1
|
Cui JQ, Tian Y, Wu Z, Zhang L, Cho WC, Yao S, Lin Y. Concurrently Probing the Mechanical and Electrical Characteristics of Living Cells via an Integrated Microdevice. NANO LETTERS 2024; 24:14522-14530. [PMID: 39495891 DOI: 10.1021/acs.nanolett.4c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
The mechanical and electrical properties of cells serve as critical indicators of their physiological and pathological state. Currently, distinct setups are required to measure the electrical and mechanical responses of cells. In addition, most existing methods such as optical trapping (OT) and atomic force microscopy (AFM) are labor-intensive, expensive, and low-throughput. Here, we developed a microdevice that integrates automated cell trapping, deformation, and electric impedance spectroscopy to overcome these limitations. Our device enables parallel aspiration of tens of trapped cells in a highly scalable manner by simply adjusting the applied pressures, allowing for rapid probing of the dynamic viscoelastic properties of cells. Furthermore, embedded microelectrodes enable concurrent investigations of the electrical impedance of the cells. Through testing on different cell types, our platform demonstrated superior capabilities in comprehensive cell characterization and phenotyping, highlighting its great potential as a versatile tool for single cell analysis, drug screening, and disease detection.
Collapse
Affiliation(s)
- Johnson Q Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories 999077, Hong Kong, China
| | - Ye Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories 999077, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong 518000, China
| | - Zhihao Wu
- The Hong Kong University of Science and Technology (Guangzhou), Function Hub Nansha, Guangzhou, Guangdong 511400, China
- Individualized Interdisciplinary Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Lu Zhang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon 999077, Hong Kong, China
| | - Shuhuai Yao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories 999077, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong 518000, China
| |
Collapse
|
2
|
Li SS, Xue CD, Li YJ, Chen XM, Zhao Y, Qin KR. Microfluidic characterization of single-cell biophysical properties and the applications in cancer diagnosis. Electrophoresis 2024; 45:1212-1232. [PMID: 37909658 DOI: 10.1002/elps.202300177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Single-cell biophysical properties play a crucial role in regulating cellular physiological states and functions, demonstrating significant potential in the fields of life sciences and clinical diagnostics. Therefore, over the last few decades, researchers have developed various detection tools to explore the relationship between the biophysical changes of biological cells and human diseases. With the rapid advancement of modern microfabrication technology, microfluidic devices have quickly emerged as a promising platform for single-cell analysis offering advantages including high-throughput, exceptional precision, and ease of manipulation. Consequently, this paper provides an overview of the recent advances in microfluidic analysis and detection systems for single-cell biophysical properties and their applications in the field of cancer. The working principles and latest research progress of single-cell biophysical property detection are first analyzed, highlighting the significance of electrical and mechanical properties. The development of data acquisition and processing methods for real-time, high-throughput, and practical applications are then discussed. Furthermore, the differences in biophysical properties between tumor and normal cells are outlined, illustrating the potential for utilizing single-cell biophysical properties for tumor cell identification, classification, and drug response assessment. Lastly, we summarize the limitations of existing microfluidic analysis and detection systems in single-cell biophysical properties, while also pointing out the prospects and future directions of their applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Chun-Dong Xue
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yong-Jiang Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Xiao-Ming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yan Zhao
- Department of Stomach Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| |
Collapse
|
3
|
Chen Y, Chen X, Zhang B, Zhang Y, Li S, Liu Z, Gao Y, Zhao Y, Yan L, Li Y, Tian T, Lin Y. DNA framework signal amplification platform-based high-throughput systemic immune monitoring. Signal Transduct Target Ther 2024; 9:28. [PMID: 38320992 PMCID: PMC10847453 DOI: 10.1038/s41392-024-01736-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/14/2023] [Accepted: 01/01/2024] [Indexed: 02/08/2024] Open
Abstract
Systemic immune monitoring is a crucial clinical tool for disease early diagnosis, prognosis and treatment planning by quantitative analysis of immune cells. However, conventional immune monitoring using flow cytometry faces huge challenges in large-scale sample testing, especially in mass health screenings, because of time-consuming, technical-sensitive and high-cost features. However, the lack of high-performance detection platforms hinders the development of high-throughput immune monitoring technology. To address this bottleneck, we constructed a generally applicable DNA framework signal amplification platform (DSAP) based on post-systematic evolution of ligands by exponential enrichment and DNA tetrahedral framework-structured probe design to achieve high-sensitive detection for diverse immune cells, including CD4+, CD8+ T-lymphocytes, and monocytes (down to 1/100 μl). Based on this advanced detection platform, we present a novel high-throughput immune-cell phenotyping system, DSAP, achieving 30-min one-step immune-cell phenotyping without cell washing and subset analysis and showing comparable accuracy with flow cytometry while significantly reducing detection time and cost. As a proof-of-concept, DSAP demonstrates excellent diagnostic accuracy in immunodeficiency staging for 107 HIV patients (AUC > 0.97) within 30 min, which can be applied in HIV infection monitoring and screening. Therefore, we initially introduced promising DSAP to achieve high-throughput immune monitoring and open robust routes for point-of-care device development.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xingyu Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Bowen Zhang
- Department of Prosthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, PR China
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yuxuan Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Arman S, Tilley RD, Gooding JJ. A review of electrochemical impedance as a tool for examining cell biology and subcellular mechanisms: merits, limits, and future prospects. Analyst 2024; 149:269-289. [PMID: 38015145 DOI: 10.1039/d3an01423a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Herein the development of cellular impedance biosensors, electrochemical impedance spectroscopy, and the general principles and terms associated with the cell-electrode interface is reviewed. This family of techniques provides quantitative and sensitive information into cell responses to stimuli in real-time with high temporal resolution. The applications of cell-based impedance biosensors as a readout in cell biology is illustrated with a diverse range of examples. The current state of the field, its limitations, the possible available solutions, and the potential benefits of developing biosensors are discussed.
Collapse
Affiliation(s)
- Seyedyousef Arman
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Australia Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Australia Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Mermans F, Mattelin V, Van den Eeckhoudt R, García-Timermans C, Van Landuyt J, Guo Y, Taurino I, Tavernier F, Kraft M, Khan H, Boon N. Opportunities in optical and electrical single-cell technologies to study microbial ecosystems. Front Microbiol 2023; 14:1233705. [PMID: 37692384 PMCID: PMC10486927 DOI: 10.3389/fmicb.2023.1233705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
New techniques are revolutionizing single-cell research, allowing us to study microbes at unprecedented scales and in unparalleled depth. This review highlights the state-of-the-art technologies in single-cell analysis in microbial ecology applications, with particular attention to both optical tools, i.e., specialized use of flow cytometry and Raman spectroscopy and emerging electrical techniques. The objectives of this review include showcasing the diversity of single-cell optical approaches for studying microbiological phenomena, highlighting successful applications in understanding microbial systems, discussing emerging techniques, and encouraging the combination of established and novel approaches to address research questions. The review aims to answer key questions such as how single-cell approaches have advanced our understanding of individual and interacting cells, how they have been used to study uncultured microbes, which new analysis tools will become widespread, and how they contribute to our knowledge of ecological interactions.
Collapse
Affiliation(s)
- Fabian Mermans
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Valérie Mattelin
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Ruben Van den Eeckhoudt
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Cristina García-Timermans
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Yuting Guo
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Irene Taurino
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Semiconductor Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Filip Tavernier
- MICAS, Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Michael Kraft
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Leuven Institute of Micro- and Nanoscale Integration (LIMNI), KU Leuven, Leuven, Belgium
| | - Hira Khan
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Panwar J, Utharala R, Fennelly L, Frenzel D, Merten CA. iSort enables automated complex microfluidic droplet sorting in an effort to democratize technology. CELL REPORTS METHODS 2023; 3:100478. [PMID: 37323570 PMCID: PMC10261925 DOI: 10.1016/j.crmeth.2023.100478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
Fluorescence-activated droplet sorting (FADS) is a widely used microfluidic technique for high-throughput screening. However, it requires highly trained specialists to determine optimal sorting parameters, and this results in a large combinatorial space that is challenging to optimize systematically. Additionally, it is currently challenging to track every single droplet within a screen, leading to compromised sorting and "hidden" false-positive events. To overcome these limitations, we have developed a setup in which the droplet frequency, spacing, and trajectory at the sorting junction are monitored in real time using impedance analysis. The resulting data are used to continuously optimize all parameters automatically and to counteract perturbations, resulting in higher throughput, higher reproducibility, increased robustness, and a beginner-friendly character. We believe this provides a missing piece for the spreading of phenotypic single-cell analysis methods, similar to what we have seen for single-cell genomics platforms.
