1
|
Emeriewen OF, Zetzsche H, Wöhner TW, Flachowsky H, Peil A. A putative gene-for-gene relationship between the Erwinia amylovora effector gene eop1 and the FB_Mar12 resistance locus of Malus × arnoldiana accession MAL0004. FRONTIERS IN PLANT SCIENCE 2024; 15:1472536. [PMID: 39703557 PMCID: PMC11656051 DOI: 10.3389/fpls.2024.1472536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024]
Abstract
The bacterial pathogen Erwinia amylovora causes fire blight on rosaceous plants, including apples and their wild relatives. The pathogen uses the type III secretion pathogenicity island to inject effector proteins, such as Eop1, into host plants, leading to disease phenotypes in susceptible genotypes. In contrast, resistant genotypes exhibit quantitative resistance associated with genomic regions and/or R-gene-mediated qualitative resistance to withstand the pathogen. In Malus, strong resistance is observed in some wild species accessions, for example, in Malus xarnoldiana accession MAL0004. The resistance locus FB_Mar12, previously identified on linkage group 12 (LG12) of MAL0004, is one of two gene loci in Malus proven to withstand highly virulent North American strains of E. amylovora. This suggests the influence of a major gene, with a few candidate genes proposed within the FB_Mar12 region. In this report, we provide evidence that this gene locus is completely broken down by a mutant strain of the E. amylovora effector protein Eop1 (Δeop1) following artificial shoot inoculations of an 'Idared' × MAL0004 F1 progeny set, indicating a gene-for-gene interaction. Interestingly, Δeop1 does not overcome the resistance of the FB_Mar12 donor MAL0004 itself, but only the QTL on LG12, an indication that other resistance factors, possibly QTLs/genes are contributing to the fire blight resistance of MAL0004.
Collapse
Affiliation(s)
- Ofere Francis Emeriewen
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Holger Zetzsche
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Thomas Wolfgang Wöhner
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Andreas Peil
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| |
Collapse
|
2
|
Sadanov A, Ismailova E, Alexyuk M, Shemshura O, Baimakhanova G, Baimakhanova B, Turlybaeva Z, Molzhigitova A, Yelubayeva A, Tleubekova D, Bogoyavlenskiy A. Whole genome sequence data of Erwinia amilovora strain E22, from Kazakhstan. Data Brief 2024; 57:111090. [PMID: 39605935 PMCID: PMC11599982 DOI: 10.1016/j.dib.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Erwinia amilovora is the causative agent of bacterial blight of rosaceae plants. The disease affects ornamental species of this family and fruit trees of great economic importance, such as apple and pear. In the presented research, sequencing of the Erwinia amilovora strain E22 isolated in Kazakhstan, was performed on the Illumina MiSeq platform, followed by bioinformatics processing and gene annotation using SPAdes, RAST, antiSMASH and CARD programs and databases. The size of the assembled genome is 3,799,623 bp. Annotation of the Erwinia amilovora genome assembly identified 3462 genes, including 3251 protein-coding genes and 117 RNA genes. This genome will be helpful to further understand the evolution of Erwinia amilovora and can be useful for obtaining control agents.
Collapse
Affiliation(s)
- Amankeldi Sadanov
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| | - Elvira Ismailova
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| | - Madina Alexyuk
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| | - Olga Shemshura
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| | - Gul Baimakhanova
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| | - Baiken Baimakhanova
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| | - Zere Turlybaeva
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| | - Assel Molzhigitova
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| | - Akmeiir Yelubayeva
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| | - Diana Tleubekova
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| | - Andrey Bogoyavlenskiy
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| |
Collapse
|
3
|
Lee J, Jung WK, Ahsan SM, Jung HY, Choi HW. Identification of Pantoea ananatis strain BCA19 as a potential biological control agent against Erwinia amylovora. Front Microbiol 2024; 15:1493430. [PMID: 39640859 PMCID: PMC11617517 DOI: 10.3389/fmicb.2024.1493430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
In this study, we aimed to screen potential antagonistic microorganisms against Erwinia amylovora, the causal agent of fire blight. From 127 unknown bacterial isolates tested, 2 bacterial strains (BCA3 and BCA19) were identified to show distinct antagonistic activity against E. amylovora in agar plate assay. Phylogenetic analysis of the 16s rRNA sequence identified both BCA3 and BCA19 as Pantoea ananatis. Among these BCA19 showed 13.9% stronger antagonistic activity than BCA3. Thus we further characterized antagonistic activity of BCA19. Culture filtrates (CF) of BCA19 significantly inhibited the swimming and swarming motility of E. amylovora. Ethyl acetate and n-butanol extracts of CF of BCA19 exhibited antibacterial activity in disk diffusion assay. Furthermore, gas chromatography-mass spectrometry analysis of ethyl acetate and n-butanol extracts of CF of BCA19 identified antibacterial compounds, including indole and hexahydropyrrolo[1,2-a]pyrazine-1,4-dione. Importantly, indole inhibited growth of E. amylovora with IC50 value of 0.109 ± 0.02 mg/mL (~930.4 μM). Whole genome sequence analysis of BCA 19 revealed gene clusters related with siderphore, andrimid, arylpolyene and carotenoid-type terpene production. This study indicates that BCA19 can be used as a potential biological control agent against Erwinia amylovora.
Collapse
Affiliation(s)
- Jueun Lee
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Won-Kwon Jung
- Gyeongsangbuk-do Agricultural Research & Extension Services, Daegu, Republic of Korea
| | - S. M. Ahsan
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Hee-Young Jung
- Department of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyong Woo Choi
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| |
Collapse
|
4
|
Habibi R, Zibaee I, Talebi R, Behravan J, Tarighi S, Brejnrod A, Kjøller AH, Sørensen SJ, Madsen JS. L-asparaginase-driven antibiosis in Pseudomonas fluorescens EK007: A promising biocontrol strategy against fire blight. Int J Biol Macromol 2024; 281:136402. [PMID: 39383903 DOI: 10.1016/j.ijbiomac.2024.136402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Fire blight, caused by Erwinia amylovora, is a destructive bacterial disease affecting pear and apple trees. The biocontrol ability of Pseudomonas fluorescens EK007 suppresses E. amylovora through competitive exclusion. In this study, EK007 was isolated from the pear phylloplane and characterized as an effective biological agent through antibacterial compounds. To identify the mechanisms underlying EK007's biocontrol activity, physiological tests, transposon insertion mutant libraries, allelic exchange, and whole-genome sequencing were performed. A transposon mutation in the massC homolog gene, part of the massetolide A lipopeptide biosynthesis cluster, reduced the biocontrol efficiency. Allelic exchange confirmed cyclic lipopeptide (CLP) as part of the mechanism. Additionally, a gacA mutant isolated by transposon mutagenesis showed deficient inhibition activity. Culture conditions and nutritional sources clearly influenced EK007's antimicrobial activity against E. amylovora. Growth yield generally correlated with antibiotic production, with amino acids and iron affecting production. Asparagine and aspartate shut down biocontrol activity. This study presents preliminary findings on a novel CLP that may contribute to EK007's antibacterial activity against E. amylovora. While EK007 shows promise as a biocontrol candidate compared to related strains, these results are based solely on in vitro studies, highlighting the need for further investigations to evaluate its efficacy in natural environments.
Collapse
Affiliation(s)
- Roghayeh Habibi
- Section of Phytopathology, Department of Plant Protection, Ferdowsi University of Mashhad, Iran; Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Idin Zibaee
- Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran-North branch (ABRII), Rasht, Iran.
| | - Reza Talebi
- Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran-North branch (ABRII), Rasht, Iran.
| | - Javad Behravan
- Section of Pharmaceutical Biotechnology, Department of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Saeed Tarighi
- Section of Phytopathology, Department of Plant Protection, Ferdowsi University of Mashhad, Iran
| | - Asker Brejnrod
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Annelise Helene Kjøller
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Asif M, Xie X, Zhao Z. Virulence regulation in plant-pathogenic bacteria by host-secreted signals. Microbiol Res 2024; 288:127883. [PMID: 39208525 DOI: 10.1016/j.micres.2024.127883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Bacterial pathogens manipulate host signaling pathways and evade host defenses using effector molecules, coordinating their deployment to ensure successful infection. However, host-derived metabolites as signals, and their critical role in regulating bacterial virulence requires further insights. Effective regulation of virulence, which is essential for pathogenic bacteria, involves controlling factors that enable colonization, defense evasion, and tissue damage. This regulation is dynamic, influenced by environmental cues including signals from host plants like exudates. Plant exudates, comprising of diverse compounds released by roots and tissues, serve as rich chemical signals affecting the behavior and virulence of associated bacteria. Plant nutrients act as signaling molecules that are sensed through membrane-localized receptors and intracellular response mechanisms in bacteria. This review explains how different bacteria detect and answer to secreted chemical signals, regulating virulence gene expression. Our main emphasis is exploring the recognition process of host-originated signaling molecules through molecular sensors on cellular membranes and intracellular signaling pathways. This review encompasses insights into how bacterial strains individually coordinate their virulence in response to various distinct host-derived signals that can positively or negatively regulate their virulence. Furthermore, we explained the interruption of plant defense with the perception of host metabolites to dampen pathogen virulence. The intricate interplay between pathogens and plant signals, particularly in how pathogens recognize host metabolic signals to regulate virulence genes, portrays a crucial initial interaction leading to profound influences on infection outcomes. This work will greatly aid researchers in developing new strategies for preventing and treating infections.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xin Xie
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Zhibo Zhao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
6
|
Lee SI, Kim DR, Kwak YS. Genome analysis of Streptomyces recifensis SN1E1 to investigate mechanisms for inhibiting fire blight disease. J Appl Microbiol 2024; 135:lxae253. [PMID: 39363195 DOI: 10.1093/jambio/lxae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
AIM Fire blight, attributed to the bacterium Erwinia amylovora, significantly damages economically important crops, such as apples and pears. Conventional methods for managing fire blight involve the application of chemical pesticides, such as streptomycin and oxytetracycline. Nevertheless, apprehensions are increasing regarding developing antibiotic and pesticide-resistant strains, compounded by documented instances of plant toxicity. Here, we present that Streptomyces recifensis SN1E1 has exhibited remarkable efficacy in suppressing apple fire blight disease. This study aims to unravel the molecular-level antimicrobial mechanisms employed by the SN1E1 strain. METHODS AND RESULTS We identified four antimicrobial-associated biosynthetic gene clusters within the genomics of S. recifensis SN1E1. To validate antimicrobial activity against E. amylovora, knock-out mutants of biosynthetic genes linked to antimicrobial activity were generated using the CRISPR/Cas9 mutagenesis system. Notably, the whiE4 and phzB deficient mutants displayed statistically reduced antibacterial activity against E. amylovora. CONCLUSION This research establishes a foundation for environmental and biological control studies. The potential utilization of environmentally friendly microbial agents derived from the SN1E1 strain holds promise for the biological control of fire blight disease.
Collapse
Affiliation(s)
- Su In Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Da-Ran Kim
- Department of Plant Medicine and RILS, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Youn-Sig Kwak
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
- Department of Plant Medicine and RILS, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| |
Collapse
|
7
|
Dubois Q, Brual T, Oriol C, Mandin P, Condemine G, Gueguen E. Function and mechanism of action of the small regulatory RNA ArcZ in Enterobacterales. RNA (NEW YORK, N.Y.) 2024; 30:1107-1121. [PMID: 38839110 PMCID: PMC11331407 DOI: 10.1261/rna.080010.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
ArcZ is a small regulatory RNA conserved in Enterobacterales It is an Hfq-dependent RNA that is cleaved by RNase E in a processed form of 55-60 nucleotides. This processed form is highly conserved for controlling the expression of target mRNAs. ArcZ expression is induced by abundant oxygen levels and reaches its peak during the stationary growth phase. This control is mediated by the oxygen-responsive two-component system ArcAB, leading to the repression of arcZ transcription under low-oxygen conditions in most bacteria in which it has been studied. ArcZ displays multiple targets, and it can control up to 10% of a genome and interact directly with more than 300 mRNAs in Escherichia coli and Salmonella enterica ArcZ displays a multifaceted ability to regulate its targets through diverse mechanisms such as RNase recruitment, modulation of ribosome accessibility on the mRNA, and interaction with translational enhancing regions. By influencing stress response, motility, and virulence through the regulation of master regulators such as FlhDC or RpoS, ArcZ emerges as a major orchestrator of cell physiology within Enterobacterales.
