1
|
Alamoudi AJ, Nazeer M, Shah N, Ullah S, Alshamrani M, Rizg WY, Ashour OM, Abdel-naim AB, Shah AJ. Diuretic effects of Hecogenin and Hecogenin acetate via aldosterone synthase inhibition. Saudi Pharm J 2024; 32:102105. [PMID: 38873334 PMCID: PMC11170188 DOI: 10.1016/j.jsps.2024.102105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Hecogenin (HEC) is a steroidal saponin found in many plant species and serves as a precursor for steroidal drugs. The diuretic effects of HEC and its derivative, hecogenin acetate (HA), remain largely unexplored. The present study aimed to explore the potential diuretic effects of HEC and HA compared to furosemide (FUR) and spironolactone (SPIR). Additionally, the study aimed to explore the underlying mechanism particularly focusing on aldosterone synthase gene expression. Fifty-four Sprague-Dawley rats were allocated into nine groups (Group 1-9). Group 1 (control) received the vehicle, Groups 2 received FUR 10 mg/kg, Group 3, 4, and 5 were given HEC, while Groups 6, 7 and 8 received HA i.p at doses of 5, 10, and 25 mg/kg, respectively. Group 9 received SPIR i.p at the dose of 25 mg/kg. Urine volume, diuretic index and diuretic activity were monitored at 1, 2, 3, 4, 5, 6, and 24 h post-administration. Treatment was given daily for seven days. After that, rats were sacrificed and blood was collected for serum electrolytes determination. Adrenal glands were dissected out for gene expression studies. The results revealed that HEC and HA at the administered doses significantly and dose-dependently increased urine and electrolyte excretion. These results were primarily observed at 25 mg/kg of each compound. Gene expression studies demonstrated a dose-dependent reduction in aldosterone synthase gene expression, suggesting aldosterone synthesis inhibition as a potential mechanism for their diuretic activity. Notably, HA exhibited more pronounced diuretic effects surpassing those of HEC. This enhanced diuretic activity of HA can be attributed to its stronger impact on aldosterone synthase inhibition. These findings offer valuable insights into the diuretic effects of both HEC and HA along with their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Maria Nazeer
- Pharmacogenetics Research Lab, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Nabi Shah
- Pharmacogenetics Research Lab, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Saif Ullah
- Pharmacogenetics Research Lab, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama M. Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ashraf B. Abdel-naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdul Jabbar Shah
- Pharmacogenetics Research Lab, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| |
Collapse
|
2
|
Lu S, Zhong J, Zhang Y, Huang K, Wu M, Zhou Y, Li Q, Chen Z, Zhang S, Zhou H. CYP17A1 Polymorphisms Are Linked to the Risk of Coronary Heart Disease in a Case-Control Study. J Cardiovasc Pharmacol 2020; 74:98-104. [PMID: 31356544 DOI: 10.1097/fjc.0000000000000687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Cytochrome P450 17A1 (CYP17A1) catalyzes the formation and metabolism of steroid hormones and is required for cortisol and androgens. There is increasing evidence that CYP17A1 plays an important role in the development of coronary heart disease (CHD). However, the association of CYP17A1 polymorphisms and CHD susceptibility is still not clear. METHODS We conducted a case-control study with 396 CHD cases and 461 healthy controls from Hainan province, China. Using the Agena MassARRAY platform, we genotyped 4 genetic variants (rs3740397, rs1004467, rs4919687, and rs3781286) in CYP17A1. Logistic regression analysis was used to assess the association of CYP17A1 polymorphisms with CHD risk by odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS It showed that A allele of CYP17A1 rs4919687 carried with a 1.59-fold increased risk of CHD (OR = 1.59; 95% CI = 1.26-1.99; P < 0.001). Also, rs4919687 was significantly associated with CHD risk under various models (homozygote: OR = 3.60; 95% CI = 1.64-7.83; P = 0.001; dominant: OR = 1.51; 95% CI = 1.06-2.13; P = 0.021; recessive: OR = 3.28; 95% CI = 1.51-7.14; P = 0.003; additive: OR = 1.56; 95% CI = 1.17-2.07; P = 0.002). Moreover, analysis showed that Ars1004467 Ars4919687 haplotype was a protective factor of CHD (OR = 0.64; 95% CI = 0.48-0.86; P = 0.002). CONCLUSIONS Our study suggests that CYP17A1 polymorphisms are associated with CHD susceptibility in the Hainan Han Chinese population.
