Medical University, Chongqing, 401320, China
| | - Linfei Ren
- Department of General Surgery, Affiliated Banan Hospital of Chongqing Medical University, Chongqing, 401320, China
| | - Yong Tao
- Department of General Surgery, Affiliated Banan Hospital of Chongqing Medical University, Chongqing, 401320, China
| | - Haitao Zhu
- Department of General Surgery, Affiliated Banan Hospital of Chongqing Medical University, Chongqing, 401320, China
| | - Dengwei Li
- Department of General Surgery, Affiliated Banan Hospital of Chongqing Medical University, Chongqing, 401320, China
| | - Yonghong Xu
- Department of General Surgery, Affiliated Banan Hospital of Chongqing Medical University, No. 659, Yunan Road, Longzhouwan Street, Banan District, Chongqing, 401320, China
| |
Collapse
|
3
|
Li H, Yang C, Chen K, Sun M. Expression significance of Emi1, UBCH10 and CyclinB1 in esophageal squamous cell carcinoma. Pathol Oncol Res 2023; 29:1611081. [PMID: 37168048 PMCID: PMC10164988 DOI: 10.3389/pore.2023.1611081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Despite significant advances in the diagnosis and treatment of esophageal squamous cell carcinoma (ESCC), esophageal cancer is still a heavy social and medical burden due to its high incidence. Uncontrolled division and proliferation is one of the characteristics of tumor cells, which will promote rapid tumor growth and metastasis. Early mitotic inhibitor 1 (Emi1), ubiquitin-conjugating enzyme 10 (UBCH10) and CyclinB1 are important proteins involved in the regulation of cell cycle. In this study, the expression of Emi1, UBCH10 and CyclinB1 in ESCC tissues and adjacent normal tissues will be analyzed by immunohistochemistry and in-situ hybridization techniques, and their relationship with tumor proliferation and apoptosis will be analyzed. The results showed that Emi1, UBCH10 and CyclinB1 genes and proteins were highly expressed in tumor tissues, which were correlated with tumor grade, lymph node metastasis and pathological stage, and positively correlated with tumor proliferation. Emi1, UBCH10 and CyclinB1 are also positively correlated. It is speculated that Emi1, UBCH10 and CyclinB1 genes synergically promote tumor proliferation and inhibit apoptosis, which may be potential diagnostic and therapeutic targets for ESCC.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Kuisheng Chen, ; Miaomiao Sun,
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Kuisheng Chen, ; Miaomiao Sun,
| |
Collapse
|
4
|
Paisana E, Cascão R, Custódia C, Qin N, Picard D, Pauck D, Carvalho T, Ruivo P, Barreto C, Doutel D, Cabeçadas J, Roque R, Pimentel J, Miguéns J, Remke M, Barata JT, Faria CC. UBE2C promotes leptomeningeal dissemination and is a therapeutic target in brain metastatic disease. Neurooncol Adv 2023; 5:vdad048. [PMID: 37215954 PMCID: PMC10195208 DOI: 10.1093/noajnl/vdad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Background Despite current improvements in systemic cancer treatment, brain metastases (BM) remain incurable, and there is an unmet clinical need for effective targeted therapies. Methods Here, we sought common molecular events in brain metastatic disease. RNA sequencing of thirty human BM identified the upregulation of UBE2C, a gene that ensures the correct transition from metaphase to anaphase, across different primary tumor origins. Results Tissue microarray analysis of an independent BM patient cohort revealed that high expression of UBE2C was associated with decreased survival. UBE2C-driven orthotopic mouse models developed extensive leptomeningeal dissemination, likely due to increased migration and invasion. Early cancer treatment with dactolisib (dual PI3K/mTOR inhibitor) prevented the development of UBE2C-induced leptomeningeal metastases. Conclusions Our findings reveal UBE2C as a key player in the development of metastatic brain disease and highlight PI3K/mTOR inhibition as a promising anticancer therapy to prevent late-stage metastatic brain cancer.
