1
|
Wu S, Li R, Bu C, Zhu C, Miao C, Zhang Y, Cui J, Jiang Y, Ding X. Photoperiodic Effect on Growth, Photosynthesis, Mineral Elements, and Metabolome of Tomato Seedlings in a Plant Factory. PLANTS (BASEL, SWITZERLAND) 2024; 13:3119. [PMID: 39599328 PMCID: PMC11597524 DOI: 10.3390/plants13223119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
The duration of light exposure is a crucial environmental factor that regulates various physiological processes in plants, with optimal timing differing between species and varieties. To assess the effect of photoperiods on the growth and metabolites of a specific truss tomato cultivar, three photoperiods (12 h, 16 h, and 20 h) were tested in a plant factory. Growth parameters, including plant height, stem diameter, fresh and dry weights of shoots and roots, photosynthetic characteristics, mineral content, and metabolome profiles, were analyzed under these conditions. The results indicated that prolonged light exposure enhanced plant growth, with the highest photosynthesis and chlorophyll content observed under a 20 h photoperiod. However, no significant correlation was observed between the photoperiod and the mineral element content, particularly for macro minerals. Metabolome analysis revealed that different photoperiods influenced the accumulation of metabolites, particularly in the lipid metabolism, amino acid metabolism, and membrane transport pathways. Long periods of light would enhance photosynthesis and metabolism, improving the rapid growth of tomato seedlings. Overall, this study provides a theoretical basis for understanding the responses of truss tomato cultivars to varying photoperiods in plant factories and proposes an optimizable method for accelerating the progress of tomato seedling cultivation.
Collapse
Affiliation(s)
- Shaofang Wu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| | - Rongguang Li
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chongxing Bu
- Xinjiang Kechuang Tianda Agricultural Engineering Co., Ltd., Changji 831100, China;
| | - Cuifang Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| | - Chen Miao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| | - Yongxue Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| | - Jiawei Cui
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| | - Yuping Jiang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| |
Collapse
|
2
|
Ibrahim RM, Abdel-Baki PM, Mohamed OG, Al-Karmalawy AA, Tripathi A, El-Shiekh RA. Metabolites profiling, in-vitro and molecular docking studies of five legume seeds for Alzheimer's disease. Sci Rep 2024; 14:19637. [PMID: 39179586 PMCID: PMC11344142 DOI: 10.1038/s41598-024-68743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/26/2024] [Indexed: 08/26/2024] Open
Abstract
Even though legumes are valuable medicinal plants with edible seeds that are extensively consumed worldwide, there is little information available on the metabolic variations between different dietary beans and their influence as potential anti-cholinesterase agents. High-resolution liquid chromatography coupled with mass spectrometry in positive and negative ionization modes combined with multivariate analysis were used to explore differences in the metabolic profiles of five commonly edible seeds, fava bean, black-eyed pea, kidney bean, red lentil, and chickpea. A total of 139 metabolites from various classes were identified including saponins, alkaloids, phenolic acids, iridoids, and terpenes. Chickpea showed the highest antioxidant and anti-cholinesterase effects, followed by kidney beans. Supervised and unsupervised chemometric analysis determined that species could be distinguished by their different discriminatory metabolites. The major metabolic pathways in legumes were also studied. Glycerophospholipid metabolism was the most significantly enriched KEGG pathway. Pearson's correlation analysis pinpointed 18 metabolites that were positively correlated with the anti-cholinesterase activity. Molecular docking of the biomarkers to the active sites of acetyl- and butyryl-cholinesterase enzymes revealed promising binding scores, validating the correlation results. The present study will add to the metabolomic analysis of legumes and their nutritional value and advocate their inclusion in anti-Alzheimer's formulations.