Collapse
Affiliation(s)
- Shijuan Lu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Department of Cardiology, Haikou People's Hospital, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Jianghua Zhong
- Department of Cardiology, Haikou People's Hospital, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yingai Zhang
- Central Laboratory, Haikou People's Hospital, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Kang Huang
- Department of Cardiology, Haikou People's Hospital, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Miao Wu
- Department of Cardiology, Haikou People's Hospital, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yilei Zhou
- Department of Cardiology, Haikou People's Hospital, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Qiang Li
- Department of Cardiology, Haikou People's Hospital, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Zibin Chen
- Department of Cardiology, Haikou People's Hospital, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Shufang Zhang
- Central Laboratory, Haikou People's Hospital, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| |
Collapse
|
3
|
Cao P, Miao B, Xu Y, Fan Q, Zhang Q, Zhang G, Zhou C, Xu Y. Role of gene polymorphisms related to progesterone elevation in women undergoing long GnRH agonist protocols. Reprod Biomed Online 2020; 40:381-392. [PMID: 32204850 DOI: 10.1016/j.rbmo.2019.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/27/2019] [Accepted: 12/10/2019] [Indexed: 11/29/2022]
Abstract
RESEARCH QUESTION Can single-nucleotide polymorphisms (SNP) of genes related to progesterone synthesis predict the risk of premature serum progesterone elevation in women undergoing gonadotrophin-releasing hormone agonist protocols for ovarian stimulation? DESIGN A total of 765 women were divided into high progesterone and normal progesterone groups according to progesterone concentration on the day of human chorionic gonadotrophin (HCG) administration, with the 75th percentile as the threshold between the group. Associations were analysed of genetic information from whole exome sequencing and the clinical characteristics of the two groups to identify the relationship between SNP, haplotypes and serum progesterone elevation. RESULTS Among 40 common SNP of eight genes (FSHR, LHCGR, ESR1, ESR2, PGR, HSD3B1, CYP11A1 and CYP17A1), no statistical significance between the high and normal progesterone groups was identified in the distribution of genotypes and allele frequencies after multiple test correction to adjust the false discovery rate (PFDR > 0.05). When compared with the most common haplotypes of each gene, haplotype GAAG in CYP17A1 was associated with a 1.44-fold increased risk of progesterone elevation (95% confidence interval [CI] 1.22-1.69, PFDR < 0.001), while haplotypes of the following genes showed a decreased risk of progesterone elevation: haplotype CC in FSHR and LHCGR (0.66-fold, PFDR = 0.020, and 0.64-fold, PFDR < 0.001, respectively), CA in ESR1 (0.90-fold, PFDR < 0.001), TCTGG in ESR2 (0.92-fold, PFDR = 0.007) and GAACC in HSD3B1 (0.42-fold, PFDR < 0.001). CONCLUSIONS Polymorphism in genes involved in enzymes or hormone receptors in the progesterone synthesis pathway may have a role in modifying risk of serum progesterone elevation.
Collapse
Affiliation(s)
- Ping Cao
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Benyu Miao
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Yan Xu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Qi Fan
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Qian Zhang
- Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Guirong Zhang
- Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Canquan Zhou
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Yanwen Xu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Cuevas S, Villar VAM, Jose PA. Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation. THE PHARMACOGENOMICS JOURNAL 2019; 19:315-336. [PMID: 30723314 PMCID: PMC6650341 DOI: 10.1038/s41397-019-0082-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/19/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023]
Abstract
Hypertension is the most prevalent cause of cardiovascular disease and kidney failure, but only about 50% of patients achieve adequate blood pressure control, in part, due to inter-individual genetic variations in the response to antihypertensive medication. Significant strides have been made toward the understanding of the role of reactive oxygen species (ROS) in the regulation of the cardiovascular system. However, the role of ROS in human hypertension is still unclear. Polymorphisms of some genes involved in the regulation of ROS production are associated with hypertension, suggesting their potential influence on blood pressure control and response to antihypertensive medication. This review provides an update on the genes associated with the regulation of ROS production in hypertension and discusses the controversies on the use of antioxidants in the treatment of hypertension, including the antioxidant effects of antihypertensive drugs.