Collapse
Affiliation(s)
- Eunice Paisana
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Carlos Custódia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Nan Qin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf; Moorenstraße 5, 40225 Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf; Moorenstraße 5, 40225 Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Moorenstraße 5, 40225 Düsseldorf, Germany
| | - David Pauck
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf; Moorenstraße 5, 40225 Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Pedro Ruivo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Clara Barreto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Delfim Doutel
- Anatomic Pathology Department, Instituto Português de Oncologia Francisco Gentil, R. Prof. Lima Basto, 1099-023, Lisboa, Portugal
| | - José Cabeçadas
- Anatomic Pathology Department, Instituto Português de Oncologia Francisco Gentil, R. Prof. Lima Basto, 1099-023, Lisboa, Portugal
| | - Rafael Roque
- Neurology Department, Laboratory of Neuropathology, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - José Pimentel
- Neurology Department, Laboratory of Neuropathology, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - José Miguéns
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf; Moorenstraße 5, 40225 Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Moorenstraße 5, 40225 Düsseldorf, Germany
| | | | - Claudia C Faria
- Corresponding Author: Claudia C. Faria, Instituto de Medicina Molecular João Lobo Antunes, Edifício Egas Moniz, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa, 1649-028, Portugal ()
| |
Collapse
|
5
|
Ubiquitin conjugating enzyme E2 C (UBE2C) may play a dual role involved in the progression of thyroid carcinoma. Cell Death Dis 2022; 8:130. [PMID: 35332135 PMCID: PMC8948250 DOI: 10.1038/s41420-022-00935-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022]
Abstract
The present study aimed to explore the role of ubiquitin-conjugating enzyme E2 C (UBE2C) in the progress of thyroid carcinoma (THCA). We firstly explored the prognostic impact and expression level of UBE2C in THCA. Then, we performed the UBE2C knockdown and evaluated the effects on the proliferation, cell cycle distribution, apoptosis, migration, and invasion of THCA cells, as well as resistance to sorafenib. Finally, we predicted the possible pathways and explored the correlation between UBE2C with immune infiltrates. The results showed that high expression of UBE2C independently predicted a shorter disease-free survival time of THCA patients. And UBE2C also presented a better prognostic performance on the survival probability of patients. Expression analysis showed that UBE2C was statistically upregulated in THCA tissue compared with normal tissue. After UBE2C knockdown, the proliferation of THCA cells was inhibited and apoptosis was increased. These results indicated that UBE2C acted as an oncogene in THCA. However, the migration and invasion of THCA cells with UBE2C knockdown were enhanced, and the expressions of migration-related proteins were upregulated. In addition, UBE2C knockdown increased the resistance of THCA cells to sorafenib. These results implied the potential of UBE2C as a suppressor gene in THCA. The pathway analysis further predicted that metabolism-related pathways were activated in the UBE2C low expression class, and cell growth and immune-related pathways were focused on the UBE2C high expression class. Finally, we observed a significant positive relationship between UBE2C and several immune infiltrates in THCA. It followed that UBE2C high expression might play a vital role in THCA to some extent. This study revealed that UBE2C participated in the progression of THCA and may play the dual role of both oncogene and tumor suppressor gene. The detailed mechanism needed to be further investigated.
Collapse
|
6
|
Ubiquitin-Conjugating Enzymes in Cancer. Cells 2021; 10:cells10061383. [PMID: 34199813 PMCID: PMC8227520 DOI: 10.3390/cells10061383] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/22/2022] Open
Abstract
The ubiquitin-mediated degradation system is responsible for controlling various tumor-promoting processes, including DNA repair, cell cycle arrest, cell proliferation, apoptosis, angiogenesis, migration and invasion, metastasis, and drug resistance. The conjugation of ubiquitin to a target protein is mediated sequentially by the E1 (activating)‒E2 (conjugating)‒E3 (ligating) enzyme cascade. Thus, E2 enzymes act as the central players in the ubiquitination system, modulating various pathophysiological processes in the tumor microenvironment. In this review, we summarize the types and functions of E2s in various types of cancer and discuss the possibility of E2s as targets of anticancer therapeutic strategies.
Collapse
|
7
|
Liu PF, Chen CF, Shu CW, Chang HM, Lee CH, Liou HH, Ger LP, Chen CL, Kang BH. UBE2C is a Potential Biomarker for Tumorigenesis and Prognosis in Tongue Squamous Cell Carcinoma. Diagnostics (Basel) 2020; 10:diagnostics10090674. [PMID: 32899896 PMCID: PMC7555092 DOI: 10.3390/diagnostics10090674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Ubiquitin-conjugating enzyme 2C (UBE2C) involves in numerous cellular processes and the tumor progression in many cancers. However, its role in oral squamous cell carcinoma (OSCC) is unclear. We aimed to investigate the role and clinical significance of UBE2C in OSCC. The expression levels of UBE2C were examined by immunohistochemistry in 185 buccal mucosa squamous cell carcinomas, 247 tongue squamous cell carcinomas (TSCCs) and 75 lip squamous cell carcinomas. The roles of UBE2C in cell growth, invasion/migration and cancer stemness were also examined in OSCC cells. The expression levels of UBE2C protein were higher in tumor tissues than they were in the corresponding tumor adjacent normal tissues from OSCC patients. Higher UBE2C expression was associated with poor cell differentiation and lymph node invasion in OSCC patients. High UBE2C expression was also correlated with shorter disease-specific survival in TSCC patients having poor cell differentiation, advanced pathological stages, lymph node metastasis as well as receiving radiation therapy. Compared to control cells, OSCC cells in which UBE2C was silenced showed decreased cell proliferation, migration/invasion and colony formation and they exhibited lower expression levels of the following cancer stemness markers—ALDH1/A2, CD44, CD166 and EpCAM. High co-expression levels of UBE2C/CD44, UBE2C/CD166 and UBE2C/EpCAM were associated with poor prognosis in oral cancer patients from The Cancer Genome Atlas database. Our findings indicated that UBE2C might be a potential biomarker for tumorigenesis and prognosis in TSCC.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (P.-F.L.); (C.-H.L.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chun-Feng Chen
- Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
| | - Chih-Wen Shu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Hui-Min Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (H.-M.C.); (H.-H.L.); (L.-P.G.)