Collapse
Affiliation(s)
- Jatin Panwar
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Ramesh Utharala
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Laura Fennelly
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Daniel Frenzel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Christoph A. Merten
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| |
Collapse
|
7
|
Nazari H, Shrestha J, Naei VY, Bazaz SR, Sabbagh M, Thiery JP, Warkiani ME. Advances in TEER measurements of biological barriers in microphysiological systems. Biosens Bioelectron 2023; 234:115355. [PMID: 37159988 DOI: 10.1016/j.bios.2023.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Biological barriers are multicellular structures that precisely regulate the transport of ions, biomolecules, drugs, cells, and other organisms. Transendothelial/epithelial electrical resistance (TEER) is a label-free method for predicting the properties of biological barriers. Understanding the mechanisms that control TEER significantly enhances our knowledge of the physiopathology of different diseases and aids in the development of new drugs. Measuring TEER values within microphysiological systems called organ-on-a-chip devices that simulate the microenvironment, architecture, and physiology of biological barriers in the body provides valuable insight into the behavior of barriers in response to different drugs and pathogens. These integrated systems should increase the accuracy, reproducibility, sensitivity, resolution, high throughput, speed, cost-effectiveness, and reliable predictability of TEER measurements. Implementing advanced micro and nanoscale manufacturing techniques, surface modification methods, biomaterials, biosensors, electronics, and stem cell biology is necessary for integrating TEER measuring systems with organ-on-chip technology. This review focuses on the applications, advantages, and future perspectives of integrating organ-on-a-chip technology with TEER measurement methods for studying biological barriers. After briefly reviewing the role of TEER in the physiology and pathology of barriers, standard techniques for measuring TEER, including Ohm's law and impedance spectroscopy, and commercially available devices are described. Furthermore, advances in TEER measurement are discussed in multiple barrier-on-a-chip system models representing different organs. Finally, we outline future trends in implementing advanced technologies to design and fabricate nanostructured electrodes, complicated microfluidic chips, and membranes for more advanced and accurate TEER measurements.
Collapse
Affiliation(s)
- Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Vahid Yaghoubi Naei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Milad Sabbagh
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | | | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia; Institute of Molecular Medicine, Sechenov University, 119991, Moscow, Russia.
| |
Collapse
|
8
|
Nguyen TH, Nguyen HA, Tran Thi YV, Hoang Tran D, Cao H, Chu Duc T, Bui TT, Do Quang L. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review. Analyst 2023; 148:1912-1929. [PMID: 36928639 DOI: 10.1039/d2an02027k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Microfluidic cytometry (MC) and electrical impedance spectroscopy (EIS) are two important techniques in biomedical engineering. Microfluidic cytometry has been utilized in various fields such as stem cell differentiation and cancer metastasis studies, and provides a simple, label-free, real-time method for characterizing and monitoring cellular fates. The impedance microdevice, including impedance flow cytometry (IFC) and electrical impedance spectroscopy (EIS), is integrated into MC systems. IFC measures the impedance of individual cells as they flow through a microfluidic device, while EIS measures impedance changes during binding events on electrode regions. There have been significant efforts to improve and optimize these devices for both basic research and clinical applications, based on the concepts, electrode configurations, and cell fates. This review outlines the theoretical concepts, electrode engineering, and data analytics of these devices, and highlights future directions for development.
Collapse
Affiliation(s)
- Thu Hang Nguyen
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | | | - Y-Van Tran Thi
- University of Science, Vietnam National University, Hanoi, Vietnam.
| | | | - Hung Cao
- University of California, Irvine, USA
| | - Trinh Chu Duc
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | - Tung Thanh Bui
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | - Loc Do Quang
- University of Science, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
9
|
de Bruijn DS, Van de Waal DB, Helmsing NR, Olthuis W, van den Berg A. Microfluidic Impedance Cytometry for Single-Cell Particulate Inorganic Carbon:Particulate Organic Carbon Measurements of Calcifying Algae. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200151. [PMID: 36910468 PMCID: PMC10000273 DOI: 10.1002/gch2.202200151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Indexed: 06/18/2023]
Abstract
Calcifying algae, like coccolithophores, greatly contribute to the oceanic carbon cycle and are therefore of particular interest for ocean carbon models. They play a key role in two processes that are important for the effective CO2 flux: The organic carbon pump (photosynthesis) and the inorganic carbon pump (calcification). The relative contribution of calcification and photosynthesis can be measured in algae by the amount of particulate inorganic carbon (PIC) and particulate organic carbon (POC). A microfluidic impedance cytometer is presented, enabling non-invasive and high-throughput assessment of the calcification state of single coccolithophore cells. Gradual modification of the exoskeleton by acidification results in a strong linear fit (R 2 = 0.98) between the average electrical phase and the PIC:POC ratio of the coccolithophore Emiliania huxleyi 920/9. The effect of different CO2 treatments on the PIC:POC ratio, however, is inconclusive, indicating that there is no strong effect observed for this particular strain. Lower PIC:POC ratios in cultures that grew to higher cell densities are found, which are also recorded with the impedance-based PIC:POC sensor. The development of this new quantification tool for small volumes paves the way for high-throughput analysis while applying multi-variable environmental stressors to support projections of the future marine carbon cycle.
Collapse
Affiliation(s)
- Douwe S. de Bruijn
- BIOS Lab‐on‐a‐Chip groupMESA+ Institute for NanotechnologyMax Planck—University of Twente Center for Complex Fluid DynamicsUniversity of TwenteDrienerlolaan 5EnschedeOverijssel7522 NBThe Netherlands
| | - Dedmer B. Van de Waal
- Department of Aquatic EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10Wageningen6708 PBThe Netherlands
| | - Nico R. Helmsing
- Department of Aquatic EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10Wageningen6708 PBThe Netherlands
| | - Wouter Olthuis
- BIOS Lab‐on‐a‐Chip groupMESA+ Institute for NanotechnologyMax Planck—University of Twente Center for Complex Fluid DynamicsUniversity of TwenteDrienerlolaan 5EnschedeOverijssel7522 NBThe Netherlands
| | - Albert van den Berg
- BIOS Lab‐on‐a‐Chip groupMESA+ Institute for NanotechnologyMax Planck—University of Twente Center for Complex Fluid DynamicsUniversity of TwenteDrienerlolaan 5EnschedeOverijssel7522 NBThe Netherlands
| |
Collapse
|
10
|
de Bruijn DS, Ten Eikelder HRA, Papadimitriou VA, Olthuis W, van den Berg A. Supervised machine learning in microfluidic impedance flow cytometry for improved particle size determination. Cytometry A 2023; 103:221-226. [PMID: 36908134 DOI: 10.1002/cyto.a.24679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/06/2022] [Accepted: 07/29/2022] [Indexed: 11/06/2022]
Abstract
The assessment of particle and cell size in electrical microfluidic flow cytometers has become common practice. Nevertheless, in flow cytometers with coplanar electrodes accurate determination of particle size is difficult, owing to the inhomogeneous electric field. Pre-defined signal templates and compensation methods have been introduced to correct for this positional dependence, but are cumbersome when dealing with irregular signal shapes. We introduce a simple and accurate post-processing method without the use of pre-defined signal templates and compensation functions using supervised machine learning. We implemented a multiple linear regression model and show an average reduction of the particle diameter variation by 37% with respect to an earlier processing method based on a feature extraction algorithm and compensation function. Furthermore, we demonstrate its application in flow cytometry by determining the size distribution of a population of small (4.6 ± 0.9 μm) and large (5.9 ± 0.8 μm) yeast cells. The improved performance of this coplanar, two electrode chip enables precise cell size determination in easy to fabricate impedance flow cytometers.
Collapse
Affiliation(s)
- Douwe S de Bruijn
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck - University of Twente Center for Complex Fluid Dynamics, University of Twente, The Netherlands
| | - Henricus R A Ten Eikelder
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck - University of Twente Center for Complex Fluid Dynamics, University of Twente, The Netherlands
| | | | - Wouter Olthuis
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck - University of Twente Center for Complex Fluid Dynamics, University of Twente, The Netherlands
| | - Albert van den Berg
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck - University of Twente Center for Complex Fluid Dynamics, University of Twente, The Netherlands
| |
Collapse
|
11
|
Solenov EI, Baturina GS, Katkova LE, Yang B, Zarogiannis SG. Methods to Measure Water Permeability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:343-361. [PMID: 36717506 DOI: 10.1007/978-981-19-7415-1_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Water permeability is a key feature of the cell plasma membranes, and it has seminal importance for several cell functions such as cell volume regulation, cell proliferation, cell migration, and angiogenesis to name a few. The transport of water occurs mainly through plasma membrane water channels, aquaporins. Aquaporins have very important function in physiological and pathophysiological states. Due to the above, the experimental assessment of the water permeability of cells and tissues is necessary. The development of new methodologies of measuring water permeability is a vibrant scientific field that constantly develops during the last three decades along with the advances in imaging mainly. In this chapter we describe and critically assess several methods that have been developed for the measurement of water permeability both in living cells and in tissues with a focus in the first category.