Collapse
Affiliation(s)
- Rana M Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| | - Passent M Abdel-Baki
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| |
Collapse
|
3
|
Abstract
Metabolomics aims to profile the extensive array of metabolites that exists in different types of matrices using modern analytical techniques. These techniques help to separate, identify, and quantify the plethora of chemical compounds at various analytical platforms. Hence, ion mobility spectrometry (IMS) has emerged as an advanced analytical approach, exclusively owing to the 3D separation of metabolites and their isomers. Furthermore, separated metabolites are identified based on their mass fragmentation pattern and CCS (collision cross-section) values. The IMS provides an advanced alternative dimension to separate the isomeric metabolites with enhanced throughput with lesser chemical noise. Thus, the present review highlights the types, factors affecting the resolution, and applications of IMMS (Ion mobility mass spectrometry) for isomeric separations, and ionic contaminants in the plant samples. Furthermore, an overview of IMS-based applications for the identification of plant metabolites (volatile and non-volatile) over the last few decades has been discussed, followed by future assumptions for creating IM-based databases. Such approaches could be significant to accelerate and improve our knowledge of the vast chemical diversity found in plants.
Collapse
Affiliation(s)
- Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, India
| | - Shruti Sharma
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
4
|
Lim YJ, Kwon SJ, Eom SH. Red and blue light-specific metabolic changes in soybean seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1128001. [PMID: 36938020 PMCID: PMC10014548 DOI: 10.3389/fpls.2023.1128001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Red and blue artificial light sources are commonly used as photosynthetic lighting in smart farm facilities, and they can affect the metabolisms of various primary and secondary metabolites. Although the soybean plant contains major flavonoids such as isoflavone and flavonol, using light factors to produce specific flavonoids from this plant remains difficult because the regulation of light-responded flavonoids is poorly understood. In this study, metabolic profiling of soybean seedlings in response to red and blue lights was evaluated, and the isoflavone-flavonol regulatory mechanism under different light irradiation periods was elucidated. Profiling of metabolites, including flavonoids, phenolic acids, amino acids, organic acids, free sugars, alcohol sugars, and sugar acids, revealed that specific flavonol, isoflavone, and phenolic acid showed irradiation time-dependent accumulation. Therefore, the metabolic gene expression level and accumulation of isoflavone and flavonol were further investigated. The light irradiation period regulated kaempferol glycoside, the predominant flavonol in soybeans, with longer light irradiation resulting in higher kaempferol glycoside content, regardless of photosynthetic lights. Notably, blue light stimulated kaempferol-3-O-(2,6-dirhamnosyl)-galactoside accumulation more than red light. Meanwhile, isoflavones were controlled differently based on isoflavone types. Malonyl daidzin and malonyl genistin, the predominant isoflavones in soybeans, were significantly increased by short-term red light irradiation (12 and 36 h) with higher expressions of flavonoid biosynthetic genes, which contributed to the increased total isoflavone level. Although most isoflavones increased in response to red and blue lights, daidzein increased in response only to red light. In addition, prolonged red light irradiation downregulated the accumulation of glycitin types, suggesting that isoflavone's structural specificity results in different accumulation in response to light. Overall, these findings suggest that the application of specific wavelength and irradiation periods of light factors enables the regulation and acquisition of specialized metabolites from soybean seedlings.
Collapse
Affiliation(s)
- You Jin Lim
- Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Seok Hyun Eom
- Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
5
|
Paglia G, Smith AJ, Astarita G. Ion mobility mass spectrometry in the omics era: Challenges and opportunities for metabolomics and lipidomics. MASS SPECTROMETRY REVIEWS 2022; 41:722-765. [PMID: 33522625 DOI: 10.1002/mas.21686] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Researchers worldwide are taking advantage of novel, commercially available, technologies, such as ion mobility mass spectrometry (IM-MS), for metabolomics and lipidomics applications in a variety of fields including life, biomedical, and food sciences. IM-MS provides three main technical advantages over traditional LC-MS workflows. Firstly, in addition to mass, IM-MS allows collision cross-section values to be measured for metabolites and lipids, a physicochemical identifier related to the chemical shape of an analyte that increases the confidence of identification. Second, IM-MS increases peak capacity and the signal-to-noise, improving fingerprinting as well as quantification, and better defining the spatial localization of metabolites and lipids in biological and food samples. Third, IM-MS can be coupled with various fragmentation modes, adding new tools to improve structural characterization and molecular annotation. Here, we review the state-of-the-art in IM-MS technologies and approaches utilized to support metabolomics and lipidomics applications and we assess the challenges and opportunities in this growing field.