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (P.-F.L.); (C.-H.L.)
| | - Huei-Han Liou
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (H.-M.C.); (H.-H.L.); (L.-P.G.)
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (H.-M.C.); (H.-H.L.); (L.-P.G.)
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Bor-Hwang Kang
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
- Correspondence: ; Tel.: +886-7-342-2121 (ext. 4600)
| |
Collapse
|
8
|
Wang W, Wang S, Pan L. Identification of key differentially expressed mRNAs and microRNAs in non-small cell lung cancer using bioinformatics analysis. Exp Ther Med 2020; 20:3720-3732. [PMID: 32855723 PMCID: PMC7444408 DOI: 10.3892/etm.2020.9105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of mortality worldwide. However, the pathogenesis of NSCLC remains to be fully elucidated. Therefore, the present study aimed to explore the differential expression of mRNAs and microRNAs (miRNAs/miRs) in NSCLC and to determine how these RNA molecules interact with one another to affect disease progression. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were identified from the GSE18842, GSE32863 and GSE29250 datasets downloaded from the Gene Expression Omnibus (GEO database). Functional and pathway enrichment analysis were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. STRING, Cytoscape and MCODE were applied to construct a protein-protein interaction (PPI) network and to screen hub genes. The interactions between miRNAs and mRNAs were predicted using miRWalk 3.0 and a miRNA-mRNA regulatory network was constructed. The prognostic value of the identified hub genes was then evaluated via Kaplan-Meier survival analyses using datasets from The Cancer Genome Atlas. A total of 782 DEGs and 46 DEMs were identified from the 3 GEO datasets. The enriched pathways and functions of the DEGs and target genes of the DEMs included osteoclast differentiation, cell adhesion, response to a drug, plasma membrane, extracellular exosome and protein binding. A subnetwork composed of 11 genes was extracted from the PPI network and the genes in this subnetwork were mainly involved in the cell cycle, cell division and DNA replication. A miRNA-gene regulatory network was constructed with 247 miRNA-gene pairs based on 6 DEMs and 210 DEGs. Kaplan-Meier survival analysis indicated that the expression of ubiquitin E2 ligase C, cell division cycle protein 20, DNA topoisomerase IIα, aurora kinase A and B, cyclin B2, maternal embryonic leucine zipper kinase, slit guidance ligand 3, phosphoglucomutase 5, endomucin, cysteine dioxygenase type 1, dihydropyrimidinase-like 2, miR-130b, miR-1181 and miR-127 was significantly associated with overall survival of patients with lung adenocarcinoma. In the present study, a miRNA-mRNA regulatory network in NSCLC was established, which may provide future avenues for scientific exploration and therapeutic targeting of NSCLC.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Shanshan Wang
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Lei Pan
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
9
|
Presta I, Novellino F, Donato A, La Torre D, Palleria C, Russo E, Malara N, Donato G. UbcH10 a Major Actor in Cancerogenesis and a Potential Tool for Diagnosis and Therapy. Int J Mol Sci 2020; 21:E2041. [PMID: 32192022 PMCID: PMC7139792 DOI: 10.3390/ijms21062041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/22/2023] Open
Abstract
Malignant transformation is a multistep process in which several molecular entities become dysregulated and result in dysfunction in the regulation of cell proliferation. In past years, scientists have gradually dissected the pathways involved in the regulation of the cell cycle. The mitotic ubiquitin-conjugating enzymes UbcH10, has been extensively studied since its cloning and characterization and it has been identified as a constantly overexpressed factor in many types of cancer. In this paper, we have reviewed the literature about UbcH10 in human cancer, pointing out the association between its overexpression and exacerbation of cancer phenotype. Moreover, many recalled studied demonstrated how immunohistochemistry or RT-PCR analysis can distinguish normal tissues and benign lesions from malignant neoplasms. In other experimental studies, many of the consequences of UbcH10 overexpression, such as increased proliferation, metastasizing, cancer progression and resistance to anticancer drugs are reversed through gene silencing techniques. In recent years, many authors have defined UbcH10 evaluation in cancer patients as a useful tool for diagnosis and therapy. This opinion is shared by the authors who advertise how it would be useful to start using in clinical practice the notions acquired about this important moleculein the carcinogenesis of many human malignancies.