Collapse
Affiliation(s)
- Evgeniy I Solenov
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia.
- Novosibirsk State Technical University, Novosibirsk, Russia.
| | | | | | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| |
Collapse
|
12
|
Priyadarshi N, Abbasi U, Kumaran V, Chowdhury P. A new approach for accurate determination of particle sizes in microfluidic impedance cytometry. NANOTECHNOLOGY AND PRECISION ENGINEERING 2022. [DOI: 10.1063/10.0015006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In microfluidic impedance cytometry, the change in impedance is recorded as an individual cell passes through a channel between electrodes deposited on its walls, and the particle size is inferred from the amplitude of the impedance signal using calibration. However, because the current density is nonuniform between electrodes of finite width, there could be an error in the particle size measurement because of uncertainty about the location of the particle in the channel cross section. Here, a correlation is developed relating the particle size to the signal amplitude and the velocity of the particle through the channel. The latter is inferred from the time interval between the two extrema in the impedance curve as the particle passes through a channel with cross-sectional dimensions of 50 μm (width) × 30 μm (height) with two pairs of parallel facing electrodes. The change in impedance is predicted using 3D COMSOL finite-element simulations, and a theoretical correlation that is independent of particle size is formulated to correct the particle diameter for variations in the cross-sectional location. With this correlation, the standard deviation in the experimental data is reduced by a factor of two to close to the standard deviation reported in the manufacturer specifications.
Collapse
Affiliation(s)
- N. Priyadarshi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - U. Abbasi
- Pratimesh Laboratory, Indian Institute of Science, Bangalore 560012, India
| | - V. Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - P. Chowdhury
- Nanomaterials Research Laboratory, Surface Engineering Division, CSIR–National Aerospace Laboratories, Bangalore 560017, India
| |
Collapse
|
13
|
Algorri JF, Roldán-Varona P, Fernández-Manteca MG, López-Higuera JM, Rodriguez-Cobo L, Cobo-García A. Photonic Microfluidic Technologies for Phytoplankton Research. BIOSENSORS 2022; 12:1024. [PMID: 36421145 PMCID: PMC9688872 DOI: 10.3390/bios12111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Phytoplankton is a crucial component for the correct functioning of different ecosystems, climate regulation and carbon reduction. Being at least a quarter of the biomass of the world's vegetation, they produce approximately 50% of atmospheric O2 and remove nearly a third of the anthropogenic carbon released into the atmosphere through photosynthesis. In addition, they support directly or indirectly all the animals of the ocean and freshwater ecosystems, being the base of the food web. The importance of their measurement and identification has increased in the last years, becoming an essential consideration for marine management. The gold standard process used to identify and quantify phytoplankton is manual sample collection and microscopy-based identification, which is a tedious and time-consuming task and requires highly trained professionals. Microfluidic Lab-on-a-Chip technology represents a potential technical solution for environmental monitoring, for example, in situ quantifying toxic phytoplankton. Its main advantages are miniaturisation, portability, reduced reagent/sample consumption and cost reduction. In particular, photonic microfluidic chips that rely on optical sensing have emerged as powerful tools that can be used to identify and analyse phytoplankton with high specificity, sensitivity and throughput. In this review, we focus on recent advances in photonic microfluidic technologies for phytoplankton research. Different optical properties of phytoplankton, fabrication and sensing technologies will be reviewed. To conclude, current challenges and possible future directions will be discussed.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- CIBER de Bioingeniera, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- CIBER de Bioingeniera, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- CIBER de Bioingeniera, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Luis Rodriguez-Cobo
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- CIBER de Bioingeniera, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Adolfo Cobo-García
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- CIBER de Bioingeniera, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
14
|
Shen B, Dawes J, Johnston ML. A 10 M Ω, 50 kHz-40 MHz Impedance Measurement Architecture for Source-Differential Flow Cytometry. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:766-778. [PMID: 35727776 DOI: 10.1109/tbcas.2022.3182905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A low-power, impedance-based integrated circuit (IC) readout architecture is presented for cell analysis and cytometry applications. A three-electrode layout and source-differential excitation cancels baseline current prior to the sensor front-end, which enables the use of a high-gain readout circuit for the difference current. A lock-in architecture is employed with down-conversion and up-conversion in the feedback loop, enabling high closed-loop gain (up to 10 M Ω) and high bandwidth (up to 40 MHz). A hybrid-RC feedback network mitigates the SNR degradation seen over a wide operating frequency range when using purely capacitive feedback. The effect of phase shift on the closed-loop system gain and noise performance are analyzed in detail, along with optimization strategies, and the design includes fine-grained phase adjustment to minimize phase error. The impedance sensor was fabricated in a 0.18 μ m CMOS process and consumes 9.7 mW with an operating frequency from 50 kHz to 40 MHz and provides adjustable bandwidth. Measurements demonstrate that the impedance sensor achieves 6 pA [Formula: see text] input-referred noise over 200 Hz bandwidth at 0.5 MHz modulation frequency. Combined with a microfluidic flow cell, measured results using this source-differential measurement approach are presented using both monodisperse and polydisperse sample solutions and demonstrate single-cell resolution, detecting 3 μ m diameter particles in solution with 22 dB SNR.
Collapse
|
15
|
A label-free and low-power microelectronic impedance spectroscopy for characterization of exosomes. PLoS One 2022; 17:e0270844. [PMID: 35802670 PMCID: PMC9269907 DOI: 10.1371/journal.pone.0270844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Electrical Impedance Spectroscopy (EIS) is a non-invasive and label-free technology that can characterize and discriminate cells based on their dielectric properties at a wide range of frequency. This characterization method has not been utilized for small extracellular vesicles (exosomes) with heterogenous and nano-scale size distribution. Here, we developed a novel label-free microelectronic impedance spectroscopy for non-invasive and rapid characterization of exosomes based on their unique dielectric properties. The device is comprised of an insulator-based dielectrophoretic (iDEP) module for exosomes isolation followed by an impedance spectroscopy utilizing the embedded micro-electrodes. This device is capable of distinguishing between exosomes harvested from different cellular origins as the result of their unique membrane and cytosolic compositions at a wide range of frequency. Therefore, it has the potential to be further evolved as a rapid tool for characterization of pathogenic exosomes in clinical settings.
Collapse
|
16
|
Zhang Y, Zhao Y, Cole T, Zheng J, Bayinqiaoge, Guo J, Tang SY. Microfluidic flow cytometry for blood-based biomarker analysis. Analyst 2022; 147:2895-2917. [PMID: 35611964 DOI: 10.1039/d2an00283c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flow cytometry has proven its capability for rapid and quantitative analysis of individual cells and the separation of targeted biological samples from others. The emerging microfluidics technology makes it possible to develop portable microfluidic diagnostic devices for point-of-care testing (POCT) applications. Microfluidic flow cytometry (MFCM), where flow cytometry and microfluidics are combined to achieve similar or even superior functionalities on microfluidic chips, provides a powerful single-cell characterisation and sorting tool for various biological samples. In recent years, researchers have made great progress in the development of the MFCM including focusing, detecting, and sorting subsystems, and its unique capabilities have been demonstrated in various biological applications. Moreover, liquid biopsy using blood can provide various physiological and pathological information. Thus, biomarkers from blood are regarded as meaningful circulating transporters of signal molecules or particles and have great potential to be used as non (or minimally)-invasive diagnostic tools. In this review, we summarise the recent progress of the key subsystems for MFCM and its achievements in blood-based biomarker analysis. Finally, foresight is offered to highlight the research challenges faced by MFCM in expanding into blood-based POCT applications, potentially yielding commercialisation opportunities.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Ying Zhao
- National Chengdu Centre of Safety Evaluation of Drugs, West China Hospital of Sichuan University, Chengdu, China
| | - Tim Cole
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Jiahao Zheng
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Bayinqiaoge
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Jinhong Guo
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
17
|
|
18
|
Chícharo A, Caetano DM, Cardoso S, Freitas P. Evolution in Automatized Detection of Cells: Advances in Magnetic Microcytometers for Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:413-444. [DOI: 10.1007/978-3-031-04039-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Fan W, Xiong Q, Ge Y, liu T, Zeng S, Zhao J. Identifying the grade of bladder cancer cells using microfluidic chips based on impedance. Analyst 2022; 147:1722-1729. [DOI: 10.1039/d2an00026a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bladder cancer diagnosis is made by microfluidic chip based-on impedance analysis.