Collapse
Affiliation(s)
- Quentin Dubois
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, UMR5240 MAP Lyon, France
| | - Typhaine Brual
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, UMR5240 MAP Lyon, France
| | - Charlotte Oriol
- CNRS, Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR7283, IMM, IM2B, F-13009 Marseille, France
| | - Pierre Mandin
- CNRS, Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR7283, IMM, IM2B, F-13009 Marseille, France
| | - Guy Condemine
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, UMR5240 MAP Lyon, France
| | - Erwan Gueguen
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, UMR5240 MAP Lyon, France
| |
Collapse
|
8
|
Gao Y, Song B, Wang M, Yang F, Yu C, Chen H. Complete genome sequence of Erwinia amylovora PBI209 isolated from a necrotic flower of Pyrus sinkiangensis in China. Microbiol Resour Announc 2024; 13:e0029124. [PMID: 38967467 PMCID: PMC11320953 DOI: 10.1128/mra.00291-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Here, we report the complete genome sequence of Erwinia amylovora PBI209 that causes fire blight isolated from a necrotic flower of Pyrus sinkiangensis in Xinjiang, China. The genome consists of 3,800,955 bp, with 3,403 protein-coding genes and a guanine-cytosine content of 53.61%.
Collapse
Affiliation(s)
- Ya Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Song
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety Urumqi, Urumqi, China
| | - Meihong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Cruz AAD, Cabeo M, Durán-Viseras A, Sampedro I, Llamas I. Interference of AHL signal production in the phytophatogen Pantoea agglomerans as a sustainable biological strategy to reduce its virulence. Microbiol Res 2024; 285:127781. [PMID: 38795406 DOI: 10.1016/j.micres.2024.127781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Pantoea agglomerans is considered one of the most ubiquitous and versatile organisms that include strains that induce diseases in various crops and occasionally cause opportunistic infections in humans. To develop effective strategies to mitigate its impact on plant health and agricultural productivity, a comprehensive investigation is crucial for better understanding its pathogenicity. One proposed eco-friendly approach involves the enzymatic degradation of quorum sensing (QS) signal molecules like N-acylhomoserine lactones (AHLs), known as quorum quenching (QQ), offering potential treatment for such bacterial diseases. In this study the production of C4 and 3-oxo-C6HSL was identified in the plant pathogenic P. agglomerans CFBP 11141 and correlated to enzymatic activities such as amylase and acid phosphatase. Moreover, the heterologous expression of a QQ enzyme in the pathogen resulted in lack of AHLs production and the attenuation of the virulence by mean of drastically reduction of soft rot disease in carrots and cherry tomatoes. Additionally, the interference with the QS systems of P. agglomerans CFBP 11141 by two the plant growth-promoting and AHL-degrading bacteria (PGP-QQ) Pseudomonas segetis P6 and Bacillus toyonensis AA1EC1 was evaluated as a potential biocontrol approach for the first time. P. segetis P6 and B. toyonensis AA1EC1 demonstrated effectiveness in diminishing soft rot symptoms induced by P. agglomerans CFBP 11141 in both carrots and cherry tomatoes. Furthermore, the virulence of pathogen notably decreased when co-cultured with strain AA1EC1 on tomato plants.
Collapse
Affiliation(s)
- Alba Amaro-da Cruz
- Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, Granada 18071, Spain
| | - Mónica Cabeo
- Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, Granada 18071, Spain
| | - Ana Durán-Viseras
- Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, Granada 18071, Spain
| | - Inmaculada Sampedro
- Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, Granada 18071, Spain; Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada 18106, Spain.
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, Granada 18071, Spain; Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada 18106, Spain.
| |
Collapse
|
10
|
Rocha J, Shapiro LR, Chimileski S, Kolter R. Complementary roles of EPS, T3SS and Expansin for virulence of Erwinia tracheiphila, the causative agent of cucurbit wilt. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600446. [PMID: 38979168 PMCID: PMC11230154 DOI: 10.1101/2024.06.24.600446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Erwinia tracheiphila (Smith) is a recently emerged plant pathogen that causes severe economic losses in cucurbit crops in temperate Eastern North America. E. tracheiphila is xylem restricted, and virulence is thought to be related to Exopolysaccharides (EPS) and biofilm formation, which occlude the passage of sap in xylem vessels and causes systemic wilt. However, the role of EPS and biofilm formation, and their contribution to disease in relation to other virulence loci are unknown. Here, we use deletion mutants to explore the roles of EPS, Hrp Type III secretion system (Hrp T3SS) and Expansin in plant colonization and virulence. Then, we quantify the expression of the genes encoding these factors during infection. Our results show that Exopolysaccharides are essential for E. tracheiphila survival in host plants, while Hrp T3SS and Expansin are dispensable for survival but needed for systemic wilt symptom development. EPS and Hrp T3SS display contrasting expression patterns in the plant, reflecting their relevance in different stages of the infection. Finally, we show that expression of the eps and hrpT3SS operons is downregulated in mildly increased temperatures, suggesting a link between expression of these virulence factors and geographic restriction of E. tracheiphila to temperate regions. Our work highlights how E. tracheiphila virulence is a complex trait where several loci are coordinated during infection. These results further shed light into the relationship between virulence factors and the ecology of this pathosystem, which will be essential for developing sustainable management strategies for this emerging pathogen.
Collapse
Affiliation(s)
- Jorge Rocha
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
- Progama de Agricultura en Zonas Áridas; Centro de Investigaciones Biológicas del Noroeste. Av. Instituto Politécnico Nacional 195, La Paz, B.C.S. México 23096
| | - Lori R Shapiro
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
| | - Scott Chimileski
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory; Woods Hole, MA, US 02543
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
| |
Collapse
|
11
|
Jo SJ, Giri SS, Lee YM, Park JH, Hwang MH, Lee SB, Jung WJ, Kim SG, Roh E, Park SC. Genomic insights into novel Erwinia bacteriophages: unveiling their Henunavirus membership and host infection strategies. Curr Microbiol 2024; 81:204. [PMID: 38831133 DOI: 10.1007/s00284-024-03713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/21/2024] [Indexed: 06/05/2024]
Abstract
Erwinia amylovora, the primary causative agent of blight disease in rosaceous plants, poses a significant threat to agricultural yield worldwide, with limited effective countermeasures. The emergence of sustainable alternative agents such as bacteriophages is a promising solution for fire blight that specifically targets Erwinia. In this study, we isolated pEp_SNUABM_01 and pEa_SNUABM_55 from a South Korean apple orchard soil, analyzed their genomic DNA sequences, and performed a comprehensive comparative analysis of Hena1 in four distinct sections. This study aimed to unveil distinctive features of these phages, with a focus on host recognition, which will provide valuable insights into the evolution and characteristics of Henunavirus bacteriophages that infect plant pathogenic Erwinia spp. By elucidating the distinct genomic features of these phages, particularly in terms of host recognition, this study lays a foundation for their potential application in mitigating the risks associated with fire blight in Rosaceae plants on a global scale.
Collapse
Affiliation(s)
- Su Jin Jo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Min Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Hong Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mae Hyun Hwang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Joon Jung
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Guen Kim
- Laboratory of Phage and Microbial Resistance, Department of Biological Sciences, Kyonggi University, Suwon, 16227, Republic of Korea.
| | - Eunjung Roh
- Crop Protection Division, Rural Development Administration, National Institute of Agriculture Sciences, Wanju, 55365, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
He L, Huang R, Chen H, Zhao L, Zhang Z. Discovery and characterization of a novel pathogen Erwinia pyri sp. nov. associated with pear dieback: taxonomic insights and genomic analysis. Front Microbiol 2024; 15:1365685. [PMID: 38784818 PMCID: PMC11111954 DOI: 10.3389/fmicb.2024.1365685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
In 2022, a novel disease similar to pear fire blight was found in a pear orchard in Zhangye City, Gansu Province, China. The disease mainly damages the branches, leaves, and fruits of the plant. To identify the pathogen, tissue isolation and pathogenicity testing (inoculating the potential pathogen on healthy plant tissues) were conducted. Furthermore, a comprehensive analysis encompassing the pathogen's morphological, physiological, and biochemical characteristics and whole-genome sequencing was conducted. The results showed that among the eight isolates, the symptoms on the detached leaves and fruits inoculated with isolate DE2 were identical to those observed in the field. Verifying Koch's postulates confirmed that DE2 was the pathogenic bacterium that causes the disease. Based on a 16S rRNA phylogenetic tree, isolate DE2 belongs to the genus Erwinia. Biolog and API 20E results also indicated that isolate DE2 is an undescribed species of Erwinia. Isolate DE2 was negative for oxidase. Subsequently, the complete genome sequence of isolate DE2 was determined and compared to the complete genome sequences of 29 other Erwinia species based on digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses. The ANI and dDDH values between strain DE2 and Erwinia species were both below the species thresholds (ANI < 95-96%, dDDH<70%), suggesting that isolate DE2 is a new species of Erwinia. We will temporarily name strain DE2 as Erwinia pyri sp. nov. There were 548 predicted virulence factors in the genome of strain DE2, comprising 534 on the chromosome and 5 in the plasmids. The whole genome sequence of strain DE2 has been submitted to the NCBI database (ASM3075845v1) with accession number GCA_030758455.1. The strain DE2 has been preserved at the China Center for Type Culture Collection (CCTCC) under the deposit number CCTCC AB 2024080. This study represents the initial report of a potentially new bacterial species in the genus Erwinia that causes a novel pear dieback disease. The findings provide a valuable strain resource for the study of the genus Erwinia and establish a robust theoretical foundation for the prevention and control of emerging pear dieback diseases.