Collapse
Affiliation(s)
- Ivan Presta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (E.R.); (G.D.)
| | - Fabiana Novellino
- Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR) Viale Europa, 88100 Catanzaro, Italy;
| | - Annalidia Donato
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (D.L.T.)
| | - Domenico La Torre
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (D.L.T.)
| | - Caterina Palleria
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (E.R.); (G.D.)
| | - Emilio Russo
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (E.R.); (G.D.)
| | - Natalia Malara
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Giuseppe Donato
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (E.R.); (G.D.)
| |
Collapse
|
10
|
Gonzalez-Santamarta M, Quinet G, Reyes-Garau D, Sola B, Roué G, Rodriguez MS. Resistance to the Proteasome Inhibitors: Lessons from Multiple Myeloma and Mantle Cell Lymphoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:153-174. [PMID: 32274756 DOI: 10.1007/978-3-030-38266-7_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since its introduction in the clinics in early 2000s, the proteasome inhibitor bortezomib (BTZ) significantly improved the prognosis of patients with multiple myeloma (MM) and mantle cell lymphoma (MCL), two of the most challenging B cell malignancies in western countries. However, relapses following BTZ therapy are frequent, while primary resistance to this agent remains a major limitation for further development of its therapeutic potential. In the present chapter, we recapitulate the molecular mechanisms associated with intrinsic and acquired resistance to BTZ learning from MM and MCL experience, including mutations of crucial genes and activation of prosurvival signalling pathways inherent to malignant B cells. We also outline the preclinical and clinical evaluations of some potential druggable targets associated to BTZ resistance, considering the most meaningful findings of the past 10 years. Although our understanding of BTZ resistance is far from being completed, recent discoveries are contributing to develop new approaches to treat relapsed MM and MCL patients.
Collapse
Affiliation(s)
| | | | - Diana Reyes-Garau
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona (Barcelona), Spain
| | - Brigitte Sola
- Normandie University, INSERM UMR1245, UNICAEN, Caen, France
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona (Barcelona), Spain
| | | |
Collapse
|
11
|
Li J, Zhi X, Shen X, Chen C, Yuan L, Dong X, Zhu C, Yao L, Chen M. Depletion of UBE2C reduces ovarian cancer malignancy and reverses cisplatin resistance via downregulating CDK1. Biochem Biophys Res Commun 2019; 523:434-440. [PMID: 31875843 DOI: 10.1016/j.bbrc.2019.12.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy, but the mechanisms of ovarian cancer progression and cisplatin resistance remain unclear. Emerging evidence suggested that ubiquitin-conjugating enzyme E2C (UBE2C) was highly expressed in a variety of tumors and acted as an oncogene. In our study, we demonstrated that UBE2C was overexpressed in ovarian cancer by immunohistochemistry (IHC) and The Cancer Genome Atlas (TCGA) database analysis. It was also found that high levels of UBE2C expression predicted worse clinical outcomes in ovarian cancer. After knocking down UBE2C, SKOV3 and A2780 cells showed inhibitory cell proliferation, increased apoptosis by blocking G2/M transition in vitro and in vivo. Besides, the downregulation of UBE2C reversed the cisplatin resistance states of SKOV3/DDP and A2780/DDP cells. Interestingly, CDK1 expression was also downregulated in UBE2C depleted ovarian cancer cells. Furthermore, we found that UBE2C expression was highly correlated with CDK1 expression in ovarian cancer tissues and cell lines, indicating that UBE2C might cooperate with CDK1 in ovarian tumorigenesis. Collectively, our findings strongly supported UBE2C as a candidate oncogene and a potential target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaoqing Shen
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Chen Chen
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Lei Yuan
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xuhui Dong
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Chenqi Zhu
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Liangqing Yao
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| | - Mo Chen
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
12
|
UBE2C functions as a potential oncogene by enhancing cell proliferation, migration, invasion, and drug resistance in hepatocellular carcinoma cells. Biosci Rep 2019; 39:BSR20182384. [PMID: 30914455 PMCID: PMC6470407 DOI: 10.1042/bsr20182384] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Recently, ubiquitin-conjugating enzyme E2C (UBE2C) has been reported to be overexpressed in human cancers and act as a potential oncogene. However, little is known about the functional roles of UBE2C in HCC progression. In the present study, analysis of UBE2C mRNA expression in The Cancer Genome Atlas (TCGA) dataset reveals that significantly higher UBE2C mRNA levels was found in HCC tissues and associated with higher HCC grade. Elevated UBE2C mRNA levels in HCC indicated worsened survival probabilities. Through performing loss-of-function assays, we demonstrated that knockdown of UBE2C expression obviously suppressed proliferation, migration, and invasion of HCC cells in vitro Moreover, HCC cells with UBE2C knockdown showed higher sensitivity for the treatment of chemotherapeutic drug, including adriamycin (ADR) and 5-fluorouracil (5-FU). Silencing of UBE2C also increased the sensitivity of HCC cells to sorafenib, an approved treatment for patients with advanced-stage HCC. Our findings strongly suggest that UBE2C emerges as a marker for prognosis in HCC, and blocking UBE2C may be a novel strategy for HCC therapies.
