1
|
Wang J, Zheng P, Yu J, Yang X, Zhang J. Rational design of small-sized peptidomimetic inhibitors disrupting protein-protein interaction. RSC Med Chem 2024; 15:2212-2225. [PMID: 39026653 PMCID: PMC11253864 DOI: 10.1039/d4md00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/04/2024] [Indexed: 07/20/2024] Open
Abstract
Protein-protein interactions are fundamental to nearly all biological processes. Due to their structural flexibility, peptides have emerged as promising candidates for developing inhibitors targeting large and planar PPI interfaces. However, their limited drug-like properties pose challenges. Hence, rational modifications based on peptide structures are anticipated to expedite the innovation of peptide-based therapeutics. This review comprehensively examines the design strategies for developing small-sized peptidomimetic inhibitors targeting PPI interfaces, which predominantly encompass two primary categories: peptidomimetics with abbreviated sequences and low molecular weights and peptidomimetics mimicking secondary structural conformations. We have also meticulously detailed several instances of designing and optimizing small-sized peptidomimetics targeting PPIs, including MLL1-WDR5, PD-1/PD-L1, and Bak/Bcl-xL, among others, to elucidate the potential application prospects of these design strategies. Hopefully, this review will provide valuable insights and inspiration for the future development of PPI small-sized peptidomimetic inhibitors in pharmaceutical research endeavors.
Collapse
Affiliation(s)
- Junyuan Wang
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Xiuyan Yang
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University Shanghai 200025 China
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| |
Collapse
|
2
|
Iversen PL, Kipshidze N, Kipshidze N, Dangas G, Ramacciotti E, Kakabadze Z, Fareed J. A novel therapeutic vaccine targeting the soluble TNFα receptor II to limit the progression of cardiovascular disease: AtheroVax™. Front Cardiovasc Med 2023; 10:1206541. [PMID: 37534280 PMCID: PMC10392828 DOI: 10.3389/fcvm.2023.1206541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
The burden of atherosclerotic cardiovascular disease contributes to a large proportion of morbidity and mortality, globally. Vaccination against atherosclerosis has been proposed for over 20 years targeting different mediators of atherothrombosis; however, these have not been adequately evaluated in human clinical trials to assess safety and efficacy. Inflammation is a driver of atherosclerosis, but inflammatory mediators are essential components of the immune response. Only pathogenic forms of sTNFR2 are acted upon while preserving the membrane-bound (wild-type) TNFR2 contributions to a non-pathogenic immune response. We hypothesize that the inhibition of sTNRF2 will be more specific and offer long-term treatment options. Here we describe pre-clinical findings of an sTNFR2-targeting peptide vaccine (AtheroVax™) in a mouse model. The multiple pathways to synthesis of the soluble TNFRII receptor (sTNFRII) were identified as sTNFRII(PC), sTNFRII(Δ7), and sTNFRII(Δ7,9). The sTNFRII(Δ7) peptide, NH2-DFALPVEKPLCLQR-COOH is specific to sTNFR2 based on an mRNA splice-variant in which exon 6 is joined to exon 8. The role of sTNFRII(Δ7) as a mediator of prolonged TNFα activity by preventing degradation and clearance was investigated. Inflammation is a critical driver of onset, progression and expansion of atherosclerosis. The TNFα ligand represents a driver of inflammation that is mediated by a splice variant of TNFR2, referred to as sTNFRII(Δ7). The multiple forms of TNFRII, both membrane bound and soluble, are associated with distinctly different phenotypes. sTNFRII(PC) and sTNFRII(Δ7) are not equivalent to etanercept because they lack a clearance mechanism. The unique peptide associated with sTNFRII(Δ7) contains a linear B-cell epitope with amino acids from both exon 6 and exon 8 supporting the vaccine design. Animal studies to evaluate the vaccine are ongoing, and results will be forthcoming. We describe a peptide vaccine targeting sTNFR2 in limiting the progression of atherosclerosis. A therapeutic vaccine limiting the progression of atherosclerosis will greatly contribute to the reduction in morbidity and mortality from cardiovascular disease. It is likely the vaccine will be used in combination with the current standards of care and lifestyle modifications.