Collapse
Affiliation(s)
- Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Andrew J Smith
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
6
|
Zhang K, Li H, Zhang T, Wang S, Liu L, Dong X, Cong L, Song H, Wang A, Yang G, Xie H, Wang ZY, Chai M. Comprehensive transcriptomic and metabolomic profiling reveals the differences between alfalfa sprouts germinated with or without light exposure. FRONTIERS IN PLANT SCIENCE 2022; 13:943740. [PMID: 35991407 PMCID: PMC9389271 DOI: 10.3389/fpls.2022.943740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Alfalfa sprouts are among the most nutritionally rich foods, and light exposure is a critical factor in determining their biomass and quality. However, detailed metabolic and molecular differences between yellow and green alfalfa sprouts remain unclear. In this study, comprehensive metabolomic and transcriptomic analyses were integrated to evaluate the nutrient composition of alfalfa sprouts during germination with or without light exposure. Differentially expressed genes and differentially accumulated metabolites in green and yellow alfalfa sprouts were significantly enriched in secondary metabolic pathways, such as the isoflavonoid biosynthesis pathway. Green alfalfa sprouts contained a wide variety of lipids, flavonoids, phenolic acids, and terpenoids, among which the top three upregulated were calycosin, methyl gallate, and epicatechin 3-gallate, whereas yellow alfalfa sprouts contained relatively more isoquercitrin. These results provide new insights into the nutritional value and composition of alfalfa sprouts under different germination regimes.
Collapse
Affiliation(s)
- Kangning Zhang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - He Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Tian Zhang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Shixing Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Liang Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xuyan Dong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lili Cong
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Aihua Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Hongli Xie
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zeng-Yu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Maofeng Chai
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
7
|
Roca M, Pérez-Gálvez A. Metabolomics of Chlorophylls and Carotenoids: Analytical Methods and Metabolome-Based Studies. Antioxidants (Basel) 2021; 10:1622. [PMID: 34679756 PMCID: PMC8533378 DOI: 10.3390/antiox10101622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Chlorophylls and carotenoids are two families of antioxidants present in daily ingested foods, whose recognition as added-value ingredients runs in parallel with the increasing number of demonstrated functional properties. Both groups include a complex and vast number of compounds, and extraction and analysis methods evolved recently to a modern protocol. New methodologies are more potent, precise, and accurate, but their application requires a better understanding of the technical and biological context. Therefore, the present review compiles the basic knowledge and recent advances of the metabolomics of chlorophylls and carotenoids, including the interrelation with the primary metabolism. The study includes material preparation and extraction protocols, the instrumental techniques for the acquisition of spectroscopic and spectrometric properties, the workflows and software tools for data pre-processing and analysis, and the application of mass spectrometry to pigment metabolomics. In addition, the review encompasses a critical description of studies where metabolomics analyses of chlorophylls and carotenoids were developed as an approach to analyzing the effects of biotic and abiotic stressors on living organisms.
Collapse
Affiliation(s)
| | - Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain;
| |
Collapse
|
8
|
Zhou F, Zuo J, Gao L, Sui Y, Wang Q, Jiang A, Shi J. An untargeted metabolomic approach reveals significant postharvest alterations in vitamin metabolism in response to LED irradiation in pak-choi (Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee). Metabolomics 2019; 15:155. [PMID: 31773368 DOI: 10.1007/s11306-019-1617-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/13/2019] [Indexed: 11/24/2022]
Abstract
The main objective of this study was to investigate the effect of low-level light emitting diode (LED) irradiation on the metabolite profile of pak-choi. A total of 633 different molecular features (MFs) were identified among sample groups (initial, dark-treated, light-treated) using an untargeted metabolomic approach. The identified metabolites were associated with 24 different metabolic pathways. Four of the pathways including carbon pool by folate, folate biosynthesis, thiamine metabolism, and glutathione metabolism, all of which are associated with vitamin biosynthesis, changed significantly. Metabolites in four of the pathways exhibited significant differences from the control in response to LED irradiation. Additionally, porphyrin and chlorophyll metabolism, as well as glucosinolate biosynthesis, riboflavin metabolism, and carotenoid biosynthesis were positively induced by LED irradiation. These results indicate that postharvest LED illumination represents a potential tool for modifying the metabolic profile of pak-choi to maintain quality and nutritional levels.