Collapse
Affiliation(s)
- Weihua Fan
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, Shanghai, P. R. China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, Beijing, P. R. China
| | - Qiao Xiong
- Department of Urology, Changhai Hospital, Naval Medical University, 200433, Shanghai, P. R. China
| | - Yuqing Ge
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, Shanghai, P. R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Ting liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, Shanghai, P. R. China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Naval Medical University, 200433, Shanghai, P. R. China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, Shanghai, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, Beijing, P. R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| |
Collapse
|
20
|
Determining Particle Size and Position in a Coplanar Electrode Setup Using Measured Opacity for Microfluidic Cytometry. BIOSENSORS-BASEL 2021; 11:bios11100353. [PMID: 34677309 PMCID: PMC8533872 DOI: 10.3390/bios11100353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022]
Abstract
Microfluidic impedance flow cytometers enable high-throughput, non-invasive, and label-free detection of single-cells. Cytometers with coplanar electrodes are easy and cheap to fabricate, but are sensitive to positional differences of passing particles, owing to the inhomogeneous electric field. We present a novel particle height compensation method, which employs the dependence of measured electrical opacity on particle height. The measured electrical opacity correlates with the particle height as a result of the constant electrical double layer series capacitance of the electrodes. As an alternative to existing compensation methods, we use only two coplanar electrodes and multi-frequency analysis to determine the particle size of a mixture of 5, 6, and 7 µm polystyrene beads with an accuracy (CV) of 5.8%, 4.0%, and 2.9%, respectively. Additionally, we can predict the bead height with an accuracy of 1.5 µm (8% of channel height) using the measured opacity and we demonstrate its application in flow cytometry with yeast. The use of only two electrodes is of special interest for simplified, easy-to-use chips with a minimum amount of instrumentation and of limited size.
Collapse
|
21
|
Zheng X, Duan X, Tu X, Jiang S, Song C. The Fusion of Microfluidics and Optics for On-Chip Detection and Characterization of Microalgae. MICROMACHINES 2021; 12:1137. [PMID: 34683188 PMCID: PMC8540680 DOI: 10.3390/mi12101137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/21/2023]
Abstract
It has been demonstrated that microalgae play an important role in the food, agriculture and medicine industries. Additionally, the identification and counting of the microalgae are also a critical step in evaluating water quality, and some lipid-rich microalgae species even have the potential to be an alternative to fossil fuels. However, current technologies for the detection and analysis of microalgae are costly, labor-intensive, time-consuming and throughput limited. In the past few years, microfluidic chips integrating optical components have emerged as powerful tools that can be used for the analysis of microalgae with high specificity, sensitivity and throughput. In this paper, we review recent optofluidic lab-on-chip systems and techniques used for microalgal detection and characterization. We introduce three optofluidic technologies that are based on fluorescence, Raman spectroscopy and imaging-based flow cytometry, each of which can achieve the determination of cell viability, lipid content, metabolic heterogeneity and counting. We analyze and summarize the merits and drawbacks of these micro-systems and conclude the direction of the future development of the optofluidic platforms applied in microalgal research.
Collapse
Affiliation(s)
| | | | | | | | - Chaolong Song
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China; (X.Z.); (X.D.); (X.T.); (S.J.)
| |
Collapse
|
22
|
Biochip with multi-planar electrodes geometry for differentiation of non-spherical bioparticles in a microchannel. Sci Rep 2021; 11:11880. [PMID: 34088942 PMCID: PMC8178319 DOI: 10.1038/s41598-021-91109-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/21/2021] [Indexed: 02/04/2023] Open
Abstract
A biosensor capable of differentiating cells or other microparticles based on morphology finds significant biomedical applications. Examples may include morphological determination in the cellular division process, differentiation of bacterial cells, and cellular morphological variation in inflammation and cancer etc. Here, we present a novel integrated multi-planar microelectrodes geometry design that can distinguish a non-spherical individual particle flowing along a microchannel based on its electrical signature. We simulated multi-planar electrodes design in COMSOL Multiphysics and have shown that the changes in electrical field intensity corresponding to multiple particle morphologies can be distinguished. Our initial investigation has shown that top-bottom electrodes configuration produces significantly enhanced signal strength for a spherical particle as compared to co-planar configuration. Next, we integrated the co-planar and top-bottom configurations to develop a multi-planar microelectrode design capable of electrical impedance measurement at different spatial planes inside a microchannel by collecting multiple output signatures. We tested our integrated multi-planar electrode design with particles of different elliptical morphologies by gradually changing spherical particle dimensions to the non-spherical. The computed electrical signal ratio of non-spherical to spherical particle shows a very good correlation to predict the particle morphology. The biochip sensitivity is also found be independent of orientation of the particle flowing in the microchannel. Our integrated design will help develop the technology that will allow morphological analysis of various bioparticles in a microfluidic channel in the future.
Collapse
|
23
|
Zhu S, Zhang X, Zhou Z, Han Y, Xiang N, Ni Z. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations. Talanta 2021; 233:122571. [PMID: 34215067 DOI: 10.1016/j.talanta.2021.122571] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Single-cell analysis has gained considerable attention for disease diagnosis, drug screening, and differentiation monitoring. Compared to the well-established flow cytometry, which uses fluorescent-labeled antibodies, microfluidic impedance cytometry (MIC) offers a simple, label-free, and noninvasive method for counting, classifying, and monitoring cells. Superior features including a small footprint, low reagent consumption, and ease of use have also been reported. The MIC device detects changes in the impedance signal caused by cells passing through the sensing/electric field zone, which can extract information regarding the size, shape, and dielectric properties of these cells. According to recent studies, electrode configuration has a remarkable effect on detection accuracy, sensitivity, and throughput. With the improvement in microfabrication technology, various electrode configurations have been reported for improving detection accuracy and throughput. However, the various electrode configurations of MIC devices have not been reviewed. In this review, the theoretical background of the impedance technique for single-cell analysis is introduced. Then, two-dimensional, three-dimensional, and liquid electrode configurations are discussed separately; their sensing mechanisms, fabrication processes, advantages, disadvantages, and applications are also described in detail. Finally, the current limitations and future perspectives of these electrode configurations are summarized. The main aim of this review is to offer a guide for researchers on the ongoing advancement in electrode configuration designs.
Collapse
Affiliation(s)
- Shu Zhu
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Xiaozhe Zhang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zheng Zhou
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yu Han
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
24
|
He S, Joseph N, Feng S, Jellicoe M, Raston CL. Application of microfluidic technology in food processing. Food Funct 2021; 11:5726-5737. [PMID: 32584365 DOI: 10.1039/d0fo01278e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microfluidic technology is interdisciplinary with a diversity of applications including in food processing. The rapidly growing global population demands more advanced technologies in food processing to produce more functional and safer food, and for such processing microfluidic devices are a popular choice. This review critically critiques the state-of-the-art designs of microfluidic devices and their applications in food processing, and identifies the key research trends and future research directions for maximizing the value of microfluidic technology. Capillary, planar, and terrace droplet generation systems are currently used in the design of microfluidic devices, each with their strengths and weaknesses as applied in food processing, for emulsification, food safety measurements, and bioactive compound extraction. Conventional channel-based microfluidic devices are prone to clogging, and have high labor costs and low productivity, and their "directional pressure" restricts scaling-up capabilities. These disadvantages can be overcome by using "inside-out centrifugal force" and the new generation continuous flow thin-film microfluidic Vortex Fluidic Device (VFD) which facilitates translating laboratory processing into commercial products. Also highlighted is controlling protein-polysaccharide interactions and the applications of the produced ingredients in food formulations as targets for future development in the field.