Collapse
|
13
|
UBE2C Induces Cisplatin Resistance via ZEB1/2-Dependent Upregulation of ABCG2 and ERCC1 in NSCLC Cells. JOURNAL OF ONCOLOGY 2019; 2019:8607859. [PMID: 30693031 PMCID: PMC6333017 DOI: 10.1155/2019/8607859] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/19/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Objectives Cisplatin (DDP) is one of the most commonly used chemotherapeutic drugs for several cancers, including non-small-cell lung cancer (NSCLC). However, resistance to DDP eventually develops, limiting its further application. New therapy targets are urgently needed to reverse DDP resistance. Methods The mRNA expression of UBE2C, ZEB1/2, ABCG2, and ERCC1 was analyzed by reverse transcription-polymerase chain reaction. The protein levels of these molecules were analyzed by Western blotting and immunofluorescent staining. Cell proliferation was detected by CCK8 and MTT assays. Cell migration and invasion were analyzed by wound healing assay and Transwell assays. Promoter activities and gene transcription were analyzed by luciferase reporter assay. Results In this study, we examined the effect of UBE2C and ZEB1/2 expression levels in DDP-resistant cells of NSCLC. We confirmed that aberrant expression of UBE2C and ZEB1/2 plays a critical role in repressing the DDP sensitivity to NSCLC cells. Additionally, knockdown of UBE2C significantly sensitized resistant cells to DDP by repressing the expression of ZEB1/2. Mechanistic investigations indicated that UBE2C transcriptionally regulated ZEB1/2 by accelerating promoter activity. This study revealed that ZEB1/2 promotes the epithelial mesenchymal transition and expression of ABCG2 and ERCC1 to participate in UBE2C-mediated NSCLC DDP-resistant cell progression, metastasis, and invasion. Conclusion UBE2C may be a novel therapy target for NSCLC for sensitizing cells to the chemotherapeutic agent DDP.
Collapse
|
14
|
Guo J, Jin D, Wu Y, Yang L, Du J, Gong K, Chen W, Dai J, Miao S, Xi S. The miR 495-UBE2C-ABCG2/ERCC1 axis reverses cisplatin resistance by downregulating drug resistance genes in cisplatin-resistant non-small cell lung cancer cells. EBioMedicine 2018; 35:204-221. [PMID: 30146342 PMCID: PMC6419862 DOI: 10.1016/j.ebiom.2018.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
Cisplatin (DDP) resistance has become the leading cause
of mortality in non-small cell lung cancer (NSCLC). miRNA dysregulation
significantly contributes to tumor progression. In this study, we found that
miR-495 was significantly downregulated in lung cancer tissue specimens. This
study aimed to elucidate the functions, direct target genes, and molecular
mechanisms of miR-495 in lung cancer. miR-495 downregulated its substrate UBE2C
through direct interaction with UBE2C 3′- untranslated region. UBE2C is a
proto-oncogene activated in lung cancer; however, its role in chemotherapeutic
resistance is unclear. Herein, UBE2C expression levels were higher in
DDP-resistant NSCLC cells; this was associated with the proliferation, invasion,
and DDP resistance in induced cisplatin-resistant NSCLC cells. Furthermore,
epithelial–mesenchymal transitions (EMT) contributed to DDP resistance.
Moreover, UBE2C knockdown downregulated vimentin. In contrast, E-cadherin was
upregulated. Importantly, miR-495 and UBE2C were associated with cisplatin
resistance. We attempted to evaluate their effects on cell proliferation and
cisplatin resistance. We also performed EMT, cell migration, and invasion assays
in DDP-resistant NSCLC cells overexpressing miR-495 and under-expressing UBE2C.
Furthermore, in silico assays coupled with western blotting and luciferase
assays revealed that UBE2C directly binds to the 5′-UTR of the drug-resistance
genes ABCG2 and ERCC1.
Furthermore, miR-495 downregulated ABCG2 and
ERCC1 via regulation of UBE2C. Together, the present
results indicate that the miR495-UBE2C-ABCG2/ERCC1 axis reverses DDP resistance
via downregulation of anti-drug genes and reducing EMT in DDP-resistant NSCLC
cells.
Collapse
Affiliation(s)
- Jiwei Guo
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China.