Collapse
Affiliation(s)
- Fuhui Zhou
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Aili Jiang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, 116600, China.
- College of Life Science, Dalian Minzu University, Dalian, 116600, China.
| | - Junyan Shi
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
9
|
Khan WA, Hou X, Han K, Khan N, Dong H, Saqib M, Zhang Z, Naseri E, Hu C. Lipidomic study reveals the effect of morphological variation and other metabolite interactions on the lipid composition in various cultivars of Bok choy. Biochem Biophys Res Commun 2018; 506:755-764. [PMID: 29673595 DOI: 10.1016/j.bbrc.2018.04.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Bok choy is an important Brassica vegetable which is also known for its wide range of cultivars that differ in their appearance, leaf color, size and shape. For the purpose to investigate the effect of these phenotypic differences on their lipid composition, seven morphotypes of NHCC (Suzhouqing, Aijaohuang, Wutacai, Yellowrose, Ziluolan, Xiangqingcai and Zicaitai) were selected for this study. For this reason, extensive metabolic approach was adopted which was mainly focused on lipidomics. The overall metabolic position of lipids was determined and the isolated lipid compounds were characterized on the basis of their lipid classes. Moreover, discriminative analysis was applied to monitor the distribution pattern of lipid in different cultivars. Aijiaohuang was the leading cultivar which contained highest lipid levels, whereas least proportion was found in Zicaitai. We proposed that leaf color might have an effect on the lipid composition such as purple cultivars were dominated in glycerophopholipids, light green in fatty acids and dark green were rich in glycerolipids. The level of metabolites differed greatly among different genotypes. Lipid-metabolite interactions revealed the positive correlation of lipids with flavonoid and hydroxycinnamoyl derivatives, whereas negative correlation was noticed in case of phenylamines. This is the first comprehensive study based on lipidomics in order to evaluate the substantial impact of various phenotypes on the metabolic composition of NHCC.
Collapse
Affiliation(s)
- Waleed Amjad Khan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ke Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Nadeem Khan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huijie Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Muhammad Saqib
- Department of Horticulture, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Zhishuo Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Emal Naseri
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunmei Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China; New Rural Research Institute in Lianyungang, Nanjing Agricultural University, PR China.
| |
Collapse
|
10
|
Tian M, Xu X, Liu F, Fan X, Pan S. Untargeted metabolomics reveals predominant alterations in primary metabolites of broccoli sprouts in response to pre-harvest selenium treatment. Food Res Int 2018; 111:205-211. [DOI: 10.1016/j.foodres.2018.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/01/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
11
|
Abbaoui B, Lucas CR, Riedl KM, Clinton SK, Mortazavi A. Cruciferous Vegetables, Isothiocyanates, and Bladder Cancer Prevention. Mol Nutr Food Res 2018; 62:e1800079. [PMID: 30079608 DOI: 10.1002/mnfr.201800079] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/11/2018] [Indexed: 12/16/2022]
Abstract
Bladder cancer is a significant health burden due to its high prevalence, risk of mortality, morbidity, and high cost of medical care. Epidemiologic evidence suggests that diets rich in cruciferous vegetables, particularly broccoli, are associated with lower bladder cancer risk. Phytochemicals in cruciferous vegetables, such as glucosinolates, which are enzymatically hydrolyzed to bioactive isothiocyanates, are possible mediators of an anticancer effect. In vitro studies have shown inhibition of bladder cancer cell lines, cell cycle arrest, and induction of apoptosis by these isothiocyanates, in particular sulforaphane and erucin. Although not yet completely understood, many mechanisms of anticancer activity at the steps of cancer initiation, promotion, and progression have been attributed to these isothiocyanates. They target multiple pathways including the adaptive stress response, phase I/II enzyme modulation, pro-growth, pro-survival, pro-inflammatory signaling, angiogenesis, and even epigenetic modulation. Multiple in vivo studies have shown the bioavailability of isothiocyanates and their antitumoral effects. Although human studies are limited, they support oral bioavailability with reasonable plasma and urine concentrations achieved. Overall, both cell and animal studies support a potential role for isothiocyanates in bladder cancer prevention and treatment. Future studies are necessary to examine clinically relevant outcomes and define guidelines on ameliorating the bladder cancer burden.