Collapse
Affiliation(s)
- Shan He
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China. and Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Nikita Joseph
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Shilun Feng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Matt Jellicoe
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| |
Collapse
|
25
|
Gong L, Petchakup C, Shi P, Tan PL, Tan LP, Tay CY, Hou HW. Direct and Label-Free Cell Status Monitoring of Spheroids and Microcarriers Using Microfluidic Impedance Cytometry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007500. [PMID: 33759381 DOI: 10.1002/smll.202007500] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/11/2021] [Indexed: 05/11/2023]
Abstract
3D cellular spheroids/microcarriers (100 µm-1 mm) are widely used in biomanufacturing, and non-invasive biosensors are useful to monitor cell quality in bioprocesses. In this work, a novel microfluidic approach for label-free and continuous-flow monitoring of single spheroid/microcarrier (hydrogel and Cytodex) based on electrical impedance spectroscopy using co-planar Field's metal electrodes is reported. Through numerical simulation and experimental validation, two unique impedance signatures (|ZLF | (60 kHz), |ZHF | (1 MHz)) which are optimal for spheroid growth and viability monitoring are identified. Using a closed-loop recirculation system, it is demonstrated that |ZLF | increases with breast cancer (MCF-7) spheroid biomass, while higher opacity (impedance ratio |ZHF |/|ZLF |) indicates cell death due to compromised cell membrane. Anti-cancer drug (paclitaxel)-treated spheroids also exhibit lower |ZLF | with increased cell dissociation. Interestingly, impedance characterization of adipose-derived mesenchymal stem cell differentiation on Cytodex microcarriers reveals that adipogenic cells (higher intracellular lipid content) exhibit higher impedance than osteogenic cells (more conductive due to calcium ions) for both microcarriers and single cell level. Taken together, the developed platform offers great versatility for multi-parametric analysis of spheroids/microcarriers at high throughput (≈1 particle/s), and can be readily integrated into bioreactors for long-term and remote monitoring of biomass and cell quality.
Collapse
Affiliation(s)
- Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Pujiang Shi
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Pei Leng Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, 1 CleanTech Loop, CleanTech One, Singapore, 637141
- Energy Research Institute, Nanyang Technological University Singapore, 50 Nanyang Drive, Singapore, 637553
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232
- Critical Analytics for Manufacturing of Personalized Medicine, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, 1 CREATE Way, #10-01, CREATE Tower, Singapore, 138602
| |
Collapse
|
26
|
Li P, Ai Y. Label-Free Multivariate Biophysical Phenotyping-Activated Acoustic Sorting at the Single-Cell Level. Anal Chem 2021; 93:4108-4117. [PMID: 33599494 DOI: 10.1021/acs.analchem.0c05352] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biophysical markers of cells such as cellular electrical and mechanical properties have been proven as promising label-free biomarkers for studying, characterizing, and classifying different cell types and even their subpopulations. Further analysis or manipulation of specific cell types or subtypes requires accurate isolation of them from the original heterogeneous samples. However, there is currently a lack of cell sorting ability that could actively separate a large number of individual cells at the single-cell level based on their multivariate biophysical makers or phenotypes. In this work, we, for the first time, demonstrate label-free and high-throughput acoustic single-cell sorting activated by the characterization of multivariate biophysical phenotypes. Electrical phenotyping is implemented by single-cell electrical impedance characterization with two pairs of differential sensing electrodes, while mechanical phenotyping is performed by extracting the transit time for the single cell to pass through microconstriction from the recorded impedance signals. A real-time impedance signal processing and triggering algorithm has been developed to identify the target sample population and activate a pulsed highly focused surface acoustic wave for single-cell level sorting. We have demonstrated acoustic single-particle sorting solely based on electrical or mechanical phenotyping. Furthermore, we have applied the developed microfluidic system to sort live MCF-7 cells from a mixture of fixed and live MCF-7 population activated by a combined electrical and mechanical phenotyping at a high throughput >100 cells/s and purity ∼91.8%. This demonstrated ability to analyze and sort cells based on multivariate biophysical phenotyping provides a solution to the current challenges of cell purification that lack specific molecular biomarkers.
Collapse
Affiliation(s)
- Peixian Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
27
|
Egunov AI, Dou Z, Karnaushenko DD, Hebenstreit F, Kretschmann N, Akgün K, Ziemssen T, Karnaushenko D, Medina-Sánchez M, Schmidt OG. Impedimetric Microfluidic Sensor-in-a-Tube for Label-Free Immune Cell Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2002549. [PMID: 33448115 DOI: 10.1002/smll.202002549] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Analytical platforms based on impedance spectroscopy are promising for non-invasive and label-free analysis of single cells as well as of their extracellular matrix, being essential to understand cell function in the presence of certain diseases. Here, an innovative rolled-up impedimetric microfulidic sensor, called sensor-in-a-tube, is introduced for the simultaneous analysis of single human monocytes CD14+ and their extracellular medium upon liposaccharides (LPS)-mediated activation. In particular, rolled-up platinum microelectrodes are integrated within for the static and dynamic (in-flow) detection of cells and their surrounding medium (containing expressed cytokines) over an excitation frequency range from 102 to 5 × 106 Hz. The correspondence between cell activation stages and the electrical properties of the cell surrounding medium have been detected by electrical impedance spectroscopy in dynamic mode without employing electrode surface functionalization or labeling. The designed sensor-in-a-tube platform is shown as a sensitive and reliable tool for precise single cell analysis toward immune-deficient diseases diagnosis.
Collapse
Affiliation(s)
- Aleksandr I Egunov
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Zehua Dou
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Dmitriy D Karnaushenko
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Franziska Hebenstreit
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Nicole Kretschmann
- Center of Clinical Neuroscience, Multiple Sklerose Zentrum Dresden, University Hospital Carl Gustav Carus at Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, Multiple Sklerose Zentrum Dresden, University Hospital Carl Gustav Carus at Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Multiple Sklerose Zentrum Dresden, University Hospital Carl Gustav Carus at Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Daniil Karnaushenko
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Str. der Nationen 62, 09111, Chemnitz, Germany
- Nanophysics, Dresden University of Technology, Haeckelstraße 3, 01069, Dresden, Germany
| |
Collapse
|
28
|
Gao T, Gao X, Xu C, Wang M, Chen M, Wang J, Ma F, Yu P, Mao L. Label-Free Resistance Cytometry at the Orifice of a Nanopipette. Anal Chem 2021; 93:2942-2949. [PMID: 33502179 DOI: 10.1021/acs.analchem.0c04585] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of new principles and techniques at the single-cell level is significantly important since cells as basic units of living organisms always bear large heterogeneity. Herein, we demonstrate a new electrochemical principle for single-cell analysis based on an ion current blockage at the orifice of a nanopipette, defined as resistance cytometry. The amplitude and the frequency of ion current transients show strong dependence on the size and the concentration of cells, which could be used for in situ cell sizing and counting. This technique shows good ability to detect the size change of RBCs under stimulations of different pH and osmotic pressure values. More importantly, the as-presented resistance cytometry can distinguish lymphoma blood cells from normal blood cells for patient blood samples. The as-presented resistance cytometry is label-free, non-invasive, and non-destructive, which not only opens new opportunities for single-cell analysis but also provides a new platform for cell-related medical diagnostic technologies.
Collapse
Affiliation(s)
- Tienan Gao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangyi Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menglin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Furong Ma
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Abstract
Understanding the sources, impacts, and fate of microplastics in the environment is critical for assessing the potential risks of these anthropogenic particles. However, our ability to quantify and identify microplastics in aquatic ecosystems is limited by the lack of rapid techniques that do not require visual sorting or preprocessing. Here, we demonstrate the use of impedance spectroscopy for high-throughput flow-through microplastic quantification, with the goal of rapid measurement of microplastic concentration and size. Impedance spectroscopy characterizes the electrical properties of individual particles directly in the flow of water, allowing for simultaneous sizing and material identification. To demonstrate the technique, spike and recovery experiments were conducted in tap water with 212-1000 μm polyethylene beads in six size ranges and a variety of similarly sized biological materials. Microplastics were reliably detected, sized, and differentiated from biological materials via their electrical properties at an average flow rate of 103 ± 8 mL/min. The recovery rate was ≥90% for microplastics in the 300-1000 μm size range, and the false positive rate for the misidentification of the biological material as plastic was 1%. Impedance spectroscopy allowed for the identification of microplastics directly in water without visual sorting or filtration, demonstrating its use for flow-through sensing.
Collapse
Affiliation(s)
- Beckett C. Colson
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge and Woods Hole, Massachusetts, United States
| | - Anna P. M. Michel
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
30
|
Honrado C, Bisegna P, Swami NS, Caselli F. Single-cell microfluidic impedance cytometry: from raw signals to cell phenotypes using data analytics. LAB ON A CHIP 2021; 21:22-54. [PMID: 33331376 PMCID: PMC7909465 DOI: 10.1039/d0lc00840k] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The biophysical analysis of single-cells by microfluidic impedance cytometry is emerging as a label-free and high-throughput means to stratify the heterogeneity of cellular systems based on their electrophysiology. Emerging applications range from fundamental life-science and drug assessment research to point-of-care diagnostics and precision medicine. Recently, novel chip designs and data analytic strategies are laying the foundation for multiparametric cell characterization and subpopulation distinction, which are essential to understand biological function, follow disease progression and monitor cell behaviour in microsystems. In this tutorial review, we present a comparative survey of the approaches to elucidate cellular and subcellular features from impedance cytometry data, covering the related subjects of device design, data analytics (i.e., signal processing, dielectric modelling, population clustering), and phenotyping applications. We give special emphasis to the exciting recent developments of the technique (timeframe 2017-2020) and provide our perspective on future challenges and directions. Its synergistic application with microfluidic separation, sensor science and machine learning can form an essential toolkit for label-free quantification and isolation of subpopulations to stratify heterogeneous biosystems.