Collapse
Affiliation(s)
- Santiago Cuevas
- Center for Translational Science, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010, USA.
| | - Van Anthony M Villar
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| |
Collapse
|
5
|
Peng Z, Xueb G, Chen W, Xia S. Environmental inhibitors of the expression of cytochrome P450 17A1 in mammals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 69:16-25. [PMID: 30921671 DOI: 10.1016/j.etap.2019.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 05/23/2023]
Abstract
Cytochrome P450 17A1 (CYP17A1; EC: 1.14.14.19) is a critically important bifunctional enzyme with nicotinamide adenine dinucleotide phosphate (NADPH) as its cofactor that catalyzes the formation of all endogenous androgens. Its hydroxylase activity catalyzes the 17α-hydroxylation of pregnenolone (PREG)/progesterone (P4) to 17α-OH-pregnenolone/17α-OH-progesterone, and its 17,20-lyase activity converts 17α-OH-pregnenolone/17α-OH-progesterone to dehydroepiandrosterone/androstenedione. Androgens are required for male reproductive development, so androgen deficiency resulting from CYP17A1 inhibition may lead to reproductive disorders. There has been some advances on the study of environmental chemicals inhibiting mammalian CYP17A1 expression but no related review was available so we think it now necessary to review their characteristics and inhibiting properties.
Collapse
Affiliation(s)
- Zhiheng Peng
- Department of Clinical Laboratory Center, The second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Guoqiang Xueb
- Second Provincial People's Hospital of Gansu, Lanzou, Gansu 730000, China.
| | - Wenci Chen
- Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, 32500, China.
| | - Shenglong Xia
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 32500, China.
| |
Collapse
|
6
|
Azam AB, Azizan EAB. Brief Overview of a Decade of Genome-Wide Association Studies on Primary Hypertension. Int J Endocrinol 2018; 2018:7259704. [PMID: 29666641 PMCID: PMC5831899 DOI: 10.1155/2018/7259704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022] Open
Abstract
Primary hypertension is widely believed to be a complex polygenic disorder with the manifestation influenced by the interactions of genomic and environmental factors making identification of susceptibility genes a major challenge. With major advancement in high-throughput genotyping technology, genome-wide association study (GWAS) has become a powerful tool for researchers studying genetically complex diseases. GWASs work through revealing links between DNA sequence variation and a disease or trait with biomedical importance. The human genome is a very long DNA sequence which consists of billions of nucleotides arranged in a unique way. A single base-pair change in the DNA sequence is known as a single nucleotide polymorphism (SNP). With the help of modern genotyping techniques such as chip-based genotyping arrays, thousands of SNPs can be genotyped easily. Large-scale GWASs, in which more than half a million of common SNPs are genotyped and analyzed for disease association in hundreds of thousands of cases and controls, have been broadly successful in identifying SNPs associated with heart diseases, diabetes, autoimmune diseases, and psychiatric disorders. It is however still debatable whether GWAS is the best approach for hypertension. The following is a brief overview on the outcomes of a decade of GWASs on primary hypertension.
Collapse
Affiliation(s)
- Afifah Binti Azam
- Department of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Elena Aisha Binti Azizan
- Department of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Li Q, Gao T, Yuan Y, Wu Y, Huang Q, Xie F, Ran P, Sun L, Xiao C. Association of CYP17A1 Genetic Polymorphisms and Susceptibility to Essential Hypertension in the Southwest Han Chinese Population. Med Sci Monit 2017; 23:2488-2499. [PMID: 28537227 PMCID: PMC5450854 DOI: 10.12659/msm.902109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background The CYP17A1 gene encodes for cytochrome P450 enzyme CYP17A1, which is involved with the steroidogenic pathway including mineralocorticoids. The CYP17A1 polymorphisms might affect enzyme activity, then leading to a state of mineralocorticoid 11-deoxycorticosterone excess characterized by hypertension, suppressed plasma renin activity, and low aldosterone concentrations. The aim of this study was to investigate the contribution of CYP17A1 polymorphisms in inducing the susceptibility to essential hypertension among the Southwest Han Chinese population. Material/Methods Eight single nucleotide polymorphisms of CYP17A1 were genotyped in a case-control study for samples by polymerase chain reaction-restriction fragment length polymorphism analysis. Results The polymorphisms rs11191548 and rs4919687 were significantly associated with hypertension risk, which was confirmed by systolic and diastolic blood pressure distribution analyses between different genotype groups, and these two polymorphisms were found in linkage disequilibrium. The rs4919687 polymorphism was estimated to cause the destruction of exonic splicing silencer (ESR and Motif 3) sites and to transform the transcription factor AREB6 binding site, respectively, in the bioinformatics analyses. The haplotypes rs4919686A-rs3740397G -rs4919687C-rs743572C-rs11191548C and rs4919686A-rs3740397G-rs4919687T-rs743572C- rs11191548T were found to be susceptible to essential hypertension. Conclusions Our findings suggest that the CYP17A1 polymorphisms could be a genetic risk factor for essential hypertension among the Yunnan Han Chinese population, which would have implications for the treatment of this complex disorder.