Collapse
Affiliation(s)
| | | | | | | | - Zhenfen Zhang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Ministry of Science and Technology, Pratacultural College, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
13
|
Batuman O, Britt-Ugartemendia K, Kunwar S, Yilmaz S, Fessler L, Redondo A, Chumachenko K, Chakravarty S, Wade T. The Use and Impact of Antibiotics in Plant Agriculture: A Review. PHYTOPATHOLOGY 2024; 114:885-909. [PMID: 38478738 DOI: 10.1094/phyto-10-23-0357-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Growers have depended on the specificity and efficacy of streptomycin and oxytetracycline as a part of their plant disease arsenal since the middle of the 20th century. With climate change intensifying plant bacterial epidemics, the established success of these antibiotics remains threatened. Our strong reliance on certain antibiotics for devastating diseases eventually gave way to resistance development. Although antibiotics in plant agriculture equal to less than 0.5% of overall antibiotic use in the United States, it is still imperative for humans to continue to monitor usage, environmental residues, and resistance in bacterial populations. This review provides an overview of the history and use, resistance and mitigation, regulation, environmental impact, and economics of antibiotics in plant agriculture. Bacterial issues, such as the ongoing Huanglongbing (citrus greening) epidemic in Florida citrus production, may need antibiotics for adequate control. Therefore, preserving the efficacy of our current antibiotics by utilizing more targeted application methods, such as trunk injection, should be a major focus. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Ozgur Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kellee Britt-Ugartemendia
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Sanju Kunwar
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Salih Yilmaz
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Lauren Fessler
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Ana Redondo
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kseniya Chumachenko
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL
| | - Shourish Chakravarty
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Tara Wade
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| |
Collapse
|
14
|
Pilgrim J. Comparative genomics of a novel Erwinia species associated with the Highland midge ( Culicoides impunctatus). Microb Genom 2024; 10. [PMID: 38630610 DOI: 10.1099/mgen.0.001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Erwinia (Enterobacterales: Erwiniaceae) are a group of cosmopolitan bacteria best known as the causative agents of various plant diseases. However, other species in this genus have been found to play important roles as insect endosymbionts supplementing the diet of their hosts. Here, I describe Candidatus Erwinia impunctatus (Erwimp) associated with the Highland midge Culicoides impunctatus (Diptera: Ceratopogonidae), an abundant biting pest in the Scottish Highlands. The genome of this new Erwinia species was assembled using hybrid long and short read techniques, and a comparative analysis was undertaken with other members of the genus to understand its potential ecological niche and impact. Genome composition analysis revealed that Erwimp is similar to other endophytic and ectophytic species in the genus and is unlikely to be restricted to its insect host. Evidence for an additional plant host includes the presence of a carotenoid synthesis operon implicated as a virulence factor in plant-associated members in the sister genus Pantoea. Unique features of Erwimp include several copies of intimin-like proteins which, along with signs of genome pseudogenization and a loss of certain metabolic pathways, suggests an element of host restriction seen elsewhere in the genus. Furthermore, a screening of individuals over two field seasons revealed the absence of the bacteria in Culicoides impunctatus during the second year indicating this microbe-insect interaction is likely to be transient. These data suggest that Culicoides impunctatus may have an important role to play beyond a biting nuisance, as an insect vector transmitting Erwimp alongside any conferred impacts to surrounding biota.
Collapse
Affiliation(s)
- Jack Pilgrim
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Wallart L, Ben Mlouka MA, Saffiedine B, Coquet L, Le H, Hardouin J, Jouenne T, Phan G, Kiefer-Meyer MC, Girard E, Broutin I, Cosette P. BacA: a possible regulator that contributes to the biofilm formation of Pseudomonas aeruginosa. Front Microbiol 2024; 15:1332448. [PMID: 38505547 PMCID: PMC10948618 DOI: 10.3389/fmicb.2024.1332448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Previously, we pointed out in P. aeruginosa PAO1 biofilm cells the accumulation of a hypothetical protein named PA3731 and showed that the deletion of the corresponding gene impacted its biofilm formation capacity. PA3731 belongs to a cluster of 4 genes (pa3732 to pa3729) that we named bac for "Biofilm Associated Cluster." The present study focuses on the PA14_16140 protein, i.e., the PA3732 (BacA) homolog in the PA14 strain. The role of BacA in rhamnolipid secretion, biofilm formation and virulence, was confirmed by phenotypic experiments with a bacA mutant. Additional investigations allow to advance that the bac system involves in fact 6 genes organized in operon, i.e., bacA to bacF. At a molecular level, quantitative proteomic studies revealed an accumulation of the BAC cognate partners by the bacA sessile mutant, suggesting a negative control of BacA toward the bac operon. Finally, a first crystallographic structure of BacA was obtained revealing a structure homologous to chaperones or/and regulatory proteins.
Collapse
Affiliation(s)
- Lisa Wallart
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
| | - Mohamed Amine Ben Mlouka
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| | - Brahim Saffiedine
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
| | - Laurent Coquet
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| | - Hung Le
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| | - Julie Hardouin
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| | - Thierry Jouenne
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
| | - Gilles Phan
- Paris Cité University, CiTCoM, CNRS, Paris, France
| | - Marie-Christine Kiefer-Meyer
- Univ Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, RMT BESTIM, GDR Chemobiologie, IRIB, Rouen, France
| | - Eric Girard
- Grenoble Alpes University, CNRS, CEA, IBS, Grenoble, France
| | | | - Pascal Cosette
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| |
Collapse
|
16
|
Mielnichuk N, Joya CM, Monachesi MA, Bertani RP. Exopolysaccharide Production and Precipitation Method as a Tool to Study Virulence Factors. Methods Mol Biol 2024; 2751:71-79. [PMID: 38265710 DOI: 10.1007/978-1-0716-3617-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Acidovorax avenae subsp. avenae (Aaa) is the causal agent of red stripe in sugarcane, a disease characterized by two forms: leaf stripe and top rot. Despite the importance of this disease, little is known about Aaa virulence factors (VFs) and their function in the infection process. Among the different array of VFs exerted by phytopathogenic bacteria, exopolysaccharides (EPSs) often confer a survival advantage by protecting the cell against abiotic and biotic stresses, including host defensive factors. They are also main components of the extracellular matrix involved in cell-cell recognition, surface adhesion, and biofilm formation. EPS composition and properties have been well studied for some plant pathogenic bacteria; nevertheless, there is no knowledge about Aaa-EPS. In this work, we describe a simple and reliable method for EPS production, precipitation, and quantification based on cold precipitation after ethanol addition, which will allow to study EPS characteristics of different Aaa strains and to evaluate the association among EPS (e.g., amount, composition, viscosity) and Aaa pathogenicity.
Collapse
Affiliation(s)
- Natalia Mielnichuk
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Constanza M Joya
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
| | - María A Monachesi
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
| | - Romina P Bertani
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
| |
Collapse
|
17
|
Jo SJ, Kim SG, Park J, Lee YM, Giri SS, Lee SB, Jung WJ, Hwang MH, Park JH, Roh E, Park SC. Optimizing the formulation of Erwinia bacteriophages for improved UV stability and adsorption on apple leaves. Heliyon 2023; 9:e22034. [PMID: 38034629 PMCID: PMC10682131 DOI: 10.1016/j.heliyon.2023.e22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Fire blight is a bacterial disease that affects plants of the Rosaceae family and causes significant economic losses worldwide. Although antibiotics have been used to control the disease, concerns about their environmental impact and the potential to promote antibiotic resistance have arisen. Bacteriophages are being investigated as an alternative to antibiotics; however, their efficacy can be affected by environmental stresses, such as UV radiation. In this study, we optimized the formulation of Erwinia phages to enhance their stability in the field, focusing on improving their UV stability and adsorption using adjuvants. Our results confirmed that 4.5 % polysorbate 80 and kaolin improve phage stability under UV stress, resulting in an 80 % increase in PFU value and improved UV protection efficacy. Adsorption assays also demonstrated that polysorbate 80 and kaolin improved the absorption efficiency, with phages detected in plant for up to two weeks. These findings demonstrate the effectiveness of the auxiliary formulation of Erwinia bacteriophages against environmental stress.
Collapse
Affiliation(s)
- Su Jin Jo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Guen Kim
- Department of Biological Sciences, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Jungkum Park
- Crop Protection Division, National Institute of Agriculture Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Young Min Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Joon Jung
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mae Hyun Hwang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Hong Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunjung Roh
- Crop Protection Division, National Institute of Agriculture Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
18
|
Lee HJ, Kim SH, Kim DR, Cho G, Kwak YS. Dynamics of Bacterial Communities by Apple Tissue: Implications for Apple Health. J Microbiol Biotechnol 2023; 33:1141-1148. [PMID: 37435872 PMCID: PMC10580880 DOI: 10.4014/jmb.2305.05003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Herein, we explored the potential of the apple's core microbiota for biological control of Erwinia amylovora, which causes fire blight disease, and analyzed the structure of the apple's bacterial community across different tissues and seasons. Network analysis results showed distinct differences in bacterial community composition between the endosphere and rhizosphere of healthy apples, and eight taxa were identified as negatively correlated with E. amylovora, indicating their potential key role in a new control strategy against the pathogen. This study highlights the critical role of the apple's bacterial community in disease control and provides a new direction for future research in apple production. In addition, the findings suggest that using the composition of the apple's core taxa as a biological control strategy could be an effective alternative to traditional chemical control methods, which have been proven futile and environmentally harmful.
Collapse
Affiliation(s)
- Hwa-Jung Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Su-Hyeon Kim
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Da-Ran Kim
- Department of Plant Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyeongjun Cho
- Division of Agricultural Microbiology, National Institute of Agriculture Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Youn-Sig Kwak
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Plant Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
19
|
Anderson JC. Ill Communication: Host Metabolites as Virulence-Regulating Signals for Plant-Pathogenic Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:49-71. [PMID: 37253693 DOI: 10.1146/annurev-phyto-021621-114026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant bacterial pathogens rely on host-derived signals to coordinate the deployment of virulence factors required for infection. In this review, I describe how diverse plant-pathogenic bacteria detect and respond to plant-derived metabolic signals for the purpose of virulence gene regulation. I highlight examples of how pathogens perceive host metabolites through membrane-localized receptors as well as intracellular response mechanisms. Furthermore, I describe how individual strains may coordinate their virulence using multiple distinct host metabolic signals, and how plant signals may positively or negatively regulate virulence responses. I also describe how plant defenses may interfere with the perception of host metabolites as a means to dampen pathogen virulence. The emerging picture is that recognition of host metabolic signals for the purpose of virulence gene regulation represents an important primary layer of interaction between pathogenic bacteria and host plants that shapes infection outcomes.
Collapse
Affiliation(s)
- Jeffrey C Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
20
|
Lee UJ, Oh Y, Kwon OS, Park JM, Cho HM, Kim DH, Kim M. Single-Cell Detection of Erwinia amylovora Using Bio-Functionalized SIS Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:7400. [PMID: 37687855 PMCID: PMC10490433 DOI: 10.3390/s23177400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Herein, we developed a bio-functionalized solution-immersed silicon (SIS) sensor at the single-cell level to identify Erwinia amylovora (E. amylovora), a highly infectious bacterial pathogen responsible for fire blight, which is notorious for its rapid spread and destructive impact on apple and pear orchards. This method allows for ultra-sensitive measurements without pre-amplification or labeling compared to conventional methods. To detect a single cell of E. amylovora, we used Lipopolysaccharide Transporter E (LptE), which is involved in the assembly of lipopolysaccharide (LPS) at the surface of the outer membrane of E. amylovora, as a capture agent. We confirmed that LptE interacts with E. amylovora via LPS through in-house ELISA analysis, then used it to construct the sensor chip by immobilizing the capture molecule on the sensor surface modified with 3'-Aminopropyl triethoxysilane (APTES) and glutaraldehyde (GA). The LptE-based SIS sensor exhibited the sensitive and specific detection of the target bacterial cell in real time. The dose-response curve shows a linearity (R2 > 0.992) with wide dynamic ranges from 1 to 107 cells/mL for the target bacterial pathogen. The sensor showed the value change (dΨ) of approximately 0.008° for growing overlayer thickness induced from a single-cell E. amylovora, while no change in the control bacterial cell (Bacillus subtilis) was observed, or negligible change, if any. Furthermore, the bacterial sensor demonstrated a potential for the continuous detection of E. amylovora through simple surface regeneration, enabling its reusability. Taken together, our system has the potential to be applied in fields where early symptoms are not observed and where single-cell or ultra-sensitive detection is required, such as plant bacterial pathogen detection, foodborne pathogen monitoring and analysis, and pathogenic microbial diagnosis.