Collapse
Affiliation(s)
- Carlos Honrado
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | | | |
Collapse
|
31
|
Ashley BK, Sui J, Javanmard M, Hassan U. Functionalization of hybrid surface microparticles for in vitro cellular antigen classification. Anal Bioanal Chem 2021; 413:555-564. [PMID: 33156401 PMCID: PMC7855916 DOI: 10.1007/s00216-020-03026-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 01/06/2023]
Abstract
Hybrid material surfaces on microparticles are emerging as vehicles for many biomedical multiplexing applications. Functionalization of these hybrid surface microparticles to biomolecules presents unique challenges related to optimization of surface chemistries including uniformity, repeatability, and sample sparring. Hybrid interfaces between microlevel surfaces and individual biomolecules will provide different microenvironments impacting the surface functionalization optimization and efficiency. Here, we propose and validate the first demonstration of streptavidin adsorption-based antibody functionalization on unmodified, hybrid surface microparticles for in vitro analysis. We test this analytical technique and fabricate hybrid surface microparticles with a polystyrene core and aluminum oxide semi-coating. Additionally, we optimize the streptavidin-biotin functionalization chemistry in both assay implementation and sample sparring via analytical mass balances for these microparticles and subsequently conjugate anti-human CD11b antibodies. Result confirmation and characterization occurs from ultraviolet protein absorbance and ImageJ processing of fluorescence microscopy images. Additionally, we design and implement the multi-sectional imaging (MSI) approach to support functionalization uniformity on the hybrid surface microparticles. Finally, as a proof-of-concept performance, we validate anti-CD11b antibodies functionalization by visualizing hybrid surface microparticles conjugate to human neutrophils isolated from blood samples collected from potentially septic patients. Our study introduces and defines a category of functionalization for hybrid surface microparticles with the intent of minuscule sample volumes, low cost, and low environmental impact to be used for many cellular or proteomic in vitro multiplexing applications in the future. Graphical abstract.
Collapse
Affiliation(s)
- Brandon K Ashley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jianye Sui
- Department of Electrical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Mehdi Javanmard
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Electrical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Umer Hassan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Department of Electrical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Global Health Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
32
|
Shi L, Esfandiari L. An Electrokinetically-Driven Microchip for Rapid Entrapment and Detection of Nanovesicles. MICROMACHINES 2020; 12:mi12010011. [PMID: 33374467 PMCID: PMC7823576 DOI: 10.3390/mi12010011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022]
Abstract
Electrical Impedance Spectroscopy (EIS) has been widely used as a label-free and rapid characterization method for the analysis of cells in clinical research. However, the related work on exosomes (40–150 nm) and the particles of similar size has not yet been reported. In this study, we developed a new Lab-on-a-Chip (LOC) device to rapidly entrap a cluster of sub-micron particles, including polystyrene beads, liposomes, and small extracellular vesicles (exosomes), utilizing an insulator-based dielectrophoresis (iDEP) scheme followed by measuring their impedance utilizing an integrated electrical impedance sensor. This technique provides a label-free, fast, and non-invasive tool for the detection of bionanoparticles based on their unique dielectric properties. In the future, this device could potentially be applied to the characterization of pathogenic exosomes and viruses of similar size, and thus, be evolved as a powerful tool for early disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Leyla Esfandiari
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH 45221, USA;
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
- Correspondence:
| |
Collapse
|
33
|
Quang LD, Bui TT, Hoang BA, Nhu CN, Thuy HTT, Jen CP, Duc TC. Biological Living Cell in-Flow Detection Based on Microfluidic Chip and Compact Signal Processing Circuit. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:1371-1380. [PMID: 33085615 DOI: 10.1109/tbcas.2020.3030017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Detection and counting of biological living cells in continuous fluidic flows play an essential role in many applications for early diagnosis and treatment of diseases. In this regard, this study highlighted the proposal of a biochip system for detecting and enumerating human lung carcinoma cell flow in the microfluidic channel. The principle of detection was based on the change of impedance between sensing electrodes integrated in the fluidic channel, due to the presence of a biological cell in the sensing region. A compact electronic module was built to sense the unbalanced impedance between the sensing microelectrodes. It consisted of an instrumentation amplifier stage to obtain the difference between the acquired signals, and a lock-in amplifier stage to demodulate the signals at the stimulating frequency as well as to reject noise at other frequencies. The performance of the proposed system was validated through experiments of A549 cells detection as they passed over the microfluidic channel. The experimental results indicated the occurrence of large spikes (up to approximately 180 mV) over the background signal according to the passage of a single A549 cell in the continuous flow. The proposed device is simple-to-operate, inexpensive, portable, and exhibits high sensitivity, which are suitable considerations for developing point-of-care applications.
Collapse
|
34
|
de Bruijn DS, Ter Braak PM, Van de Waal DB, Olthuis W, van den Berg A. Coccolithophore calcification studied by single-cell impedance cytometry: Towards single-cell PIC:POC measurements. Biosens Bioelectron 2020; 173:112808. [PMID: 33221507 DOI: 10.1016/j.bios.2020.112808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022]
Abstract
Since the industrial revolution 30% of the anthropogenic CO2 is absorbed by oceans, resulting in ocean acidification, which is a threat to calcifying algae. As a result, there has been profound interest in the study of calcifying algae, because of their important role in the global carbon cycle. The coccolithophore Emiliania huxleyi is considered to be globally the most dominant calcifying algal species, which creates a unique exoskeleton from inorganic calcium carbonate platelets. The PIC (particulate inorganic carbon): POC (particulate organic carbon) ratio describes the relative amount of inorganic carbon in the algae and is a critical parameter in the ocean carbon cycle. In this research we explore the use of microfluidic single-cell impedance spectroscopy in the field of calcifying algae. Microfluidic impedance spectroscopy enables us to characterize single-cell electrical properties in a non-invasive and label-free way. We use the ratio of the impedance at high frequency vs. low frequency, known as opacity, to discriminate between calcified coccolithophores and coccolithophores with a calcite exoskeleton dissolved by acidification (decalcified). We have demonstrated that using opacity we can discriminate between calcified and decalcified coccolithophores with an accuracy of 94.1%. We have observed a correlation between the measured opacity and the cell height in the channel, which is supported by FEM simulations. The difference in cell density between calcified and decalcified cells can explain the difference in cell height and therefore the measured opacity.
Collapse
Affiliation(s)
- Douwe S de Bruijn
- BIOS Lab-on-a-Chip Group, MESA+ Institute, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217, AE Enschede, 7500, the Netherlands.
| | - Paul M Ter Braak
- BIOS Lab-on-a-Chip Group, MESA+ Institute, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217, AE Enschede, 7500, the Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, PB Wageningen, 6708, the Netherlands
| | - Wouter Olthuis
- BIOS Lab-on-a-Chip Group, MESA+ Institute, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217, AE Enschede, 7500, the Netherlands
| | - Albert van den Berg
- BIOS Lab-on-a-Chip Group, MESA+ Institute, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217, AE Enschede, 7500, the Netherlands
| |
Collapse
|
35
|
Duckert B, Vinkx S, Braeken D, Fauvart M. Single-cell transfection technologies for cell therapies and gene editing. J Control Release 2020; 330:963-975. [PMID: 33160005 DOI: 10.1016/j.jconrel.2020.10.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/29/2022]
Abstract
Advances in gene editing and cell therapies have recently led to outstanding clinical successes. However, the lack of a cost-effective manufacturing process prevents the democratization of these innovative medical tools. Due to the common use of viral vectors, the step of transfection in which cells are engineered to gain new functions, is a major bottleneck in making safe and affordable cell products. A promising opportunity lies in Single-Cell Transfection Technologies (SCTTs). SCTTs have demonstrated higher efficiency, safety and scalability than conventional transfection methods. They can also feature unique abilities such as substantial dosage control over the cargo delivery, single-cell addressability and integration in microdevices comprising multiple monitoring modalities. Unfortunately, the potential of SCTTs is not fully appreciated: they are most often restricted to research settings with little adoption in clinical settings. To encourage their adoption, we review and compare recent developments in SCTTs, and how they can enable selected clinical applications. To help bridge the gap between fundamental research and its translation to the clinic, we also describe how Good Manufacturing Practices (GMP) can be integrated in the design of SCTTs.