Collapse
Affiliation(s)
- Besma Abbaoui
- Foods for Health Discovery Theme, The College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Department of Food Science and Technology, The College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, 43210
| | - Christopher R Lucas
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, 43210.,Department of Mechanical and Aerospace Engineering, The College of Engineering, The Ohio State University, Columbus, OH, 43210.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210
| | - Ken M Riedl
- Department of Food Science and Technology, The College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210
| | - Steven K Clinton
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210.,Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210
| | - Amir Mortazavi
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210.,Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
12
|
Tebani A, Afonso C, Bekri S. Advances in metabolome information retrieval: turning chemistry into biology. Part I: analytical chemistry of the metabolome. J Inherit Metab Dis 2018; 41:379-391. [PMID: 28840392 PMCID: PMC5959978 DOI: 10.1007/s10545-017-0074-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022]
Abstract
Metabolites are small molecules produced by enzymatic reactions in a given organism. Metabolomics or metabolic phenotyping is a well-established omics aimed at comprehensively assessing metabolites in biological systems. These comprehensive analyses use analytical platforms, mainly nuclear magnetic resonance spectroscopy and mass spectrometry, along with associated separation methods to gather qualitative and quantitative data. Metabolomics holistically evaluates biological systems in an unbiased, data-driven approach that may ultimately support generation of hypotheses. The approach inherently allows the molecular characterization of a biological sample with regard to both internal (genetics) and environmental (exosome, microbiome) influences. Metabolomics workflows are based on whether the investigator knows a priori what kind of metabolites to assess. Thus, a targeted metabolomics approach is defined as a quantitative analysis (absolute concentrations are determined) or a semiquantitative analysis (relative intensities are determined) of a set of metabolites that are possibly linked to common chemical classes or a selected metabolic pathway. An untargeted metabolomics approach is a semiquantitative analysis of the largest possible number of metabolites contained in a biological sample. This is part I of a review intending to give an overview of the state of the art of major metabolic phenotyping technologies. Furthermore, their inherent analytical advantages and limits regarding experimental design, sample handling, standardization and workflow challenges are discussed.
Collapse
Affiliation(s)
- Abdellah Tebani
- Department of Metabolic Biochemistry, Rouen University Hospital, 76000, Rouen, France
- Normandie Université, UNIROUEN, CHU Rouen, IRIB, INSERM U1245, 76000, Rouen, France
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000, Rouen, France
| | - Carlos Afonso
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000, Rouen, France
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, 76000, Rouen, France.
- Normandie Université, UNIROUEN, CHU Rouen, IRIB, INSERM U1245, 76000, Rouen, France.
| |
Collapse
|
13
|
Gray NE, Alcazar Magana A, Lak P, Wright KM, Quinn J, Stevens JF, Maier CS, Soumyanath A. Centella asiatica - Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2018; 17:161-194. [PMID: 31736679 PMCID: PMC6857646 DOI: 10.1007/s11101-017-9528-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/17/2017] [Indexed: 05/18/2023]
Abstract
This review describes in detail the phytochemistry and neurological effects of the medicinal herb Centella asiatica (L.) Urban. C. asiatica is a small perennial plant that grows in moist, tropical and sub-tropical regions throughout the world. Phytochemicals identified from C. asiatica to date include isoprenoids (sesquiterpenes, plant sterols, pentacyclic triterpenoids and saponins) and phenylpropanoid derivatives (eugenol derivatives, caffeoylquinic acids, and flavonoids). Contemporary methods for fingerprinting and characterization of compounds in C. asiatica extracts include liquid chromatography and/or ion mobility spectrometry in conjunction with high-resolution mass spectrometry. Multiple studies in rodent models, and a limited number of human studies support C. asiatica's traditional reputation as a cognitive enhancer, as well as its anxiolytic and anticonvulsant effects. Neuroprotective effects of C.asiatica are seen in several in vitro models, for example against beta amyloid toxicity, and appear to be associated with increased mitochondrial activity, improved antioxidant status, and/or inhibition of the pro-inflammatory enzyme, phospholipase A2. Neurotropic effects of C. asiatica include increased dendritic arborization and synaptogenesis, and may be due to modulations of signal transduction pathways such as ERK1/2 and Akt. Many of these neurotropic and neuroprotective properties of C.asiatica have been associated with the triterpene compounds asiatic acid, asiaticoside and madecassoside. More recently, caffeoylquinic acids are emerging as a second important group of active compounds in C. asiatica, with the potential of enhancing the Nrf2-antioxidant response pathway. The absorption, distribution, metabolism and excretion of the triterpenes, caffeoylquinic acids and flavonoids found in C. asiatica have been studied in humans and animal models, and the compounds or their metabolites found in the brain. This review highlights the remarkable potential for C. asiatica extracts and derivatives to be used in the treatment of neurological conditions, and considers the further research needed to actualize this possibility.