Collapse
Affiliation(s)
- Ui Jin Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahang-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (U.J.L.); (Y.O.)
| | - Yunkwang Oh
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahang-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (U.J.L.); (Y.O.)
| | - Oh Seok Kwon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea;
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahang-ro, Yuseong-gu, Daejeon 34141, Republic of Korea;
| | - Hyun Mo Cho
- Division of Advanced Instrumentation Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea;
| | - Dong Hyung Kim
- Division of Advanced Instrumentation Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea;
| | - Moonil Kim
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahang-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (U.J.L.); (Y.O.)
| |
Collapse
|
21
|
Choe J, Kim B, Park MK, Roh E. Biological and Genetic Characterizations of a Novel Lytic ΦFifi106 against Indigenous Erwinia amylovora and Evaluation of the Control of Fire Blight in Apple Plants. BIOLOGY 2023; 12:1060. [PMID: 37626946 PMCID: PMC10452218 DOI: 10.3390/biology12081060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023]
Abstract
Erwinia amylovora is a devastating phytobacterium causing fire blight in the Rosaceae family. In this study, ΦFifi106, isolated from pear orchard soil, was further purified and characterized, and its efficacy for the control of fire blight in apple plants was evaluated. Its genomic analysis revealed that it consisted of 84,405 bp and forty-six functional ORFs, without any genes encoding antibiotic resistance, virulence, and lysogenicity. The phage was classified into the genus Kolesnikvirus of the subfamily Ounavirinae. ΦFifi106 specifically infected indigenous E. amylovora and E. pyrifoliae. The lytic activity of ΦFifi106 was stable under temperature and pH ranges of 4-50 °C and 4-10, as well as the exposure to ultraviolet irradiation for 6 h. ΦFifi106 had a latent period of 20 min and a burst size of 310 ± 30 PFU/infected cell. ΦFifi106 efficiently inhibited E. amylovora YKB 14808 at a multiplicity of infection (MOI) of 0.1 for 16 h. Finally, the pretreatment of ΦFifi106 at an MOI of 1000 efficiently reduced disease incidence to 37.0% and disease severity to 0.4 in M9 apple plants. This study addressed the use of ΦFifi106 as a novel, safe, efficient, and effective alternative to control fire blight in apple plants.
Collapse
Affiliation(s)
- Jaein Choe
- School of Food Science and Biotechnology, Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Byeori Kim
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Eunjung Roh
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| |
Collapse
|
22
|
Bournonville L, Askri D, Arafah K, Voisin SN, Bocquet M, Bulet P. Unraveling the Bombus terrestris Hemolymph, an Indicator of the Immune Response to Microbial Infections, through Complementary Mass Spectrometry Approaches. Int J Mol Sci 2023; 24:ijms24054658. [PMID: 36902086 PMCID: PMC10003634 DOI: 10.3390/ijms24054658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Pollinators, including Bombus terrestris, are crucial for maintaining biodiversity in ecosystems and for agriculture. Deciphering their immune response under stress conditions is a key issue for protecting these populations. To assess this metric, we analyzed the B. terrestris hemolymph as an indicator of their immune status. Hemolymph analysis was carried out using mass spectrometry, MALDI molecular mass fingerprinting was used for its effectiveness in assessing the immune status, and high-resolution mass spectrometry was used to measure the impact of experimental bacterial infections on the "hemoproteome". By infecting with three different types of bacteria, we observed that B. terrestris reacts in a specific way to bacterial attacks. Indeed, bacteria impact survival and stimulate an immune response in infected individuals, visible through changes in the molecular composition of their hemolymph. The characterization and label-free quantification of proteins involved in specific signaling pathways in bumble bees by bottom-up proteomics revealed differences in protein expression between the non-experimentally infected and the infected bees. Our results highlight the alteration of pathways involved in immune and defense reactions, stress, and energetic metabolism. Lastly, we developed molecular signatures reflecting the health status of B. terrestris to pave the way for diagnosis/prognosis tools in response to environmental stress.
Collapse
Affiliation(s)
- Lorène Bournonville
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
- Department of Molecular and Cellular Biology, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Dalel Askri
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
| | - Karim Arafah
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
| | - Sébastien N. Voisin
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
- Phylogene S.A. 62 RN113, 30620 Bernis, France
| | - Michel Bocquet
- Michel Bocquet, Apimedia, 82 Route de Proméry, Pringy, 74370 Annecy, France
| | - Philippe Bulet
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, University Grenoble Alpes, 38000 Grenoble, France
- Correspondence: ; Tel.: +33-4-50-43-25-21
| |
Collapse
|
23
|
Xu P, Stirling E, Xie H, Li W, Lv X, Matsumoto H, Cheng H, Xu A, Lai W, Wang Y, Zheng Z, Wang M, Liu X, Ma B, Xu J. Continental scale deciphering of microbiome networks untangles the phyllosphere homeostasis in tea plant. J Adv Res 2023; 44:13-22. [PMID: 36725184 PMCID: PMC9936419 DOI: 10.1016/j.jare.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/21/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Assembly and co-occurrence of the host co-evolved microbiota are essential ecological and evolutionary processes, which is not only crucial for managing individual plant fitness but also ecological function. However, understanding of the microbiome assembly and co-occurrence in higher plants is not well understood. The tea plant was shown to contribute the forest fitness due to the microbiome assembled in the phyllosphere; the landscape of microbiome assembly in the tea plants and its potential implication on phyllosphere homestasis still remains untangled. OBJECTIVES This study aimed to deciphering of the microbiome networks of the tea plants at a continental scale. It would provide fundamental insights into the factors driving the microbiome assembly, with an extended focus on the resilience towards the potential pathogen in the phyllosphere. METHODS We collected 225 samples from 45 locations spanning approximately 2000-km tea growing regions across China. By integration of high-throughput sequencing data, physicochemical properties profiling and bioinformatics analyses, we investigated continental scale microbiome assembly and co-occurrence in the tea plants. Synthetic assemblages, interaction assay and RT-qPCR were further implemented to analyze the microbial interaction indexed in phyllosphere. RESULTS A trade-off between stochastic and deterministic processes in microbiomes community assembly was highlighted. Assembly processes were dominated by deterministic processes in bulk and rhizosphere soils, and followed by stochastic processes in roots and leaves with amino acids as critical drivers for environmental selection. Sphingobacteria and Proteobacteria ascended from soils to leaves to sustain a core leaf taxa. The core taxa formed a close association with a prevalent foliar pathogen in the co-occurrence network and significantly attenuated the expression of a set of essential virulence genes in pathogen. CONCLUSION Our study unveils the mechanism underpinning microbiome assembly in the tea plants, and a potential implication of the microbiome-mediated resilience framework on the phyllosphere homeostasis.
Collapse
Affiliation(s)
- Ping Xu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Erinne Stirling
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Acid Sulfate Soils Centre, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Hengtong Xie
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Wenbing Li
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Haruna Matsumoto
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Cheng
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Anan Xu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Wanyi Lai
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yuefei Wang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Zuntao Zheng
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Mengcen Wang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China.
| | - Xingmei Liu
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Bin Ma
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China.
| | - Jianming Xu
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Jo SJ, Kim SG, Lee YM, Giri SS, Kang JW, Lee SB, Jung WJ, Hwang MH, Park J, Cheng C, Roh E, Park SC. Evaluation of the Antimicrobial Potential and Characterization of Novel T7-Like Erwinia Bacteriophages. BIOLOGY 2023; 12:biology12020180. [PMID: 36829459 PMCID: PMC9953017 DOI: 10.3390/biology12020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
The recent outbreak of blight in pome fruit plants has been a major concern as there are two indistinguishable Erwinia species, Erwinia amylovora and E. pyrifoliae, which cause blight in South Korea. Although there is a strict management protocol consisting of antibiotic-based prevention, the area and the number of cases of outbreaks have increased. In this study, we isolated four bacteriophages, pEp_SNUABM_03, 04, 11, and 12, that infect both E. amylovora and E. pyrifoliae and evaluated their potential as antimicrobial agents for administration against Erwinia-originated blight in South Korea. Morphological analysis revealed that all phages had podovirus-like capsids. The phage cocktail showed a broad spectrum of infectivity, infecting 98.91% of E. amylovora and 100% of E. pyrifoliae strains. The antibacterial effect was observed after long-term cocktail treatment against E. amylovora, whereas it was observed for both short- and long-term treatments against E. pyrifoliae. Genomic analysis verified that the phages did not encode harmful genes such as antibiotic resistance or virulence genes. All phages were stable under general orchard conditions. Collectively, we provided basic data on the potential of phages as biocontrol agents that target both E. amylovora and E. pyrifoliae.
Collapse
Affiliation(s)
- Su Jin Jo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Min Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Woo Kang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Joon Jung
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Mae Hyun Hwang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehong Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Chi Cheng
- Laboratory of Aquatic Nutrition and Ecology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Eunjung Roh
- Crop Protection Division, National Institute of Agriculture Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: ; Tel.: +82-2-880-1282; Fax: +82-2-873-1213
| |
Collapse
|
25
|
Tao Y, Ge Y, Yang J, Song W, Jin D, Lin H, Zheng H, Lu S, Luo W, Huang Y, Zhuang Z, Xu J. A novel phytopathogen Erwinia sorbitola sp. nov., isolated from the feces of ruddy shelducks. Front Cell Infect Microbiol 2023; 13:1109634. [PMID: 36875519 PMCID: PMC9978198 DOI: 10.3389/fcimb.2023.1109634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
The species in the genus Erwinia are Gram-stain-negative, facultatively anaerobic, motile, and rod-shaped. Most species in the genus Erwinia are phytopathogens. Also, Erwinia persicina was involved in several human infections. Based on the reverse microbial etiology principles, it is worth analyzing the pathogenicity of species in this genus. In this study, we isolated and sequenced two species of Erwinia. Phylogenetic, phenotypic, biochemical, and chemotaxonomic analyses were performed to identify its taxonomy position. The virulence tests on plant leaves and pear fruits were used to identify the plant pathogenicity of two species of Erwinia. Bioinformatic methods predicted the possible pathogenic determinants based on the genome sequence. Meanwhile, adhesion, invasion, and cytotoxicity assays on RAW 264.7 cells were applied to identify animal pathogenicity. We isolated two Gram-stain-negative, facultatively anaerobic, motile, and rod-shaped strains from the feces of ruddy shelducks in the Tibet Plateau of China, designated J780T and J316. Distinct phylogenetic, genomic, phenotypic, biochemical, and chemotaxonomic characters of J780T and J316 identified they were novel species and belonged to the genus Erwinia, for which the name Erwinia sorbitola sp. nov. was proposed, the type strain was J780T (= CGMCC 1.17334T = GDMCC 1.1666T = JCM 33839T). Virulence tests showed blight and rot on the leaves and pear fruits confirmed Erwinia sorbitola sp. nov. was a phytopathogen. Predicted gene clusters of motility, biofilm formation, exopolysaccharides, stress survival, siderophores, and Type VI secretion system might be the causes of pathogenicity. In addition, predicted polysaccharide biosynthesis gene clusters on the genome sequence, and the high capacity for adhesion, invasion, and cytotoxicity to animal cells confirmed it has pathogenicity on animals. In conclusion, we isolated and identified a novel phytopathogen Erwinia sorbitola sp. nov. in ruddy shelducks. A predefined pathogen is beneficial for preventing from suffering potential economic losses caused by this new pathogen.