Collapse
Affiliation(s)
- Bastien Duckert
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200d, 3001 Leuven, Belgium; IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
36
|
Salvo P, Vivaldi FM, Bonini A, Biagini D, Bellagambi FG, Miliani FM, Di Francesco F, Lomonaco T. Biosensors for Detecting Lymphocytes and Immunoglobulins. BIOSENSORS 2020; 10:E155. [PMID: 33121071 PMCID: PMC7694141 DOI: 10.3390/bios10110155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Lymphocytes (B, T and natural killer cells) and immunoglobulins are essential for the adaptive immune response against external pathogens. Flow cytometry and enzyme-linked immunosorbent (ELISA) kits are the gold standards to detect immunoglobulins, B cells and T cells, whereas the impedance measurement is the most used technique for natural killer cells. For point-of-care, fast and low-cost devices, biosensors could be suitable for the reliable, stable and reproducible detection of immunoglobulins and lymphocytes. In the literature, such biosensors are commonly fabricated using antibodies, aptamers, proteins and nanomaterials, whereas electrochemical, optical and piezoelectric techniques are used for detection. This review describes how these measurement techniques and transducers can be used to fabricate biosensors for detecting lymphocytes and the total content of immunoglobulins. The various methods and configurations are reported, along with the advantages and current limitations.
Collapse
Affiliation(s)
- Pietro Salvo
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Federico M. Vivaldi
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Francesca G. Bellagambi
- Institut des Sciences Analytiques, UMR 5280, Université Lyon 1, 5, rue de la Doua, 69100 Villeurbanne, France;
| | - Filippo M. Miliani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| |
Collapse
|
37
|
Daguerre H, Solsona M, Cottet J, Gauthier M, Renaud P, Bolopion A. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities. LAB ON A CHIP 2020; 20:3665-3689. [PMID: 32914827 DOI: 10.1039/d0lc00616e] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microfluidic electrical impedance flow cytometry is now a well-known and established method for single-cell analysis. Given the richness of the information provided by impedance measurements, this non-invasive and label-free approach can be used in a wide field of applications ranging from simple cell counting to disease diagnostics. One of its major limitations is the variation of the impedance signal with the position of the cell in the sensing area. Indeed, identical particles traveling along different trajectories do not result in the same data. The positional dependence can be considered as a challenge for the accuracy of microfluidic impedance cytometers. On the other hand, it has recently been regarded by several groups as an opportunity to estimate the position of particles in the microchannel and thus take a further step in the logic of integrating sensors in so-called "Lab-on-a-chip" devices. This review provides a comprehensive overview of the physical grounds of the positional dependence of impedance measurements. Then, both the developed strategies to reduce position influence in impedance-based assays and the recent reported technologies exploiting that dependence for the integration of position detection in microfluidic devices are reviewed.
Collapse
Affiliation(s)
- Hugo Daguerre
- FEMTO-ST Institute, CNRS, Univ. Bourgogne Franche-Comté, AS2M Department, 24 rue Alain Savary, F-25000 Besançon, France.
| | | | | | | | | | | |
Collapse
|
38
|
Spencer DC, Paton TF, Mulroney KT, Inglis TJJ, Sutton JM, Morgan H. A fast impedance-based antimicrobial susceptibility test. Nat Commun 2020; 11:5328. [PMID: 33087704 PMCID: PMC7578651 DOI: 10.1038/s41467-020-18902-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to develop simple and fast antimicrobial susceptibility tests (ASTs) that allow informed prescribing of antibiotics. Here, we describe a label-free AST that can deliver results within an hour, using an actively dividing culture as starting material. The bacteria are incubated in the presence of an antibiotic for 30 min, and then approximately 105 cells are analysed one-by-one with microfluidic impedance cytometry for 2-3 min. The measured electrical characteristics reflect the phenotypic response of the bacteria to the mode of action of a particular antibiotic, in a 30-minute incubation window. The results are consistent with those obtained by classical broth microdilution assays for a range of antibiotics and bacterial species.
Collapse
Affiliation(s)
- Daniel C Spencer
- Department of Electronics and Computer Science, and Institute for Life Science, University of Southampton, Hampshire, SO17 1BJ, UK
| | - Teagan F Paton
- Department of Microbiology, PathWest Laboratory Medicine, Nedlands, WA, 6009, Australia
| | - Kieran T Mulroney
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Timothy J J Inglis
- Department of Microbiology, PathWest Laboratory Medicine, Nedlands, WA, 6009, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, 6009, Australia
| | - J Mark Sutton
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Hywel Morgan
- Department of Electronics and Computer Science, and Institute for Life Science, University of Southampton, Hampshire, SO17 1BJ, UK.
| |
Collapse
|
39
|
Farooq A, Butt NZ, Hassan U. Exceedingly Sensitive Restructured Electrodes Design for Pathogen Morphology Detection using Impedance Flow Cytometry. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2500-2503. [PMID: 33018514 DOI: 10.1109/embc44109.2020.9176444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cellular morphology is a vital biological characteristic for determining explicit information about its physiological state. Monitoring real-time cell shape is of great importance in infectious pathogen detection. Here, we designed a highly sensitive coplanar electrode sensing system and merged it with planar electrodes for simultaneous impedance signals in two dimensions. We simulated the proposed design in this study for the detection of different single cell pathogens based on their morphology. The optimized design has a great potential to monitor and characterize different bacteria based on their sizes and shapes. In this report, spherical and rod shaped particles were used to illustrate the device performance. This simple and extremely sensitive modified electrode design is very promising for bacterial detection and will serve as a future guiding tool for discriminating different morphologies of singular cells.
Collapse
|
40
|
Susana FV, Sharmila F, Alessandro S, Valentina G, Chiara R, Marco P, Fiorella A, Danilo D. Impedance-based drug-resistance characterization of colon cancer cells through real-time cell culture monitoring. Talanta 2020; 222:121441. [PMID: 33167197 DOI: 10.1016/j.talanta.2020.121441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 01/03/2023]
Abstract
Interest in impedance-based cellular assays is rising due to their remarkable advantages, including label-free, low cost, non-invasive, non-destructive, quantitative and real-time monitoring. In order to test their potential in cancer treatment decision and early detection of chemoresistance, we devised a new custom-made impedance measuring system based on electric cell-substrate impedance sensing (ECIS), optimized for long term impedance measurements. This device was employed in a proof of concept cell culture impedance analysis for the characterization of chemo-resistant colon cancer cells. Doxorubicin-resistant HT-29 cells were used for this purpose and monitored for 140 h. Analysis of impedance-based curves reveal different trends from chemo-sensitive and chemo-resistant cells. An impedance-based cytoxicity assay with different concentrations of doxorubicin was also performed using ECIS. The obtained results confirm the feasibility of ECIS in the study of drug resistance and show promises for studies of time-dependent factors related to physiological and behavioral changes in cells during resistance acquisition. The methodology presented herein, allows the continuous monitoring of cells under normal culture conditions as well as upon drug exposure. The ECIS device used, sets the basis for high-throughput early detection of resistance to drugs, administered in the clinical practice to cancer patients, and for the screening of new drugs in vitro, on patient-derived cells.
Collapse
Affiliation(s)
- Fuentes-Vélez Susana
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, Turin, Italy.
| | - Fagoonee Sharmila
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center (MBC), Turin, Italy
| | - Sanginario Alessandro
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, Turin, Italy
| | | | - Riganti Chiara
- Department of Oncology and Interdepartmental Center of Research in Molecular Biotechnology, University of Turin, Turin, Italy
| | - Pizzi Marco
- Eltek S.p.A, Casale Monferrato, Alessandria, Italy
| | - Altruda Fiorella
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC), University of Turin, Turin, Italy
| | - Demarchi Danilo
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, Turin, Italy
| |
Collapse
|
41
|
Evaluation of Immobilization of Selected Peat-Isolated Yeast Strains of the Species Candida albicans and Candida subhashii on the Surface of Artificial Support Materials Used for Biotrickling Filtration. Processes (Basel) 2020. [DOI: 10.3390/pr8070801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The paper describes the process of n-butanol abatement by unicellular fungi, able to deplete n-butanol content in gas, by using n-butanol as source of carbon. Isolated and identified fungi species Candida albicans and Candida subhashii were subjected to a viability process via assimilation of carbon from hydrophilic and hydrophobic compounds. The isolates, which exhibited the ability to assimilate carbon, were immobilized on four different types of artificial support materials used for biotrickling filtration. Application of optical microscopy, flow cytometry and the tests employing propidium iodide and annexin V revealed viability of the fungi isolated on support materials’ surfaces at the average level of 95%. The proposed method of immobilization and its evaluation appeared to be effective, cheap and fast. Based on performed comparative analyses, it was shown that polyurethane foam and Bialecki rings (25 × 25) could be attractive support materials in biotrickling filtration.