| | - Dan Jin
- Department of Pain Management, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Yan Wu
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Lijuan Yang
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Jing Du
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Kaikai Gong
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Weiwei Chen
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Juanjuan Dai
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Shuang Miao
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Sichuan Xi
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| |
Collapse
|
15
|
Sun S, Wu Q, Song J, Sun S. Protein kinase C δ-dependent regulation of Ubiquitin-proteasome system function in breast cancer. Cancer Biomark 2018; 21:1-9. [PMID: 29036789 DOI: 10.3233/cbm-170451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Besides the crucial role of hyperinsulinemia in the development of breast cancer with Type 2 diabetes mellitus (T2DM), it has been shown that hyperglycemia could contribute to promote cancer progression. A remarkable association within hyperglycemia, PKCδ and Ubiquitin-proteasome system (UPS) has been reported, suggesting that PKCδ may mediate high glucose-induced UPS activation in breast cancer cells. Although the independent effects of PKCδ or UPS on breast cancer and T2DM are increasingly supported by experimental evidence, the complex interactional link between PKCδ and UPS is still unclear. Hence, we focus on the relationship between PKCδ and UPS in breast cancer with T2DM. We hypothesize that PKCδ may have the function to regulate the activity of UPS. Further, we speculate that PKCδ combine with proteasome α2 promoter, that indicate PKCδ regulate the function of UPS by change the composition of proteasome. Therefore, we surmise that PKCδ mediated high glucose-induced UPS activation in breast cancer cells, and specific PKCδ inhibitor rottlerin significantly suppressed elevated glucose induced the activity of UPS. We hope that our paper will stimulate further studies the relationship between PKCδ and UPS, and a new targeted therapy and early medical intervention for PKCδ could be a useful option for breast cancer cases complicated with T2DM or hyperglycemia.
Collapse
Affiliation(s)
- Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junlong Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
16
|
Chang YC, Ding Y, Dong L, Zhu LJ, Jensen RV, Hsiao LL. Differential expression patterns of housekeeping genes increase diagnostic and prognostic value in lung cancer. PeerJ 2018; 6:e4719. [PMID: 29761043 PMCID: PMC5949062 DOI: 10.7717/peerj.4719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/16/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Using DNA microarrays, we previously identified 451 genes expressed in 19 different human tissues. Although ubiquitously expressed, the variable expression patterns of these "housekeeping genes" (HKGs) could separate one normal human tissue type from another. Current focus on identifying "specific disease markers" is problematic as single gene expression in a given sample represents the specific cellular states of the sample at the time of collection. In this study, we examine the diagnostic and prognostic potential of the variable expressions of HKGs in lung cancers. METHODS Microarray and RNA-seq data for normal lungs, lung adenocarcinomas (AD), squamous cell carcinomas of the lung (SQCLC), and small cell carcinomas of the lung (SCLC) were collected from online databases. Using 374 of 451 HKGs, differentially expressed genes between pairs of sample types were determined via two-sided, homoscedastic t-test. Principal component analysis and hierarchical clustering classified normal lung and lung cancers subtypes according to relative gene expression variations. We used uni- and multi-variate cox-regressions to identify significant predictors of overall survival in AD patients. Classifying genes were selected using a set of training samples and then validated using an independent test set. Gene Ontology was examined by PANTHER. RESULTS This study showed that the differential expression patterns of 242, 245, and 99 HKGs were able to distinguish normal lung from AD, SCLC, and SQCLC, respectively. From these, 70 HKGs were common across the three lung cancer subtypes. These HKGs have low expression variation compared to current lung cancer markers (e.g., EGFR, KRAS) and were involved in the most common biological processes (e.g., metabolism, stress response). In addition, the expression pattern of 106 HKGs alone was a significant classifier of AD versus SQCLC. We further highlighted that a panel of 13 HKGs was an independent predictor of overall survival and cumulative risk in AD patients. DISCUSSION Here we report HKG expression patterns may be an effective tool for evaluation of lung cancer states. For example, the differential expression pattern of 70 HKGs alone can separate normal lung tissue from various lung cancers while a panel of 106 HKGs was a capable class predictor of subtypes of non-small cell carcinomas. We also reported that HKGs have significantly lower variance compared to traditional cancer markers across samples, highlighting the robustness of a panel of genes over any one specific biomarker. Using RNA-seq data, we showed that the expression pattern of 13 HKGs is a significant, independent predictor of overall survival for AD patients. This reinforces the predictive power of a HKG panel across different gene expression measurement platforms. Thus, we propose the expression patterns of HKGs alone may be sufficient for the diagnosis and prognosis of individuals with lung cancer.
Collapse
Affiliation(s)
- Yu-Chun Chang
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Yan Ding
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Lingsheng Dong
- Research Computing, Harvard Medical School, Boston, MA, United States of America
| | - Lang-Jing Zhu
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Nephrology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Roderick V. Jensen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, United States of America
| | - Li-Li Hsiao
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
17
|
Zhang Y, Tian S, Li X, Ji Y, Wang Z, Liu C. UBE2C promotes rectal carcinoma via miR-381. Cancer Biol Ther 2018; 19:230-238. [PMID: 29303411 DOI: 10.1080/15384047.2017.1416939] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We aimed to characterize the expression pattern of UBE2C in rectal carcinoma and elucidate its fundamental involvement in rectal carcinoma biology. The relative expression of UBE2C in rectal carcinoma was determined by immunoblotting and QPCR. The cell viability was measured using CCK-8 assay. The anchorage-independent growth was evaluated with soft agar assay. Cell apoptosis was detected by Annexin V-PI staining. Invasion capacity was determined by transwell chamber. Tumor growth was monitored in xenograft mice model. We demonstrated that UBE2C was aberrantly up-regulated in rectal carcinoma. SiRNA-mediated knockdown of UBE2C significantly inhibited cell viability, proliferation, colony formation, invasion and induced apoptosis in vitro. Moreover, tumor growth in xenograft mice was markedly suppressed upon UBE2C silencing. Furthermore, we have identified that miR-381 was involved in regulation of UBE2C in rectal carcinoma. Here we demonstrated that UBE2C was over-expressed in rectal carcinoma, which was subjected to miR-381 modulation and in turn promoted cell proliferation, invasion and inhibited cell apoptosis.