Collapse
Affiliation(s)
- Yuanmeihui Tao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yajun Ge
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Weitao Song
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenbo Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Zhenhong Zhuang, ; Jianguo Xu,
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Research Institute of Public Health, Nankai University, Tianjin, China
- *Correspondence: Zhenhong Zhuang, ; Jianguo Xu,
| |
Collapse
|
26
|
Du TY, Karunarathna SC, Zhang X, Dai DQ, Mapook A, Suwannarach N, Xu JC, Stephenson SL, Elgorban AM, Al-Rejaie S, Tibpromma S. Endophytic Fungi Associated with Aquilaria sinensis (Agarwood) from China Show Antagonism against Bacterial and Fungal Pathogens. J Fungi (Basel) 2022; 8:1197. [PMID: 36422018 PMCID: PMC9697865 DOI: 10.3390/jof8111197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2023] Open
Abstract
Agarwood is the most expensive non-construction wood product in the world. As a therapeutic agent, agarwood can cure some diseases, but few studies have been carried out on the antagonistic abilities of endophytic fungi associated with agarwood. Agarwood is mainly found in the genus Aquiaria. The objectives of this study are to understand the antimicrobial activities and their potential as biocontrol agents of the endophytic fungi of Aquilaria sinensis. First, fresh samples of A. sinensis were collected from Yunnan and Guangdong Provinces in 2020-2021, and the endophytic fungi were isolated and identified to genus level based on the phylogenetic analyses of the Internal Transcribed Spacer (ITS) region. In this bioassay, 47 endophytic strains were selected to check their bioactivities against three bacterial pathogens viz. Erwinia amylovora, Pseudomonas syringae, and Salmonella enterica; and three fungal pathogens viz. Alternaria alternata, Botrytis cinerea, and Penicillium digitatum. The antibiosis test was carried out by the dual culture assay (10 days), and among the 47 strains selected, 40 strains belong to 18 genera viz. Alternaria, Annulohypoxylon, Aspergillus, Botryosphaeria, Colletotrichum, Corynespora, Curvularia, Daldinia, Diaporthe, Fusarium, Lasiodiplodia, Neofusicoccum, Neopestalotiopsis, Nigrospora, Paracamarosporium, Pseudopithomyces, Trichoderma, Trichosporon and one strain belongs to Xylariaceae had antimicrobial activities. In particular, Lasiodiplodia sp. (YNA-D3) showed the inhibition of all the bacterial and fungal pathogens with a significant inhibition rate. In addition, the strains viz; Curvularia sp. (GDA-3A9), Diaporthe sp. (GDA-2A1), Lasiodiplodia sp. (YNA-D3), Neofusicoccum sp. (YNA-1C3), Nigrospora sp. (GDA-4C1), and Trichoderma sp. (YNA-1C1) showed significant antimicrobial activities and are considered worthy of further studies to identify individual fungal species and their bioactive compounds. This study enriches the diversity of endophytic fungi associated with agarwood, and their potential antagonistic effects against bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Tian-Ye Du
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Xian Zhang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jian-Chu Xu
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming 650201, China
| | - Steven L. Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
27
|
Sabri M, El Handi K, Valentini F, De Stradis A, Achbani EH, Benkirane R, Resch G, Elbeaino T. Identification and Characterization of Erwinia Phage IT22: A New Bacteriophage-Based Biocontrol against Erwinia amylovora. Viruses 2022; 14:v14112455. [PMID: 36366553 PMCID: PMC9698647 DOI: 10.3390/v14112455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Erwinia amylovora is a quarantine phytopathogenic bacterium that is the causal agent of fire blight, a destructive disease responsible for killing millions of fruit-bearing plants worldwide, including apple, pear, quince, and raspberry. Efficient and sustainable control strategies for this serious bacterial disease are still lacking, and traditional methods are limited to the use of antibiotics and some basic agricultural practices. This study aimed to contribute to the development of a sustainable control strategy through the identification, characterization, and application of bacteriophages (phages) able to control fire blight on pears. Phages isolated from wastewater collected in the Apulia region (southern Italy) were characterized and evaluated as antibacterial agents to treat experimental fire blight caused by E. amylovora. Transmission electron microscopy (TEM) conducted on purified phages (named EP-IT22 for Erwinia phage IT22) showed particles with icosahedral heads of ca. 90 ± 5 nm in length and long contractile tails of 100 ± 10 nm, typical of the Myoviridae family. Whole genome sequencing (WGS), assembly, and analysis of the phage DNA generated a single contig of 174.346 bp representing a complete circular genome composed of 310 open reading frames (ORFs). EP-IT22 was found to be 98.48% identical to the Straboviridae Erwinia phage Cronus (EPC) (GenBank Acc. n° NC_055743) at the nucleotide level. EP-IT22 was found to be resistant to high temperatures (up to 60 °C) and pH values between 4 and 11, and was able to accomplish a complete lytic cycle within one hour. Furthermore, the viability-qPCR and turbidity assays showed that EP-IT22 (MOI = 1) lysed 94% of E. amylovora cells in 20 h. The antibacterial activity of EP-IT22 in planta was evaluated in E. amylovora-inoculated pear plants that remained asymptomatic 40 days post inoculation, similarly to those treated with streptomycin sulphate. This is the first description of the morphological, biological, and molecular features of EP-IT22, highlighting its promising potential for biocontrol of E. amylovora against fire blight disease.
Collapse
Affiliation(s)
- Miloud Sabri
- Productions Végétales, Animales et Agro-Industrie, Faculté des Sciences, Ibn Tofail University, Kenitra 14000, Morocco
- Phytobacteriology and Biological Control Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principal, Rabat 10090, Morocco
- International Center for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, 70010 Valenzano, Italy
| | - Kaoutar El Handi
- Phytobacteriology and Biological Control Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principal, Rabat 10090, Morocco
- International Center for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, 70010 Valenzano, Italy
- Laboratory of Plant Biotechnology and Valorisation of Bio-Resources, Faculty of Sciences, Moulay Ismail University, Meknes 11201, Morocco
| | - Franco Valentini
- International Center for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, 70010 Valenzano, Italy
| | - Angelo De Stradis
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), University of Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - El Hassan Achbani
- Phytobacteriology and Biological Control Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principal, Rabat 10090, Morocco
| | - Rachid Benkirane
- Productions Végétales, Animales et Agro-Industrie, Faculté des Sciences, Ibn Tofail University, Kenitra 14000, Morocco
| | - Grégory Resch
- Center for Research and Innovation in Clinical Pharmaceutical Sciences (CRISP), Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Toufic Elbeaino
- International Center for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, 70010 Valenzano, Italy
- Correspondence: ; Tel.: +39-080-46-06-352
| |
Collapse
|
28
|
Klee SM, Sinn JP, Held J, Vosburg C, Holmes AC, Lehman BL, Peter KA, McNellis TW. Putative transcription antiterminator RfaH contributes to Erwinia amylovora virulence. MOLECULAR PLANT PATHOLOGY 2022; 23:1686-1694. [PMID: 35929143 PMCID: PMC9562583 DOI: 10.1111/mpp.13254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The gram-negative bacterium Erwinia amylovora causes fire blight disease of apple and pear trees. The exopolysaccharide amylovoran and lipopolysaccharides are essential E. amylovora virulence factors. Production of amylovoran and lipopolysaccharide is specified in part by genes that are members of long operons. Here, we show that full virulence of E. amylovora in apple fruitlets and tree shoots depends on the predicted transcription antiterminator RfaH. RfaH reduces pausing in the production of long transcripts having an operon polarity suppressor regulatory element within their promoter region. In E. amylovora, only the amylovoran operon and a lipopolysaccharide operon have such regulatory elements within their promoter regions and in the correct orientation. These operons showed dramatically increased polarity in the ΔrfaH mutant compared to the wild type as determined by RNA sequencing. Amylovoran and lipopolysaccharide production in vitro was reduced in rfaH mutants compared to the wild type, which probably contributes to the rfaH mutant virulence phenotype. Furthermore, type VI secretion cluster 1, which contributes to E. amylovora virulence, showed reduced expression in ΔrfaH compared to the wild type, although without an increase in polarity. The data suggest that E. amylovora RfaH directly, specifically, and exclusively suppresses operon polarity in the amylovoran operon and a lipopolysaccharide operon.
Collapse
Affiliation(s)
- Sara M. Klee
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of MicrobiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Judith P. Sinn
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Jeremy Held
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- The Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Chad Vosburg
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Aleah C. Holmes
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Neurology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Brian L. Lehman
- The Pennsylvania State University Fruit Research and Extension CenterBiglervillePennsylvaniaUSA
| | - Kari A. Peter
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- The Pennsylvania State University Fruit Research and Extension CenterBiglervillePennsylvaniaUSA
| | - Timothy W. McNellis
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
29
|
Knecht LE, Born Y, Pelludat C, Pothier JF, Smits THM, Loessner MJ, Fieseler L. Spontaneous Resistance of Erwinia amylovora Against Bacteriophage Y2 Affects Infectivity of Multiple Phages. Front Microbiol 2022; 13:908346. [PMID: 35979490 PMCID: PMC9376448 DOI: 10.3389/fmicb.2022.908346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Broad application of antibiotics gave rise to increasing numbers of antibiotic resistant bacteria. Therefore, effective alternatives are currently investigated. Bacteriophages, natural predators of bacteria, could work as such an alternative. Although phages can be highly effective at eliminating specific bacteria, phage resistance can be observed after application. The nature of this resistance, however, can differ depending on the phage. Exposing Erwinia amylovora CFBP 1430, the causative agent of fire blight, to the different phages Bue1, L1, S2, S6, or M7 led to transient resistance. The bacteria reversed to a phage sensitive state after the phage was eliminated. When wild type bacteria were incubated with Y2, permanently resistant colonies (1430Y2R) formed spontaneously. In addition, 1430Y2R revealed cross-resistance against other phages (Bue1) or lowered the efficiency of plating (L1, S2, and S6). Pull down experiments revealed that Y2 is no longer able to bind to the mutant suggesting mutation or masking of the Y2 receptor. Other phages tested were still able to bind to 1430Y2R. Bue1 was observed to still adsorb to the mutant, but no host lysis was found. These findings indicated that, in addition to the alterations of the Y2 receptor, the 1430Y2R mutant might block phage attack at different stage of infection. Whole genome sequencing of 1430Y2R revealed a deletion in the gene with the locus tag EAMY_2231. The gene, which encodes a putative galactosyltransferase, was truncated due to the resulting frameshift. The mutant 1430Y2R was monitored for potential defects or fitness loss. Weaker growth was observed in LB medium compared to the wild type but not in minimal medium. Strain 1430Y2R was still highly virulent in blossoms even though amylovoran production was observed to be reduced. Additionally, LPS structures were analyzed and were clearly shown to be altered in the mutant. Complementation of the truncated EAMY_2231 in trans restored the wild type phenotype. The truncation of EAMY_2231 can therefore be associated with manifold modifications in 1430Y2R, which can affect different phages simultaneously.
Collapse
Affiliation(s)
- Leandra E. Knecht
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
- Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Yannick Born
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Cosima Pelludat
- Agroscope, Plant Pathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Theo H. M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Lars Fieseler
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
- *Correspondence: Lars Fieseler,
| |
Collapse
|
30
|
Lee J, Choi J, Lee J, Cho Y, Kang IJ, Han SW. Comparing Protein Expression in Erwinia amylovora Strain TS3128 Cultured under Three Sets of Environmental Conditions. THE PLANT PATHOLOGY JOURNAL 2022; 38:410-416. [PMID: 35953061 PMCID: PMC9372105 DOI: 10.5423/ppj.nt.05.2022.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Erwinia amylovora, the causal agent of fire-blight disease in apple and pear trees, was first isolated in South Korea in 2015. Although numerous studies, including omics analyses, have been conducted on other strains of E. amylovora, studies on South Korean isolates remain limited. In this study, we conducted a comparative proteomic analysis of the strain TS3128, cultured in three media representing different growth conditions. Proteins related to virulence, type III secretion system, and amylovoran production, were more abundant under minimal conditions than in rich conditions. Additionally, various proteins associated with energy production, carbohydrate metabolism, cell wall/membrane/envelope biogenesis, and ion uptake were identified under minimal conditions. The strain TS3128 expresses these proteins to survive in harsh environments. These findings contribute to understanding the cellular mechanisms driving its adaptations to different environmental conditions and provide proteome profiles as reference for future studies on the virulence and adaptation mechanisms of South Korean strains.