Collapse
Affiliation(s)
- Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
| | | | - Parnian Lak
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331
| | - Kirsten M. Wright
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
| | - Joseph Quinn
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
- Department of Neurology and Parkinson’s Disease Research Education and Clinical Care Center (PADRECC),
Portland Veterans Affairs Medical Center, Portland, OR, USA 97239
| | - Jan F. Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331
| | - Claudia S. Maier
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331
| | - Amala Soumyanath
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
14
|
Wang YQ, Hu LP, Liu GM, Zhang DS, He HJ. Evaluation of the Nutritional Quality of Chinese Kale (Brassica alboglabra Bailey) Using UHPLC-Quadrupole-Orbitrap MS/MS-Based Metabolomics. Molecules 2017; 22:E1262. [PMID: 28749430 PMCID: PMC6152293 DOI: 10.3390/molecules22081262] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022] Open
Abstract
Chinese kale (Brassica alboglabra Bailey) is a widely consumed vegetable which is rich in antioxidants and anticarcinogenic compounds. Herein, we used an untargeted ultra-high-performance liquid chromatography (UHPLC)-Quadrupole-Orbitrap MS/MS-based metabolomics strategy to study the nutrient profiles of Chinese kale. Seven Chinese kale cultivars and three different edible parts were evaluated, and amino acids, sugars, organic acids, glucosinolates and phenolic compounds were analysed simultaneously. We found that two cultivars, a purple-stem cultivar W1 and a yellow-flower cultivar Y1, had more health-promoting compounds than others. The multivariate statistical analysis results showed that gluconapin was the most important contributor for discriminating both cultivars and edible parts. The purple-stem cultivar W1 had higher levels of some phenolic acids and flavonoids than the green stem cultivars. Compared to stems and leaves, the inflorescences contained more amino acids, glucosinolates and most of the phenolic acids. Meanwhile, the stems had the least amounts of phenolic compounds among the organs tested. Metabolomics is a powerful approach for the comprehensive understanding of vegetable nutritional quality. The results provide the basis for future metabolomics-guided breeding and nutritional quality improvement.
Collapse
Affiliation(s)
- Ya-Qin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 10097, China.
| | - Li-Ping Hu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 10097, China.
| | - Guang-Min Liu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 10097, China.
| | - De-Shuang Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 10097, China.
| | - Hong-Ju He
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 10097, China.
| |
Collapse
|
15
|
Gu EJ, Kim DW, Jang GJ, Song SH, Lee JI, Lee SB, Kim BM, Cho Y, Lee HJ, Kim HJ. Mass-based metabolomic analysis of soybean sprouts during germination. Food Chem 2017; 217:311-319. [PMID: 27664639 DOI: 10.1016/j.foodchem.2016.08.113] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 07/06/2016] [Accepted: 08/27/2016] [Indexed: 02/07/2023]
Abstract
We investigated the metabolite profile of soybean sprouts at 0, 1, 2, 3, and 4days after germination using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-MS (LC-MS) to understand the relationship between germination and nutritional quality. Data were analyzed by partial least squares-discriminant analysis (PLS-DA), and sprout samples were separated successfully using their PLS-DA scores. Fifty-eight metabolites, including macromolecular derivatives related to energy production, amino acids, myo-inositol metabolites, phytosterols, antioxidants, isoflavones, and soyasaponins, contributed to the separation. Amino acids, myo-inositol metabolites, isoflavone aglycones, B soyasaponins, antioxidants, and phytosterols, associated with health benefits and/or taste quality, increased with germination time while isoflavone glycosides and DDMP soyasaponins decreased. Based on these metabolites, the metabolomic pathway associated with energy production in soybean sprouts is suggested. Our data suggest that sprouting is a useful processing step to improve soybean nutritional quality, and metabolomic analysis is useful in understanding nutritional change during sprouting.