Collapse
Affiliation(s)
- Patrick L. Iversen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | | | - Nodar Kipshidze
- Mailman School of Public Health, Columbia University, New York, NY, United States
| | - George Dangas
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Zurab Kakabadze
- Head Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| | - Jawed Fareed
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL, United States
| |
Collapse
|
3
|
Chen J, Zhang M, Zou H, Aniagu S, Jiang Y, Chen T. Synergistic protective effects of folic acid and resveratrol against fine particulate matter-induced heart malformations in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113825. [PMID: 36068752 DOI: 10.1016/j.ecoenv.2022.113825] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Ambient fine particulate matter (PM2.5) is a major environmental health problem worldwide, and recent studies indicate that maternal PM2.5 exposure is closely associated with congenital heart diseases (CHDs) in offspring. We previously found that supplementation with folic acid (FA) or Resveratrol (RSV) could protect against heart defects in zebrafish embryos exposed to extractable organic matter (EOM) from PM2.5 by targeting aryl hydrocarbon receptor (AHR) signaling and reactive oxygen species (ROS) production respectively. Thus, we hypothesized that FA combined with RSV may have a synergistic protective effect against PM2.5-induced heart defects. To test our hypothesis, we treated zebrafish embryos with EOM in the presence or absence of FA, RSV or a combination of both. We found that RSV and FA showed a clear synergistic protection against EOM-induced heart defects in zebrafish embryos. Further studies showed that FA and RSV suppressed EOM-induced AHR activity and ROS generation respectively. Although only RSV inhibited EOM-induced apoptosis, FA enhanced the inhibitory effect of RSV. Moreover, vitamin C (VC), a typical antioxidant, also exhibits a synergistic inhibitory effect with FA on EOM-induced apoptosis and heart defects. In conclusion, supplementation with FA and RSV have a synergistic protective effect against PM2.5-induced heart defects in zebrafish embryos by targeting AHR activity and ROS production respectively. Our results indicate that, in the presence of antioxidants, FA even at a low concentration level could protect against the high risk of CHDs caused by air pollution.
Collapse
Affiliation(s)
- Jin Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Mingxuan Zhang
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Hongmei Zou
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Clavere NG, Alqallaf A, Rostron KA, Parnell A, Mitchell R, Patel K, Boateng SY. Inhibition of activin A receptor signalling attenuates age-related pathological cardiac remodelling. Dis Model Mech 2022; 15:275323. [PMID: 35380160 PMCID: PMC9118092 DOI: 10.1242/dmm.049424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
In the heart, ageing is associated with DNA damage, oxidative stress, fibrosis and activation of the activin signalling pathway, leading to cardiac dysfunction. The cardiac effects of activin signalling blockade in progeria are unknown. This study investigated the cardiac effects of progeria induced by attenuated levels of Ercc1, which is required for DNA excision and repair, and the impact of activin signalling blockade using a soluble activin receptor type IIB (sActRIIB). DNA damage and oxidative stress were significantly increased in Ercc1Δ/− hearts, but were reduced by sActRIIB treatment. sActRIIB treatment improved cardiac systolic function and induced cardiomyocyte hypertrophy in Ercc1Δ/− hearts. RNA-sequencing analysis showed that in Ercc1Δ/− hearts, there was an increase in pro-oxidant and a decrease in antioxidant gene expression, whereas sActRIIB treatment reversed this effect. Ercc1Δ/− hearts also expressed higher levels of anti-hypertrophic genes and decreased levels of pro-hypertrophic ones, which were also reversed by sActRIIB treatment. These results show for the first time that inhibition of activin A receptor signalling attenuates cardiac dysfunction, pathological tissue remodelling and gene expression in Ercc1-deficient mice and presents a potentially novel therapeutic target for heart diseases. Summary: Attenuated DNA repair is associated with pathological cardiac remodelling and gene expression. Much of this phenotype is attenuated by inhibition of the activin signalling pathway using soluble activin receptor treatment.