Collapse
Affiliation(s)
- Jongchan Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Junhyeok Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Jeongwook Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Yongmin Cho
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - In-Jeong Kang
- Division of Crop Cultivation and Environment Research, National Institute of Crop Science, Suwon 16613,
Korea
| | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| |
Collapse
|
31
|
Albanese D, Cainelli C, Gualandri V, Larger S, Pindo M, Donati C. Genome sequencing provides new insights on the distribution of Erwinia amylovora lineages in northern Italy. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:584-590. [PMID: 35484918 PMCID: PMC9544390 DOI: 10.1111/1758-2229.13074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Erwinia amylovora is a Gram-negative bacterium that colonizes a wide variety of plant species causing recurrent local outbreaks of fire blight in crops of the Rosaceae family. Recent genomic surveys have documented the limited genomic diversity of this species, possibly related to a recent evolutionary bottleneck and a strong correlation between geography and phylogenetic structure of the species. Despite its economic importance, little is known about the genetic variability of co-circulating strains during local outbreaks. Here, we report the genome sequences of 82 isolates of E. amylovora, collected from different host plants in a period of 16 years in Trentino, a small region in the Northeastern Italian Alps that has been characterized by recurrent outbreaks of fire blight in apple orchards. While the genome isolated before 2018 are closely related to other strains already present in Europe, we found a novel subclade composed only by isolates that were sampled starting from 2018 and demonstrate that the endemic population of this pathogen can be composed by mixture of strains.
Collapse
Affiliation(s)
- Davide Albanese
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1San Michele all'Adige38010Italy
| | - Christian Cainelli
- Center for Technology Transfer, Fondazione Edmund Mach, Via E. Mach 1San Michele all'Adige38010Italy
| | - Valeria Gualandri
- Center for Technology Transfer, Fondazione Edmund Mach, Via E. Mach 1San Michele all'Adige38010Italy
- Center of Agriculture, Food and Environment (C3A)University of TrentoTrentoItaly
| | - Simone Larger
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1San Michele all'Adige38010Italy
| | - Massimo Pindo
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1San Michele all'Adige38010Italy
| | - Claudio Donati
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1San Michele all'Adige38010Italy
| |
Collapse
|
32
|
Mendes RJ, Amaro C, Luz JP, Tavares F, Santos C. Variability within a clonal population of Erwinia amylovora disclosed by phenotypic analysis. PeerJ 2022; 10:e13695. [PMID: 35891645 PMCID: PMC9308965 DOI: 10.7717/peerj.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/16/2022] [Indexed: 01/17/2023] Open
Abstract
Background Fire blight is a destructive disease of pome trees, caused by Erwinia amylovora, leading to high losses of chain-of-values fruits. Major outbreaks were registered between 2010 and 2017 in Portugal, and the first molecular epidemiological characterization of those isolates disclosed a clonal population with different levels of virulence and susceptibility to antimicrobial peptides. Methods This work aimed to further disclose the genetic characterization and unveil the phenotypic diversity of this E. amylovora population, resorting to MLSA, growth kinetics, biochemical characterization, and antibiotic susceptibility. Results While MLSA further confirmed the genetic clonality of those isolates, several phenotypic differences were recorded regarding their growth, carbon sources preferences, and chemical susceptibility to several antibiotics, disclosing a heterogeneous population. Principal component analysis regarding the phenotypic traits allows to separate the strains Ea 630 and Ea 680 from the remaining. Discussion Regardless the genetic clonality of these E. amylovora strains isolated from fire blight outbreaks, the phenotypic characterization evidenced a population diversity beyond the genotype clonality inferred by MLSA and CRISPR, suggesting that distinct sources or environmental adaptations of this pathogen may have occurred. Conclusion Attending the characteristic clonality of E. amylovora species, the data gathered here emphasizes the importance of phenotypic assessment of E. amylovora isolates to better understand their epidemiological behavior, namely by improving source tracking, make risk assessment analysis, and determine strain-specific environmental adaptations, that might ultimately lead to prevent new outbreaks.
Collapse
Affiliation(s)
- Rafael J. Mendes
- Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal,LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal,CITAB, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal,CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Associated Laboratory, Campus Agrário de Vairão, Faculty of Sciences, University of Porto, Vairão, Portugal,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Conceição Amaro
- QRural, School of Agriculture, Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal
| | - João Pedro Luz
- QRural, School of Agriculture, Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal
| | - Fernando Tavares
- Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal,CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Associated Laboratory, Campus Agrário de Vairão, Faculty of Sciences, University of Porto, Vairão, Portugal,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Conceição Santos
- Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal,LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
33
|
Microbial Turnover and Dispersal Events Occur in Synchrony with Plant Phenology in the Perennial Evergreen Tree Crop Citrus sinensis. mBio 2022; 13:e0034322. [PMID: 35642946 PMCID: PMC9239260 DOI: 10.1128/mbio.00343-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emerging research indicates that plant-associated microbes can alter plant developmental timing. However, it is unclear if host phenology affects microbial community assembly. Microbiome studies in annual or deciduous perennial plants face challenges in separating effects of tissue age from phenological driven effects on the microbiome. In contrast, evergreen perennial trees, like Citrus sinensis, retain leaves for years, allowing for uniform sampling of similarly aged leaves from the same developmental cohort. This aids in separating phenological effects on the microbiome from impacts due to annual leaf maturation/senescence. Here, we used this system to test the hypothesis that host phenology acts as a driver of microbiome composition. Citrus sinensis leaves and roots were sampled during seven phenological stages. Using amplicon-based sequencing, followed by diversity, phylogenetic, differential abundance, and network analyses, we examined changes in bacterial and fungal communities. Host phenological stage is the main determinant of microbiome composition, particularly within the foliar bacteriome. Microbial enrichment/depletion patterns suggest that microbial turnover and dispersal were driving these shifts. Moreover, a subset of community shifts were phylogenetically conserved across bacterial clades, suggesting that inherited traits contribute to microbe-microbe and/or plant-microbe interactions during specific phenophases. Plant phenology influences microbial community composition. These findings enhance understanding of microbiome assembly and identify microbes that potentially influence plant development and reproduction. IMPORTANCE Research at the forefront of plant microbiome studies indicates that plant-associated microbes can alter the timing of plant development (phenology). However, it is unclear if host phenological stage affects microbial community assembly. Microbiome studies in annual or deciduous perennial plants can face difficulty in separating effects of tissue age from phenological driven effects on the microbiome. Evergreen perennial plants, like sweet orange, maintain mature leaves for multiple years, allowing for uniform sampling of similarly aged tissue across host reproductive stages. Using this system, multiyear sampling, and high-throughput sequencing, we identified plant phenology as a major driver of microbiome composition, particularly within the leaf-associated bacterial communities. Distinct changes in microbial patterns suggest that microbial turnover and dispersal are mechanisms driving these community shifts. Additionally, closely related bacteria have similar abundance patterns across plant stages, indicating that inherited microbial traits may influence how bacteria respond to host developmental changes. Overall, this study illustrates that plant phenology does indeed govern microbiome seasonal shifts and identifies microbial candidates that may affect plant reproduction and development.
Collapse
|
34
|
Xie Y, Zhou L, Dai J, Chen J, Yang X, Wang X, Wang Z, Feng L. Effects of the C/N ratio on the microbial community and lignocellulose degradation, during branch waste composting. Bioprocess Biosyst Eng 2022; 45:1163-1174. [DOI: 10.1007/s00449-022-02732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
|
35
|
Schachterle JK, Gdanetz K, Pandya I, Sundin GW. Identification of novel virulence factors in Erwinia amylovora through temporal transcriptomic analysis of infected apple flowers under field conditions. MOLECULAR PLANT PATHOLOGY 2022; 23:855-869. [PMID: 35246928 PMCID: PMC9104256 DOI: 10.1111/mpp.13199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The enterobacterial pathogen Erwinia amylovora uses multiple virulence-associated traits to cause fire blight, a devastating disease of apple and pear trees. Many virulence-associated phenotypes have been studied that are critical for virulence and pathogenicity. Despite the in vitro testing that has revealed how these systems are transcriptionally regulated, information on when and where in infected tissues these genes are being expressed is lacking. Here, we used a high-throughput sequencing approach to characterize the transcriptome of E. amylovora during disease progression on apple flowers under field infection conditions. We report that type III secretion system genes and flagellar genes are strongly co-expressed. Likewise, genes involved in biosynthesis of the exopolysaccharide amylovoran and sorbitol utilization had similar expression patterns. We further identified a group of 16 genes whose expression is increased and maintained at high levels throughout disease progression across time and tissues. We chose five of these genes for mutational analysis and observed that deletion mutants lacking these genes all display reduced symptom development on apple shoots. Furthermore, these induced genes were over-represented for genes involved in sulphur metabolism and cycling, suggesting the possibility of an important role for maintenance of oxidative homeostasis during apple flower infection.
Collapse
Affiliation(s)
- Jeffrey K. Schachterle
- Genetics and Genome Sciences ProgramMichigan State UniversityEast LansingMIUSA
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
- Present address:
USDAARS, Cereal Crops Research UnitFargoNDUSA
| | - Kristi Gdanetz
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
| | - Ishani Pandya
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
| | - George W. Sundin
- Genetics and Genome Sciences ProgramMichigan State UniversityEast LansingMIUSA
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
36
|
The RNA-Binding Protein ProQ Impacts Exopolysaccharide Biosynthesis and Second Messenger Cyclic di-GMP Signaling in the Fire Blight Pathogen Erwinia amylovora. Appl Environ Microbiol 2022; 88:e0023922. [PMID: 35416685 DOI: 10.1128/aem.00239-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erwinia amylovora is a plant-pathogenic bacterium that causes fire blight disease in many economically important plants, including apples and pears. This bacterium produces three exopolysaccharides (EPSs), amylovoran, levan, and cellulose, and forms biofilms in host plant vascular tissues, which are crucial for pathogenesis. Here, we demonstrate that ProQ, a conserved bacterial RNA chaperone, was required for the virulence of E. amylovora in apple shoots and for biofilm formation in planta. In vitro experiments revealed that the deletion of proQ increased the production of amylovoran and cellulose. Prc is a putative periplasmic protease, and the prc gene is located adjacent to proQ. We found that Prc and the associated lipoprotein NlpI negatively affected amylovoran production, whereas Spr, a peptidoglycan hydrolase degraded by Prc, positively regulated amylovoran. Since the prc promoter is likely located within proQ, our data showed that proQ deletion significantly reduced the prc mRNA levels. We used a genome-wide transposon mutagenesis experiment to uncover the involvement of the bacterial second messenger c-di-GMP in ProQ-mediated cellulose production. The deletion of proQ resulted in elevated intracellular c-di-GMP levels and cellulose production, which were restored to wild-type levels by deleting genes encoding c-di-GMP biosynthesis enzymes. Moreover, ProQ positively affected the mRNA levels of genes encoding c-di-GMP-degrading phosphodiesterase enzymes via a mechanism independent of mRNA decay. In summary, our study revealed a detailed function of E. amylovora ProQ in coordinating cellulose biosynthesis and, for the first time, linked ProQ with c-di-GMP metabolism and also uncovered a role of Prc in the regulation of amylovoran production. IMPORTANCE Fire blight, caused by the bacterium Erwinia amylovora, is an important disease affecting many rosaceous plants, including apple and pear, that can lead to devastating economic losses worldwide. Similar to many xylem-invading pathogens, E. amylovora forms biofilms that rely on the production of exopolysaccharides (EPSs). In this paper, we identified the RNA-binding protein ProQ as an important virulence regulator. ProQ played a central role in controlling the production of EPSs and participated in the regulation of several conserved bacterial signal transduction pathways, including the second messenger c-di-GMP and the periplasmic protease Prc-mediated systems. Since ProQ has recently been recognized as a global posttranscriptional regulator in many bacteria, these findings provide new insights into multitiered regulatory mechanisms for the precise control of virulence factor production in bacterial pathogens.