Collapse
Affiliation(s)
- Eun-Ji Gu
- Division of Applied Life Sciences (BK21 plus), Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongsang, Republic of Korea
| | - Dong Wook Kim
- Division of Applied Life Sciences (BK21 plus), Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongsang, Republic of Korea
| | - Gwang-Ju Jang
- Division of Applied Life Sciences (BK21 plus), Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongsang, Republic of Korea
| | - Seong Hwa Song
- Division of Applied Life Sciences (BK21 plus), Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongsang, Republic of Korea
| | - Jae-In Lee
- Division of Applied Life Sciences (BK21 plus), Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongsang, Republic of Korea
| | - Sang Bong Lee
- Division of Applied Life Sciences (BK21 plus), Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongsang, Republic of Korea
| | - Bo-Min Kim
- Division of Applied Life Sciences (BK21 plus), Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongsang, Republic of Korea
| | - Yeongrae Cho
- Division of Applied Life Sciences (BK21 plus), Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongsang, Republic of Korea
| | - Hyeon-Jeong Lee
- Division of Applied Life Sciences (BK21 plus), Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongsang, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Sciences (BK21 plus), Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongsang, Republic of Korea; Department of Food Science & Technology, and Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongsang, Republic of Korea.
| |
Collapse
|
16
|
Tebani A, Abily-Donval L, Afonso C, Marret S, Bekri S. Clinical Metabolomics: The New Metabolic Window for Inborn Errors of Metabolism Investigations in the Post-Genomic Era. Int J Mol Sci 2016; 17:ijms17071167. [PMID: 27447622 PMCID: PMC4964538 DOI: 10.3390/ijms17071167] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 12/29/2022] Open
Abstract
Inborn errors of metabolism (IEM) represent a group of about 500 rare genetic diseases with an overall estimated incidence of 1/2500. The diversity of metabolic pathways involved explains the difficulties in establishing their diagnosis. However, early diagnosis is usually mandatory for successful treatment. Given the considerable clinical overlap between some inborn errors, biochemical and molecular tests are crucial in making a diagnosis. Conventional biological diagnosis procedures are based on a time-consuming series of sequential and segmented biochemical tests. The rise of “omic” technologies offers holistic views of the basic molecules that build a biological system at different levels. Metabolomics is the most recent “omic” technology based on biochemical characterization of metabolites and their changes related to genetic and environmental factors. This review addresses the principles underlying metabolomics technologies that allow them to comprehensively assess an individual biochemical profile and their reported applications for IEM investigations in the precision medicine era.
Collapse
Affiliation(s)
- Abdellah Tebani
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen 76031, France.
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen 76000, France.
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, Rouen 76000, France.
| | - Lenaig Abily-Donval
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen 76000, France.
- Department of Neonatal Pediatrics and Intensive Care, Rouen University Hospital, Rouen 76031, France.
| | - Carlos Afonso
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, Rouen 76000, France.
| | - Stéphane Marret
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen 76000, France.
- Department of Neonatal Pediatrics and Intensive Care, Rouen University Hospital, Rouen 76031, France.
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen 76031, France.
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen 76000, France.
| |
Collapse
|
17
|
Tebani A, Schmitz-Afonso I, Rutledge DN, Gonzalez BJ, Bekri S, Afonso C. Optimization of a liquid chromatography ion mobility-mass spectrometry method for untargeted metabolomics using experimental design and multivariate data analysis. Anal Chim Acta 2016; 913:55-62. [DOI: 10.1016/j.aca.2016.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 01/10/2023]
|