Collapse
Affiliation(s)
- Nicolas G Clavere
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Ali Alqallaf
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Kerry A Rostron
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Andrew Parnell
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Robert Mitchell
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Ketan Patel
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Samuel Y Boateng
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| |
Collapse
|
5
|
Bryzgalov LO, Korbolina EE, Damarov IS, Merkulova TI. The functional insight into the genetics of cardiovascular disease: results from the post-GWAS study. Vavilovskii Zhurnal Genet Selektsii 2022; 26:65-73. [PMID: 35342858 PMCID: PMC8892170 DOI: 10.18699/vjgb-22-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases (CVDs), the leading cause of death worldwide, generally refer to a range of pathological conditions with the involvement of the heart and the blood vessels. A sizable fraction of the susceptibility loci is known, but the underlying mechanisms have been established only for a small proportion. Therefore, there is an increasing need to explore the functional relevance of trait-associated variants and, moreover, to search for novel risk genetic variation. We have reported the bioinformatic approach allowing effective identification of functional non-coding variants by integrated analysis of genome-wide data. Here, the analysis of 1361 previously identified regulatory SNPs (rSNPs) was performed to provide new insights into cardiovascular risk. We found 773,471 coding co-segregating markers for input rSNPs using the 1000 Genomes Project. The intersection of GWAS-derived SNPs with a relevance to cardiovascular traits with these markers was analyzed within a window of 10 Kbp. The effects on the transcription factor (TF) binding sites were explored by DeFine models. Functional pathway enrichment and protein– protein interaction (PPI) network analyses were performed on the targets and the extended genes by STRING and DAVID. Eighteen rSNPs were functionally linked to cardiovascular risk. A significant impact on binding sites of thirteen TFs including those involved in blood cells formation, hematopoiesis, macrophage function, inflammation, and vasoconstriction was found in K562 cells. 21 rSNP gene targets and 5 partners predicted by PPI were enriched for spliceosome and endocytosis KEGG pathways, endosome sorting complex and mRNA splicing REACTOME pathways. Related Gene Ontology terms included mRNA splicing and processing, endosome transport and protein catabolic processes. Together, the findings provide further insight into the biological basis of CVDs and highlight the importance of the precise regulation of splicing and alternative splicing.
Collapse
Affiliation(s)
- L. O. Bryzgalov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. E. Korbolina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - I. S. Damarov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - T. I. Merkulova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
| |
Collapse
|
6
|
Moon J, Posada-Quintero HF, Kim I, Chon KH. Preliminary Analysis of the Risk Factor Identification Embedding Model for Cardiovascular Disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1946-1949. [PMID: 34891668 DOI: 10.1109/embc46164.2021.9630039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cardiovascular Disease (CVD) is responsible for a large part of healthcare costs every year, but susceptibility to it is affected by complex biological and physiological variables including patients' genetics and lifestyles. There has not been much work to develop a framework that incorporates these important and clinically relevant risk factors into a comprehensive model for CVD research. Moreover, the data labeling required to do so, such as annotating gene functions, is an extremely challenging, tedious, and time-consuming process. In this work, our goal was to develop and validate a risk factor embedding model, which incorporates genotype, phenotype without pre-labeled information to identify various risk factors of CVD. We hypothesize that (1) the knowledge background that does not require data labeling could be gathered from published abstract data, (2) the phenotype, genotype risk factors could be represented in an embedding vector space. We collected 1,363,682 published abstracts from PubMed using the keyword "heart" and 19,264 human gene names, then trained our model using the collected abstracts. We evaluated our CVD risk factor identification model using both intrinsic and extrinsic evaluations: for the intrinsic evaluation, we examined whether or not the captured top-10 words and genes have references related to the input query "myocardial infarction", as one of CVDs, and our model correctly identified them. For the extrinsic evaluation, we used our model to the dimensionality reduction task for classifications, and our method outperformed other popular methods. These results show the feasibility of our approach for disease-associated risk factors of CVD which incorporates genotype, phenotype.Clinical Relevance-Our model provides a comprehensive tool to incorporate various risk factors without any a priori data labeling knowledge for CVD. Our approach shows a potential to provide discovered knowledge that contributes to better understanding and treatment of CVD.