Collapse
Affiliation(s)
- Yan Zhang
- a Department of General Surgery , The Forth Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang , China
| | - Suli Tian
- a Department of General Surgery , The Forth Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang , China
| | - Xiaodong Li
- a Department of General Surgery , The Forth Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang , China
| | - Yanchao Ji
- a Department of General Surgery , The Forth Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang , China
| | - Zhongcheng Wang
- a Department of General Surgery , The Forth Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang , China
| | - Chang Liu
- a Department of General Surgery , The Forth Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang , China
| |
Collapse
|
18
|
Qin T, Huang G, Chi L, Sui S, Song C, Li N, Sun S, Li N, Zhang M, Zhao Z, Li L, Li M. Exceptionally high UBE2C expression is a unique phenomenon in basal-like type breast cancer and is regulated by BRCA1. Biomed Pharmacother 2017; 95:649-655. [PMID: 28881292 DOI: 10.1016/j.biopha.2017.08.095] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
Ubiquitin-conjugating enzyme 2C (UBE2C) is overexpressed in various types of cancer, leading to poor outcomes and drug resistance. UBE2C may also have a critical role in phenotypes associated with poor prognosis in breast cancer; however, the relationship between UBE2C expression and clinical outcome in breast cancer subtypes has not previously been investigated. We firstly analyzed breast cancer patient data and immunohistochemistry of breast cancer patient samples. We demonstrated that UBE2C was associated with poor prognosis in breast cancer, particularly basal-like breast cancer, a subtype with aggressive clinical features. Interestingly, we found that there was a close relationship between the expression of BRCA1 and UBE2C in the MCF-7 and MDA-MB-231 breast cancer cell lines. Upregulation of BRCA1 could inhibit the expression of UBE2C. In cells with BRCA1 silenced down, expression of UBE2C was obviously increased, with a concurrent decrease in cellular sensitivity to doxorubicin. Suppression of UBE2C expression by RNA interference led to decrease the mRNA expressions of BCRP, MRP1 and P-gp in doxorubicin-treated MDA-MB-231 cells. Moreover, treatment with 1μg/ml doxorubicin led to increased expression of UBE2C. The results show high expression of UBE2C is a potential prognostic factor of poor outcome in basal-like breast cancer. Moreover, loss of BRCA1 function results in an increase in UBE2C expression and chemical resistance to doxorubicin in breast cancer cells.
Collapse
Affiliation(s)
- Tao Qin
- Department of Pathology, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| | - Gena Huang
- Department of Oncology, Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China.
| | - Liyuan Chi
- Department of Oncology, Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Silei Sui
- Department of Oncology, Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Chen Song
- Department of Oncology, Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Na Li
- Department of Oncology, Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Siwen Sun
- Department of Oncology, Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Ning Li
- Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Min Zhang
- Department of Oncology, Pulandian Central Hospital, Dalian 116200, Liaoning Province, China
| | - Zuowei Zhao
- Department of Oncology, Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China; Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China.
| | - Lianhong Li
- Department of Pathology, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| | - Man Li
- Department of Oncology, Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China.
| |
Collapse
|
19
|
Ma X, Zhao J, Yang F, Liu H, Qi W. Ubiquitin conjugating enzyme E2 L3 promoted tumor growth of NSCLC through accelerating p27kip1 ubiquitination and degradation. Oncotarget 2017; 8:84193-84203. [PMID: 29137415 PMCID: PMC5663587 DOI: 10.18632/oncotarget.20449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 02/03/2023] Open
Abstract
The molecular pathogenesis of human lung cancer has not been completely clarified. Here, we reported that UBE2L3, a member of the ubiquitin-conjugating enzymes (E2s), were overexpressed in non-small-cell lung cancer (NSCLC) tissues compared with the non-tumor tissues. High expression of UBE2L3 was correlated with advanced tumor stage and adverse outcomes. Knockdown of UBE2L3 inhibited NSCLC cell growth while ectopic expression of UBE2L3 promoted NSCLC cell growth in a cell cycle dependent manner. The results of subcutaneous tumor xenograft studies revealed that knockdown of UBE2L3 attenuated the in vivo tumor growth. Mechanistically, we observed that UBE2L3 could interact with F-box protein Skp2, a member of the SCF (Skp2) ubiquitin ligase complex, and thus promoted the ubiquitination and proteasomal degradation of p27kip1. Furthermore, NSCLC cases with high level of UBE2L3 and low level of p27kip1 had worst prognosis, suggesting that combination of UBE2L3 and p27kip1 is a more powerful prognostic marker for NSCLC patients. Taken together, the current study presented a novel marker for predicting prognosis and a potential therapeutic target for NSCLC patients.