Collapse
Affiliation(s)
- Qian Li
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Tangxin Gao
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Yuncang Yuan
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Yanrui Wu
- Department of Cell Biology and Genetics, Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Qionglin Huang
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Fei Xie
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Pengzhan Ran
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Lijuan Sun
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Chunjie Xiao
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| |
Collapse
|
8
|
Diver LA, MacKenzie SM, Fraser R, McManus F, Freel EM, Alvarez-Madrazo S, McClure JD, Friel EC, Hanley NA, Dominiczak AF, Caulfield MJ, Munroe PB, Connell JM, Davies E. Common Polymorphisms at the CYP17A1 Locus Associate With Steroid Phenotype: Support for Blood Pressure Genome-Wide Association Study Signals at This Locus. Hypertension 2016; 67:724-732. [PMID: 26902494 DOI: 10.1161/hypertensionaha.115.06925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/29/2016] [Indexed: 01/11/2023]
Abstract
Genome-wide association studies implicate the CYP17A1 gene in human blood pressure regulation although the causative polymorphisms are as yet unknown. We sought to identify common polymorphisms likely to explain this association. We sequenced the CYP17A1 locus in 60 normotensive individuals and observed 24 previously identified single-nucleotide polymorphisms with minor allele frequency >0.05. From these, we selected, for further studies, 7 polymorphisms located ≤ 2 kb upstream of the CYP17A1 transcription start site. In vitro reporter gene assays identified 3 of these (rs138009835, rs2150927, and rs2486758) as having significant functional effects. We then analyzed the association between the 7 polymorphisms and the urinary steroid metabolites in a hypertensive cohort (n=232). Significant associations included that of rs138009835 with aldosterone metabolite excretion; rs2150927 associated with the ratio of tetrahydrodeoxycorticosterone to tetrahydrodeoxycortisol, which we used as an index of 17α-hydroxylation. Linkage analysis showed rs138009835 to be the only 1 of the 7 polymorphisms in strong linkage disequilibrium with the blood pressure-associated polymorphisms identified in the previous studies. In conclusion, we have identified, characterized, and investigated common polymorphisms at the CYP17A1 locus that have functional effects on gene transcription in vitro and associate with corticosteroid phenotype in vivo. Of these, rs138009835--which we associate with changes in aldosterone level--is in strong linkage disequilibrium with polymorphisms linked by genome-wide association studies to blood pressure regulation. This finding clearly has implications for the development of high blood pressure in a large proportion of the population and justifies further investigation of rs138009835 and its effects.
Collapse
Affiliation(s)
- Louise A Diver
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Scott M MacKenzie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Robert Fraser
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Frances McManus
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - E Marie Freel
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Samantha Alvarez-Madrazo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - John D McClure
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Elaine C Friel
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Neil A Hanley
- Centre for Endocrinology & Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark J Caulfield
- William Harvey Research Institute and the Barts National Institute for Health Research Biomedical Research Unit, Queen Mary University of London, London, United Kingdom
| | - Patricia B Munroe
- William Harvey Research Institute and the Barts National Institute for Health Research Biomedical Research Unit, Queen Mary University of London, London, United Kingdom
| | - John M Connell
- Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, United Kingdom
| | - Eleanor Davies
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|