Collapse
|
7
|
Manjunatha B, Deekshitha B, Seo E, Kim J, Lee SJ. Developmental toxicity induced by particulate matter (PM 2.5) in zebrafish (Danio rerio) model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105928. [PMID: 34358787 DOI: 10.1016/j.aquatox.2021.105928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/18/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Contemporary research in epidemiology has found that being exposed to air pollution at an early stage of life has associations with both acute and chronic conditions of the multi-organs. Nevertheless, the reasons for this have yet to be fully explained. Because of this there is a need for a robust investigation into the damaging toxic influence of diesel particulate matter (PM2.5) on living organisms. This study is aimed to investigate the developmental toxicity of PM2.5 by using zebrafish (Danio rerio) embryo/larvae as a disease model and to understand the toxicity effects of PM2.5 on ecological environment more thoroughly. This research demonstrates that being exposed to PM2.5 leads to a significant increase in mortality, effective developmental morphology, reductions in hatching rates and lower heart rates in zebrafish. Additionally, it leads to increases in the length of string heart, area of pericardium, and apoptosis, reduces the number of normal intersegmental vessels (ISVs) and motor neurons in the trunk region and liver formation defects in zebrafish embryos. Investigation employing a scanning electron microscope demonstrates that being exposed to PM2.5 leads to damage in zebrafish larvae skin cell layers. Histological analysis demonstrates that when these larvae are treated with PM2.5 then abnormalities occur in the neurons, liver, heart, gills, brain, and eyes, and remarkable increase in in the cellular/subcellular levels of organelle dissolution. These findings are useful to help us understand the pathophysiological influence of being exposed to PM2.5 on the multi-organ defects of zebrafish. More research into which particular elements that make up diesel pollution contribute to this toxicity is needed so that the dangers to development can be further analysed.
Collapse
Affiliation(s)
- Bangeppagari Manjunatha
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - B Deekshitha
- Gandhi Medical College, Secunderabad, Telangana 500003, India
| | - Eunseok Seo
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jeongju Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Sang Joon Lee
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.
| |
Collapse
|
8
|
Yuan J, Wang JM, Li ZW, Zhang CS, Cheng B, Yang SH, Liu BT, Zhu LJ, Cai DJ, Yu SG. Full-length transcriptome analysis reveals the mechanism of acupuncture at PC6 improves cardiac function in myocardial ischemia model. Chin Med 2021; 16:55. [PMID: 34238326 PMCID: PMC8268520 DOI: 10.1186/s13020-021-00465-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022] Open
Abstract
Background The pathological process of myocardial ischemia (MI) is very complicated. Acupuncture at PC6 has been proved to be effective against MI injury, but the mechanism remains unclear. This study investigated the mechanism that underlies the effect of acupuncture on MI through full-length transcriptome. Methods Adult male C57/BL6 mice were randomly divided into control, MI, and PC6 groups. Mice in MI and PC6 group generated MI model by ligating the left anterior descending (LAD) coronary artery. The samples were collected 5 days after acupuncture treatment. Results The results showed that treatment by acupuncture improved cardiac function, decreased myocardial infraction area, and reduced the levels of cTnT and cTnI. Based on full-length transcriptome sequencing, 5083 differential expression genes (DEGs) and 324 DEGs were identified in the MI group and PC6 group, respectively. These genes regulated by acupuncture were mainly enriched in the inflammatory response pathway. Alternative splicing (AS) is a post-transcriptional action that contributes to the diversity of protein. In all samples, 8237 AS events associated with 1994 genes were found. Some differential AS-involved genes were enriched in the pathway related to heart disease. We also identified 602 new genes, 4 of which may the novel targets of acupuncture in MI. Conclusions Our findings suggest that the effect of acupuncture on MI may be based on the multi-level regulation of the transcriptome. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00465-8.