Collapse
|
37
|
Fontana R, Macchi G, Caproni A, Sicurella M, Buratto M, Salvatori F, Pappadà M, Manfredini S, Baldisserotto A, Marconi P. Control of Erwinia amylovora Growth by Moringa oleifera Leaf Extracts: In Vitro and in Planta Effects. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070957. [PMID: 35406937 PMCID: PMC9003111 DOI: 10.3390/plants11070957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 06/12/2023]
Abstract
Erwinia amylovora (EA) is a phytopathogenic bacterium, the causative agent of bacterial fire blight, a disease that affects Rosaceaes. In order to replace antibiotics and copper, the antimicrobial activity of three extracts of Moringa oleifera Lam., methanolic (MeOH-MOE), hydroalcoholic (HA-MOE) and hydroalcoholic with maltodextrins (HAMD-MOE), was tested on eleven strains of EA isolated from apple trees by the Emilia-Romagna Phytosanitary Department. MIC and MBC have been evaluated; biofilm formation, swarming motility and amylovoran production were performed with the crystalviolet, soft-agar assay and the amylovoran method. All extracts demonstrated bacteriostatic activity at a concentration of 1 mg/mL, resulting in a 80% reduction in biofilm formation. HAMD-MOE, MeOH-MOE and HA-MOE caused an inhibition of motility of 60%, 65% and 30% after 6 days and a decrease in amylovoran synthesis of 84%, 63% and 93%, respectively. In planta results showed how the compounds were able to inhibit EA virulence on apple trees, mainly if they were applied as a preventive treatment, although the treatment showed a significant reduction in fire blight symptoms progression. The antibacterial activity of the extracts is mainly due to the high concentration of polyphenolic compounds detected in the extracts that was able to alter the permeability of bacterial membrane, resulting in slowing the synthesis of ATP and consequently of all ATP-dependent functions, such as motility and less selectivity towards harmful compounds, which can, thus, enter the cytoplasm and inhibit enzymes involved in replication and quorum sensing. The efficacy, eco-compatibility and low cost make such extracts a potential tool for the control of bacterial fire blight.
Collapse
Affiliation(s)
- Riccardo Fontana
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (G.M.); (A.B.)
| | - Giovanna Macchi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (G.M.); (A.B.)
| | - Anna Caproni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
| | - Mariaconcetta Sicurella
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy;
| | - Mattia Buratto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
| | - Francesca Salvatori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
| | - Mariangela Pappadà
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (G.M.); (A.B.)
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (G.M.); (A.B.)
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
| |
Collapse
|
38
|
Versluys M, Porras-Domínguez JR, De Coninck T, Van Damme EJM, Van den Ende W. A novel chicory fructanase can degrade common microbial fructan product profiles and displays positive cooperativity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1602-1622. [PMID: 34750605 DOI: 10.1093/jxb/erab488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Fructan metabolism in bacteria and plants relies on fructosyltransferases and fructanases. Plant fructanases (fructan exohydrolase, FEH) only hydrolyse terminal fructose residues. Levan (β-2,6 linkages) is the most abundant fructan type in bacteria. Dicot fructan accumulators, such as chicory (Cichorium intybus), accumulate inulin (β-2,1 linkages), harbouring several 1-FEH isoforms for their degradation. Here, a novel chicory fructanase with high affinity for levan was characterized, providing evidence that such enzymes widely occur in higher plants. It is adapted to common microbial fructan profiles, but has low affinity towards chicory inulin, in line with a function in trimming of microbial fructans in the extracellular environment. Docking experiments indicate the importance of an N-glycosylation site close to the active site for substrate specificity. Optimal pH and temperature for levan hydrolysis are 5.0 and 43.7 °C, respectively. Docking experiments suggested multiple substrate binding sites and levan-mediated enzyme dimerization, explaining the observed positive cooperativity. Alignments show a single amino acid shift in the position of a conserved DXX(R/K) couple, typical for sucrose binding in cell wall invertases. A possible involvement of plant fructanases in levan trimming is discussed, in line with the emerging 'fructan detour' concepts, suggesting that levan oligosaccharides act as signalling entities during plant-microbial interactions.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | | | - Tibo De Coninck
- Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
39
|
Hu A, Hu M, Chen S, Xue Y, Tan X, Zhou J. Five Plant Natural Products Are Potential Type III Secretion System Inhibitors to Effectively Control Soft-Rot Disease Caused by Dickeya. Front Microbiol 2022; 13:839025. [PMID: 35273588 PMCID: PMC8901885 DOI: 10.3389/fmicb.2022.839025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Dickeya zeae, a plant soft-rot pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors, infecting a wide variety of monocotyledonous and dicotyledonous plants and causing serious losses to the production of economic crops. In order to alleviate the problem of pesticide resistance during bacterial disease treatment, compounds targeting at T3SS have been screened using a hrpA-gfp bioreporter. After screening by Multifunctional Microplate Reader and determining by flow cytometer, five compounds including salicylic acid (SA), p-hydroxybenzoic acid (PHBA), cinnamyl alcohol (CA), p-coumaric acid (PCA), and hydrocinnamic acid (HA) significantly inhibiting hrpA promoter activity without affecting bacterial growth have been screened out. All the five compounds reduced hypersensitive response (HR) on non-host tobacco leaves and downregulated the expression of T3SS, especially the master regulator encoding gene hrpL. Inhibition efficacy of the five compounds against soft rot were also evaluated and results confirmed that the above compounds significantly lessened the soft-rot symptoms caused by Dickeya dadantii 3937 on potato, Dickeya fangzhongdai CL3 on taro, Dickeya oryzae EC1 on rice, and D. zeae MS2 on banana seedlings. Findings in this study provide potential biocontrol agents for prevention of soft-rot disease caused by Dickeya spp.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
40
|
Ciocarlan A, Lupascu L, Aricu A, Dragalin I, Ciocarlan N, Zinicovscaia I, Slanina V, Yushin N. Chemical Composition of the Essential Oil and Antimicrobial Properties of Crude Extract From Tanacetum Corymbosum (L.) Shi. Bip. CHEMISTRY JOURNAL OF MOLDOVA 2021. [DOI: 10.19261/cjm.2021.877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The GC-MS analysis of the essential oil from Tanacetum corymbosum revealed the presence of 38 compounds, including terpenes - germacrene D, (Z)-β-farnesene, g-elemene, β-caryophyllene, aliphatic - palmitic and linoleic fatty acids, fatty alcohol n-octadecanol, higher alkane n-heneicosane as the major constituents. The in vitro antimicrobial assessment of the ethanolic extract showed promising antibacterial/antifungal activities against five Gram-(+), Gram-(-) and phytopathogenic bacteria species and two fungi strains. The data obtained in this study may be useful both for researchers and for producers interested in new or less studied species of medicinal plants in healthcare and their biological activities.
Collapse
|
41
|
Mendes RJ, Sario S, Luz JP, Tassi N, Teixeira C, Gomes P, Tavares F, Santos C. Evaluation of Three Antimicrobial Peptides Mixtures to Control the Phytopathogen Responsible for Fire Blight Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122637. [PMID: 34961108 PMCID: PMC8705937 DOI: 10.3390/plants10122637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 05/09/2023]
Abstract
Fire blight is a severe bacterial plant disease that affects important chain-of-value fruit trees such as pear and apple trees. This disease is caused by Erwinia amylovora, a quarantine phytopathogenic bacterium, which, although highly distributed worldwide, still lacks efficient control measures. The green revolution paradigm demands sustainable agriculture practices, for which antimicrobial peptides (AMPs) have recently caught much attention. The goal of this work was to disclose the bioactivity of three peptides mixtures (BP100:RW-BP100, BP100:CA-M, and RW-BP100:CA-M), against three strains of E. amylovora representing distinct genotypes and virulence (LMG 2024, Ea 630 and Ea 680). The three AMPs' mixtures were assayed at eight different equimolar concentrations ranging from 0.25 to 6 μM (1:1). Results showed MIC and MBC values between 2.5 and 4 μM for every AMP mixture and strain. Regarding cell viability, flow cytometry and alamarBlue reduction, showed high reduction (>25%) of viable cells after 30 min of AMP exposure, depending on the peptide mixture and strain assayed. Hypersensitive response in tobacco plants showed that the most efficient AMPs mixtures and concentrations caused low to no reaction of the plant. Altogether, the AMPs mixtures studied are better treatment solutions to control fire blight disease than the same AMPs applied individually.
Collapse
Affiliation(s)
- Rafael J. Mendes
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CIBIO—Research Centre in Biodiversity and Genetic Resources, InBIO, Associated Laboratory, Campus Agrário de Vairão, University of Porto, 4485-661 Vairão, Portugal
- Correspondence:
| | - Sara Sario
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - João Pedro Luz
- QRural, Polytechnic Institute of Castelo Branco, School of Agriculture, 6000-909 Castelo Branco, Portugal;
| | - Natália Tassi
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Cátia Teixeira
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Paula Gomes
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Fernando Tavares
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- CIBIO—Research Centre in Biodiversity and Genetic Resources, InBIO, Associated Laboratory, Campus Agrário de Vairão, University of Porto, 4485-661 Vairão, Portugal
| | - Conceição Santos
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
42
|
Yuan X, McGhee GC, Slack SM, Sundin GW. A Novel Signaling Pathway Connects Thiamine Biosynthesis, Bacterial Respiration, and Production of the Exopolysaccharide Amylovoran in Erwinia amylovora. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1193-1208. [PMID: 34081536 DOI: 10.1094/mpmi-04-21-0095-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Erwinia amylovora is a plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. This bacterium colonizes host vascular tissues via the production of exopolysaccharides (EPSs) including amylovoran. It is well-established that the nearly ubiquitous plasmid pEA29 of E. amylovora is an essential virulence factor, but the underlying mechanism remains uncharacterized. Here, we demonstrated that pEA29 was required for E. amylovora to produce amylovoran and to form a biofilm, and this regulation was dependent on the thiamine biosynthesis operon thiOSGF. We then conducted carbohydrate and genetic analyses demonstrating that the thiamine-mediated effect on amylovoran production was indirect, as cells lacking thiOSGF produced an EPS that did not contain glucuronic acid, one of the key components of amylovoran, whereas the transcriptional activity and RNA levels of the amylovoran biosynthesis genes were not altered. Alternatively, addition of exogenous thiamine restored amylovoran production in the pEA29-cured strain of E. amylovora and positively impacted amylovoran production in a dose-dependent manner. Individual deletion of several chromosomal thiamine biosynthesis genes also affected amylovoran production, implying that a complete thiamine biosynthesis pathway is required for the thiamine-mediated effect on amylovoran production in E. amylovora. Finally, we determined that an imbalanced tricarboxylic acid cycle negatively affected amylovoran production, which was restored by addition of exogenous thiamine or overexpression of the thiOSGF operon. In summary, our report revealed a novel signaling pathway that impacts E. amylovora virulence in which thiamine biosynthesis enhances bacterial respiration that provides energetic requirements for the biosynthesis of EPS amylovoran.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Gayle C McGhee
- United States Department of Agriculture, Agriculture Research Service, Horticultural Crops Research Laboratory, Corvallis, OR 97330, U.S.A
| | - Suzanne M Slack
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
43
|
O'Brien AM, Ginnan NA, Rebolleda-Gómez M, Wagner MR. Microbial effects on plant phenology and fitness. AMERICAN JOURNAL OF BOTANY 2021; 108:1824-1837. [PMID: 34655479 DOI: 10.1002/ajb2.1743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Plant development and the timing of developmental events (phenology) are tightly coupled with plant fitness. A variety of internal and external factors determine the timing and fitness consequences of these life-history transitions. Microbes interact with plants throughout their life history and impact host phenology. This review summarizes current mechanistic and theoretical knowledge surrounding microbe-driven changes in plant phenology. Overall, there are examples of microbes impacting every phenological transition. While most studies have focused on flowering time, microbial effects remain important for host survival and fitness across all phenological phases. Microbe-mediated changes in nutrient acquisition and phytohormone signaling can release plants from stressful conditions and alter plant stress responses inducing shifts in developmental events. The frequency and direction of phenological effects appear to be partly determined by the lifestyle and the underlying nature of a plant-microbe interaction (i.e., mutualistic or pathogenic), in addition to the taxonomic group of the microbe (fungi vs. bacteria). Finally, we highlight biases, gaps in knowledge, and future directions. This biotic source of plasticity for plant adaptation will serve an important role in sustaining plant biodiversity and managing agriculture under the pressures of climate change.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Nichole A Ginnan