Collapse
|
42
|
Kawai S, Suzuki M, Arimoto S, Korenaga T, Yasukawa T. Determination of membrane capacitance and cytoplasm conductivity by simultaneous electrorotation. Analyst 2020; 145:4188-4195. [PMID: 32462157 DOI: 10.1039/d0an00100g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Membrane capacitances and cytoplasm conductivities of hematopoietic cells were investigated by simultaneous electrorotation (ROT) systems of multiple cells. Simultaneous ROT was achieved by the rotation of electric fields in grid arrays formed with three-dimensional interdigitated array (3D-IDA) electrodes that can be easily fabricated using two substrates with IDA electrodes. When AC signals were applied to four microband electrodes with a 90° phase difference to each electrode, cells dispersed randomly in the 3D-IDA device started to rotate and moved to the center of each grid. Multiple cells were simultaneously rotated at the center of grids without friction from contact with other cells and substrates. The averages and variance of ROT rates of cells at each frequency can be measured during a single operation of the device within 5 min, resulting in the acquisition of ROT spectra. Membrane capacitances and cytoplasm conductivities of hematopoietic cells (K562 cells, Jurkat cells, and THP-1 cells) were determined by fitting ROT spectra obtained experimentally to the curves calculated theoretically. The values determined by using the simultaneous ROT systems well coincided with the values reported previously. The membrane capacitances and cytoplasm conductivities of WEHI-231 cells were firstly determined to be 8.89 ± 0.25 mF m-2 and 0.28 ± 0.03 S m-1, respectively. Furthermore, the difference of the ROT rates based on the difference of the electric properties of cells was applied to discriminate the types of cells. The acquisition of rotation rates of multiple cells within a single operation makes the statistical analysis extremely profitable for determining the electrical properties of cells.
Collapse
Affiliation(s)
- Shikiho Kawai
- Department of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan.
| | | | | | | | | |
Collapse
|
43
|
Zhang Y, Wang S, Chen J, Yang F, Li G. Separation of Macrophages Using a Dielectrophoresis-Based Microfluidic Device. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4207-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Honrado C, McGrath JS, Reale R, Bisegna P, Swami NS, Caselli F. A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry. Anal Bioanal Chem 2020; 412:3835-3845. [PMID: 32189012 DOI: 10.1007/s00216-020-02497-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 11/26/2022]
Abstract
Microfluidic applications such as active particle sorting or selective enrichment require particle classification techniques that are capable of working in real time. In this paper, we explore the use of neural networks for fast label-free particle characterization during microfluidic impedance cytometry. A recurrent neural network is designed to process data from a novel impedance chip layout for enabling real-time multiparametric analysis of the measured impedance data streams. As demonstrated with both synthetic and experimental datasets, the trained network is able to characterize with good accuracy size, velocity, and cross-sectional position of beads, red blood cells, and yeasts, with a unitary prediction time of 0.4 ms. The proposed approach can be extended to other device designs and cell types for electrical parameter extraction. This combination of microfluidic impedance cytometry and machine learning can serve as a stepping stone to real-time single-cell analysis and sorting. Graphical Abstract.
Collapse
Affiliation(s)
- Carlos Honrado
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - John S McGrath
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Riccardo Reale
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Nathan S Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
| | - Frederica Caselli
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy.
| |
Collapse
|
45
|
Abstract
Single-cell impedance cytometry is a label-free analysis technique that is now widely used to measure the electrical properties of a cell and to differentiate different subpopulations. Current techniques are limited to measuring the impedance of a single cell at one or two simultaneous frequencies. Also, there are no methods that extrapolate the intrinsic electrical properties of single cells. We demonstrate a new approach that uses multifrequency impedance measurements to determine the complete intrinsic electrical properties of thousands of single cells at high throughput. The applicability of the method is demonstrated by measuring the properties of red blood cells and red cell ghosts, deriving the unique values of conductivity and permittivity of the membrane and cytoplasm for each individual cell.
Collapse
Affiliation(s)
- Daniel Spencer
- Electronics and Computer Science, and Institute of Life Sciences University of Southampton, Southampton SO17 1BJ, U.K
| | - Hywel Morgan
- Electronics and Computer Science, and Institute of Life Sciences University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
46
|
Ghassemi P, Ren X, Foster BM, Kerr BA, Agah M. Post-enrichment circulating tumor cell detection and enumeration via deformability impedance cytometry. Biosens Bioelectron 2020; 150:111868. [PMID: 31767345 PMCID: PMC6957725 DOI: 10.1016/j.bios.2019.111868] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023]
Abstract
Circulating tumor cells (CTCs) in blood can provide valuable information when detecting, diagnosing, and monitoring cancer. This paper describes a system that consists of a constriction-based microfluidic sensor with embedded electrodes that can detect and enumerate cancer cells in blood. The biosensor measures impedance in terms of magnitude and phase at multiple frequencies as cells transit through the constriction channel. Cancer cells deform as they move through while blood cells remain intact, thus generating differential impedance profiles that can be used for detecting and counting CTCs. Two versions of this device are reported, one where the electrodes are embedded into the disposable microfluidic channel, and the other in which the disposable chip is externally fixed to a reusable substrate housing the electrodes. Both configurations were tested by spiking breast or prostate cancer cells into murine blood, and both detected all tumor cells passing through the narrow channels while being able to differentiate between the two cell lines. The chip in its current format has a throughput of 1 μL/min. While the throughput is scalable by integrating more constriction channels in parallel, the presented assay is intended for post-enrichment label-free enumeration and characterization of CTCs.
Collapse
Affiliation(s)
- Parham Ghassemi
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, United States.
| | - Xiang Ren
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, United States.
| | - Brittni M Foster
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States.
| | - Bethany A Kerr
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States.
| | - Masoud Agah
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, United States.
| |
Collapse
|
47
|
Role of nanofibers on MSCs fate: Influence of fiber morphologies, compositions and external stimuli. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110218. [DOI: 10.1016/j.msec.2019.110218] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023]
|
48
|
Electrical impedance as an indicator of microalgal cell health. Sci Rep 2020; 10:1251. [PMID: 31988339 PMCID: PMC6985174 DOI: 10.1038/s41598-020-57541-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 12/12/2019] [Indexed: 11/09/2022] Open
Abstract
Separating specific cell phenotypes from a heterotypic mixture is a critical step in many research projects. Traditional methods usually require a large sample volume and a complex preparation process that may alter cell property during the sorting process. Here we present the use of electrical impedance as an indicator of cell health and for identifying specific microalgal phenotypes. We developed a microfluidic platform for measuring electrical impedance at different frequencies using the bacterium-sized green alga Picochlorum SE3. The cells were cultured under different salinity conditions and sampled at four different time points. Our results demonstrate the utility of electrical impedance as an indicator of cell phenotype by providing results that are consistent with known changes in cell size and physiology. Outliers in the cell data distribution are particularly useful because they represent phenotypes that have the ability to maintain size and/or membrane ionic permeability under prolonged salt stress. This suggests that our device can be used to identify and sort desired (e.g., experimentally evolved, mutant) cell phenotypes based on their electrical impedance properties.
Collapse
|
49
|
Schwarz M, Jendrusch M, Constantinou I. Spatially resolved electrical impedance methods for cell and particle characterization. Electrophoresis 2019; 41:65-80. [PMID: 31663624 DOI: 10.1002/elps.201900286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022]
Abstract
Electrical impedance is an established technique used for cell and particle characterization. The temporal and spectral resolution of electrical impedance have been used to resolve basic cell characteristics like size and type, as well as to determine cell viability and activity. Such electrical impedance measurements are typically performed across the entire sample volume and can only provide an overall indication concerning the properties and state of that sample. For the study of heterogeneous structures such as cell layers, biological tissue, or polydisperse particle mixtures, an overall measured impedance value can only provide limited information and can lead to data misinterpretation. For the investigation of localized sample properties in complex heterogeneous structures/mixtures, the addition of spatial resolution to impedance measurements is necessary. Several spatially resolved impedance measurement techniques have been developed and applied to cell and particle research, including electrical impedance tomography, scanning electrochemical microscopy, and microelectrode arrays. This review provides an overview of spatially resolved impedance measurement methods and assesses their applicability for cell and particle characterization.
Collapse
Affiliation(s)
- Marvin Schwarz
- Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Iordania Constantinou
- Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
50
|
|