Collapse
Affiliation(s)
- Xingjie Ma
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Junjie Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Fan Yang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Haitao Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Weibo Qi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
20
|
Abnous K, Danesh NM, Ramezani M, Lavaee P, Jalalian SH, Yazdian-Robati R, Emrani AS, Hassanabad KY, Taghdisi SM. A novel aptamer-based DNA diamond nanostructure for in vivo targeted delivery of epirubicin to cancer cells. RSC Adv 2017. [DOI: 10.1039/c6ra28234b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The clinical administration of epirubicin (Epi) in the treatment of cancer has been restricted, owing to its cardiotoxicity.
Collapse
Affiliation(s)
- Khalil Abnous
- Pharmaceutical Research Center
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Noor Mohammad Danesh
- Nanotechnology Research Center
- Mashhad University of Medical Sciences
- Mashhad
- Iran
- Research Institute of Sciences and New Technology
| | - Mohammad Ramezani
- Nanotechnology Research Center
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Parirokh Lavaee
- Academic Center For Education
- Culture and Research (ACECR)-Mashhad Branch
- Mashhad
- Iran
| | - Seyed Hamid Jalalian
- Nanotechnology Research Center
- Mashhad University of Medical Sciences
- Mashhad
- Iran
- Academic Center For Education
| | - Rezvan Yazdian-Robati
- Department of Pharmaceutical Biotechnology
- School of Pharmacy
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | | | - Koroush Yousefi Hassanabad
- Department of Infectious Disease
- Children Medical Center
- North Khorasan University of Medical Sciences
- Bojnord
- Iran
| | | |
Collapse
|
21
|
Xi H, Li L, Du J, An R, Fan R, Lu J, Wu YX, Wu SX, Hou J, Zhao LM. hsa-miR-631 resensitizes bortezomib-resistant multiple myeloma cell lines by inhibiting UbcH10. Oncol Rep 2016; 37:961-968. [DOI: 10.3892/or.2016.5318] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/02/2016] [Indexed: 11/06/2022] Open
|
22
|
Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo. Eur J Pharm Biopharm 2016; 102:152-8. [PMID: 26987703 DOI: 10.1016/j.ejpb.2016.03.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/03/2016] [Accepted: 03/13/2016] [Indexed: 12/18/2022]
Abstract
Clinical use of epirubicin (Epi) in the treatment of cancer has been limited, due to its cardiotoxicity. Targeted delivery of chemotherapeutic agents could increase their efficacy and reduce their off-target effects. High drug loading and excellent stability of DNA dendrimers make these DNA nanostructures unique candidates for biological applications. In this study a modified and promoted dendrimer using three kinds of aptamers (MUC1, AS1411 and ATP aptamers) was designed for targeted delivery of Epi and its efficacy was evaluated in target cells including MCF-7 cells (breast cancer cell) and C26 cells (murine colon carcinoma cell). Aptamers (Apts)-Dendrimer-Epi complex formation was analyzed by fluorometric analysis and gel retardation assay. Release profiles of Epi from the designed complex were assessed at pHs 5.4 and 7.4. For MTT assay (cytotoxic study) MCF-7 and C26 cells (target cells) and CHO cells (Chinese hamster ovary cell, nontarget) were treated with Epi, Apts-Dendrimer-Epi complex and Apts-Dendrimer conjugate. Internalization was evaluated using flow cytometry analysis. Finally, the developed complex was used for inhibition of tumor growth in vivo. 25μM Epi was efficiently intercalated to 1μM dendrimer. Epi was released from the Apts-Dendrimer-Epi complex in a pH-sensitive manner (more release at pH 5.5). The results of flow cytometry analysis indicated that the designed complex was efficiently internalized into target cells, but not into control cells. The internalization data were confirmed by the results of MTT assay. Apts-Dendrimer-Epi complex had less cytotoxicity in CHO cells compared to Epi alone. The complex had more cytotoxicity in C26 and MCF-7 cells compared to Epi alone. Moreover, the Apts-Dendrimer-Epi complex could efficiently prohibit tumor growth in vivo. In conclusion, the designed targeted drug delivery system inherited characteristics of pH-dependent drug release, high drug loading and tumor targeting in vitro and in vivo.
Collapse
|
23
|
Zang QQ, Zhang L, Gao N, Huang C. Ophiopogonin D inhibits cell proliferation, causes cell cycle arrest at G2/M, and induces apoptosis in human breast carcinoma MCF-7 cells. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2016; 14:51-9. [DOI: 10.1016/s2095-4964(16)60238-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|