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - María Rebolleda-Gómez
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, CA, USA
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
44
|
Zheng J, Wu Q, Zou Y, Wang M, He L, Guo S. Respiratory Microbiota Profiles Associated With the Progression From Airway Inflammation to Remodeling in Mice With OVA-Induced Asthma. Front Microbiol 2021; 12:723152. [PMID: 34526979 PMCID: PMC8435892 DOI: 10.3389/fmicb.2021.723152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022] Open
Abstract
Background The dysbiosis of respiratory microbiota plays an important role in asthma development. However, there is limited information on the changes in the respiratory microbiota and how these affect the host during the progression from acute allergic inflammation to airway remodeling in asthma. Objective An ovalbumin (OVA)-induced mouse model of chronic asthma was established to explore the dynamic changes in the respiratory microbiota in the different stages of asthma and their association with chronic asthma progression. Methods Hematoxylin and eosin (H&E), periodic acid-schiff (PAS), and Masson staining were performed to observe the pathological changes in the lung tissues of asthmatic mice. The respiratory microbiota was analyzed using 16S rRNA gene sequencing followed by taxonomical analysis. The cytokine levels in bronchoalveolar lavage fluid (BALF) specimens were measured. The matrix metallopeptidase 9 (MMP-9) and vascular endothelial growth factor (VEGF-A) expression levels in lung tissues were measured to detect airway remodeling in OVA-challenged mice. Results Acute allergic inflammation was the major manifestation at weeks 1 and 2 after OVA atomization stimulation, whereas at week 6 after the stimulation, airway remodeling was the most prominent observation. In the acute inflammatory stage, Pseudomonas was more abundant, whereas Staphylococcus and Cupriavidus were more abundant at the airway remodeling stage. The microbial compositions of the upper and lower respiratory tracts were similar. However, the dominant respiratory microbiota in the acute inflammatory and airway remodeling phases were different. Metagenomic functional prediction showed that the pathways significantly upregulated in the acute inflammatory phase and airway remodeling phase were different. The cytokine levels in BALF and the expression patterns of proteins associated with airway remodeling in the lung tissue were consistent with the metagenomic function results. Conclusion The dynamic changes in respiratory microbiota are closely associated with the progression of chronic asthma. Metagenomic functional prediction indicated the changes associated with acute allergic inflammation and airway remodeling.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Wu
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ya Zou
- Department of Emergency Medicine, Putuo Hospital, Shanghai University of Traditional Medicine, Shanghai, China
| | - Meifen Wang
- Department of Pediatrics, Sanmen People's Hospital, Taizhou, China
| | - Li He
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Guo
- Department of Endocrine, Genetics and Metabolism, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Sahebi M, Tarighi S, Taheri P. The Arac-like transcriptional regulator YqhC is involved in pathogenicity of Erwinia amylovora. J Appl Microbiol 2021; 132:1319-1329. [PMID: 34480830 DOI: 10.1111/jam.15286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022]
Abstract
AIMS This study aimed to identify virulence-associated genes and functions that affect disease development on pear caused by Erwinia amylovora EaUMG3 isolated from Iran. METHODS AND RESULTS A mini-Tn5 transposon library was generated in EaUMG3. An E. amylovora mutant that had lost its ability to cause lesions on immature pear fruits, was selected for further analysis. This mutant was shown to have a transposon insertion in yqhC, a gene belongs to the AraC family of transcriptional regulators. A mutant of the wild-type EaUMG3 carrying an unmarked deletion of the yqhC gene was created using pDMS197. The Ea∆yqhC mutant showed reduced disease progression on immature pear fruits and pear plants, reduced motility and significantly lower levels of the virulence factors siderophore and amylovoran. Complementation with yqhC cloned in pBBR1MCS restored disease progression and the level of virulence factors to near wild type. CONCLUSION YqhC transcriptional regulator is necessary for full virulence of E. amylovora. In addition, this regulator affects virulence factors such as siderophore production, amylovoran production, and motility. SIGNIFICANCE AND IMPACT OF STUDY The identification of a novel transcriptional regulator with strong impact in the pathogenesis of E. amylovora, an organism causing significant economic losses in fruit production.
Collapse
Affiliation(s)
- Masood Sahebi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeed Tarighi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parissa Taheri
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
46
|
Chemical Composition and Assessment of Antimicrobial Activity of Lavender Essential Oil and Some By-Products. PLANTS 2021; 10:plants10091829. [PMID: 34579362 PMCID: PMC8470038 DOI: 10.3390/plants10091829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023]
Abstract
The producers of essential oils from the Republic of Moldova care about the quality of their products and at the same time, try to capitalize on the waste from processing. The purpose of the present study was to analyze the chemical composition of lavender (Lavanda angustifolia L.) essential oil and some by-products derived from its production (residual water, residual herbs), as well as to assess their “in vitro” antimicrobial activity. The gas chromatography-mass spectrometry analysis of essential oils produced by seven industrial manufacturers led to the identification of 41 constituents that meant 96.80–99.79% of the total. The main constituents are monoterpenes (84.08–92.55%), followed by sesquiterpenes (3.30–13.45%), and some aliphatic compounds (1.42–3.90%). The high-performance liquid chromatography analysis allowed the quantification of known triterpenes, ursolic, and oleanolic acids, in freshly dried lavender plants and in the residual by-products after hydrodistillation of the essential oil. The lavender essential oil showed good antibacterial activity against Bacillus subtilis, Pseudomonas fluorescens, Xanthomonas campestris, Erwinia carotovora at 300 μg/mL concentration, and Erwinia amylovora, Candida utilis at 150 μg/mL concentration, respectively. Lavender plant material but also the residual water and ethanolic extracts from the solid waste residue showed high antimicrobial activity against Aspergillus niger, Alternaria alternata, Penicillium chrysogenum, Bacillus sp., and Pseudomonas aeroginosa strains, at 0.75–6.0 μg/mL, 0.08–0.125 μg/mL, and 0.05–4.0 μg/mL, respectively.
Collapse
|
47
|
Peil A, Emeriewen OF, Khan A, Kostick S, Malnoy M. Status of fire blight resistance breeding in Malus. JOURNAL OF PLANT PATHOLOGY 2021; 103:3-12. [PMID: 0 DOI: 10.1007/s42161-020-00581-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/21/2020] [Indexed: 05/20/2023]
|
48
|
Kong HG, Ham H, Lee MH, Park DS, Lee YH. Microbial Community Dysbiosis and Functional Gene Content Changes in Apple Flowers due to Fire Blight. THE PLANT PATHOLOGY JOURNAL 2021; 37:404-412. [PMID: 34365752 PMCID: PMC8357563 DOI: 10.5423/ppj.nt.05.2021.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Despite the plant microbiota plays an important role in plant health, little is known about the potential interactions of the flower microbiota with pathogens. In this study, we investigated the microbial community of apple blossoms when infected with Erwinia amylovora. The long-read sequencing technology, which significantly increased the genome sequence resolution, thus enabling the characterization of fire blight-induced changes in the flower microbial community. Each sample showed a unique microbial community at the species level. Pantoea agglomerans and P. allii were the most predominant bacteria in healthy flowers, whereas E. amylovora comprised more than 90% of the microbial population in diseased flowers. Furthermore, gene function analysis revealed that glucose and xylose metabolism were enriched in diseased flowers. Overall, our results showed that the microbiome of apple blossoms is rich in specific bacteria, and the nutritional composition of flowers is important for the incidence and spread of bacterial disease.
Collapse
Affiliation(s)
- Hyun Gi Kong
- Corresponding author. Phone) +82-63-238-3279, FAX) +82-63-238-3838, E-mail)
| | | | | | | | | |
Collapse
|
49
|
Alexander CR, Huntley RB, Schultes NP, Mourad GS. Functional characterization of the adenine transporter EaAdeP from the fire blight pathogen Erwinia amylovora and its effect on disease establishment in apples and pears. FEMS Microbiol Lett 2021; 367:5932216. [PMID: 33152083 DOI: 10.1093/femsle/fnaa173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/18/2020] [Indexed: 11/13/2022] Open
Abstract
Erwinia amylovora is the causal agent of fire blight, an economically important disease of apples and pears. As part of the infection process, Er. amylovora propagates on different plant tissues each with distinct nutrient environments. Here, the biochemical properties of the Er. amylovora adenine permease (EaAdeP) are investigated. Heterologous expression of EaAdeP in nucleobase transporter-deficient Escherichia coli strains, coupled with radiolabel uptake studies, revealed that EaAdeP is a high affinity adenine transporter with a Km of 0.43 ± 0.09 μM. Both Es. coli and Er. amylovora carrying extra copies of EaAdeP are sensitive to growth on the toxic analog 8-azaadenine. EaAdeP is expressed during immature pear fruit infection. Immature pear and apple fruit virulence assays reveal that an E. amylovora ΔadeP::Camr mutant is still able to cause disease symptoms, however, with growth at a lower level, indicating that external adenine is utilized in disease establishment.
Collapse
Affiliation(s)
- Candace R Alexander
- Department of Biology, Purdue University Fort Wayne, 2101 East Coliseum Blvd., Fort Wayne, IN 46805, USA
| | - Regan B Huntley
- Department of Plant Pathology & Ecology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, USA
| | - Neil P Schultes
- Department of Plant Pathology & Ecology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, USA
| | - George S Mourad
- Department of Biology, Purdue University Fort Wayne, 2101 East Coliseum Blvd., Fort Wayne, IN 46805, USA
| |
Collapse
|
50
|
Ya'ar Bar S, Dor S, Erov M, Afriat-Jurnou L. Identification and Characterization of a New Quorum-Quenching N-acyl Homoserine Lactonase in the Plant Pathogen Erwinia amylovora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5652-5662. [PMID: 33974427 DOI: 10.1021/acs.jafc.1c00366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quorum quenching (QQ) is the ability to interfere with bacterial cell to cell communication, known as quorum sensing (QS). QQ enzymes that degrade or modify acyl homoserine lactones (AHLs) have been attracting increasing interest as promising agents for inhibiting QS-mediated bacterial pathogenicity. Plant pathogens from the genus Erwinia cause diseases in several economically important crops. Fire blight is a devastating plant disease caused by Erwinia amylovora, affecting a wide range of host species within the Rosaceae and posing a major global threat for commercial apple and pear production. While QS has been described in Erwinia species, no AHL-degrading enzymes were identified and characterized. Here, phylogenetic analysis and structural modeling were applied to identify an AHL lactonase in E. amylovora (dubbed EaAiiA). Following recombinant expression and purification, the enzyme was biochemically characterized. EaAiiA lactonase activity was dependent on metal ions and effectively degraded AHLs with high catalytic efficiency. Its highest specific activity (kcat/KM value) was observed against one of the AHLs (3-oxo-C6-homoserine lactone) secreted from E. amylovora. Exogenous addition of the purified enzyme to cultures of E. amylovora reduced the formation of levan, a QS-regulated virulence factor, by 40% and the transcription level of the levansucrase-encoding gene by 55%. Furthermore, preincubation of E. amylovora cultures with EaAiiA inhibited the progress of fire blight symptoms in immature Pyrus communis fruits. These results demonstrate the ability of the identified enzyme from E. amylovora to act as a quorum-quenching lactonase.
Collapse
Affiliation(s)
- Sapir Ya'ar Bar
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| | - Shlomit Dor
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Mayan Erov
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Livnat Afriat-Jurnou
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| |
Collapse
|