Collapse
Affiliation(s)
- Jing Yuan
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Jun-Meng Wang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Zhi-Wei Li
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Cheng-Shun Zhang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Bin Cheng
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Su-Hao Yang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Bai-Tong Liu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Li-Juan Zhu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Ding-Jun Cai
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China.
| | - Shu-Guang Yu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China.
| |
Collapse
|
9
|
Yu D, Zhu Z, Wang M, Ding X, Gui H, Ma J, Yan Y, Li G, Xu Q, Wang W, Mao C. Triterpenoid saponins from Ilex cornuta protect H9c2 cardiomyocytes against H2O2-induced apoptosis by modulating Ezh2 phosphorylation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113691. [PMID: 33321190 DOI: 10.1016/j.jep.2020.113691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ilex cornuta Lindl. et Paxt. (Aquifoliaceae family) belongs to the Ilex genus. The leaves of this plant are used for the popular herbal tea "Ku-Ding-Cha" in China due to their health benefits for sore throat, obesity and hypertension. Our previous studies have shown that the extract of Ilex cornuta root exerts cardioprotective effects in rat models of myocardial ischaemic injury, and several new kinds of triterpenoid saponins from Ilex cornuta (TSIC) have protective effects against hydrogen peroxide (H2O2)-induced cardiomyocyte injury. AIM OF THE STUDY The aim of this study was to clarify the underlying mechanisms by which TSIC protect against H2O2-induced cardiomyocyte injury. MATERIALS AND METHODS An H2O2-treated H9c2 cardiomyocyte line was used as an in vitro model of oxidation-damaged cardiomyocytes to evaluate the effects of TSIC. Apoptosis was detected with CCK-8 and annexin V assays and via analysis of the levels of apoptosis-associated proteins or genes. The underlying mechanisms related to Akt signalling, Ezh2 expression and activity, and ROS were clarified by Western blotting, quantitative PCR, flow cytometry and rescue experiments. RESULTS TSIC protected H9c2 cells from H2O2-induced apoptosis. This effect of TSIC was attributable to inhibition of Ezh2 activity, as exhibited by attenuation of H2O2-induced Akt signalling-dependent phosphorylation of Ezh2 at serine 21 (pEzh2S21) upon TSIC pretreatment. In addition, feedback pathway between Akt-dependent Ezh2 phosphorylation and ROS was involved in TSIC-mediated protection of H9c2 cells from apoptosis. CONCLUSIONS Our findings indicate a pivotal role of the pEzh2S21 network in TSIC-mediated protection against cardiomyocyte apoptosis, potentially providing evidence of the mechanism of TSIC in the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Danhong Yu
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Zengyan Zhu
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Mei Wang
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Xinyuan Ding
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, China
| | - Huan Gui
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Jin Ma
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Yinghui Yan
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Gang Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Qiongming Xu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Wenjuan Wang
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, 215000, China.
| | - Chenmei Mao
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
10
|
Deng K, Yao J, Huang J, Ding Y, Zuo J. Abnormal alternative splicing promotes tumor resistance in targeted therapy and immunotherapy. Transl Oncol 2021; 14:101077. [PMID: 33774500 PMCID: PMC8039720 DOI: 10.1016/j.tranon.2021.101077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal alternative splicing is involve in abnormal expression of genes in cancer. Abnormal alternative splicing events promote malignant progression of cancer. Abnormal alternative splicing develops tumor resistance to targeted therapy by changing the target point and signal transduction pathway. Abnormal alternative splicing develops tumor resistance to immunotherapy by changing cell surface antigens and protein structure.
Abnormally alternative splicing events are common hallmark of diverse types of cancers. Splicing variants with aberrant functions play an important role in cancer development. Most importantly, a growing body of evidence has supported that alternative splicing might play a significant role in the therapeutic resistance of tumors. Targeted therapy and immunotherapy are the future directions of tumor therapy; however, the loss of antigen targets on the tumor cells surface and alterations in drug efficacy have resulted in the failure of targeted therapy and immunotherapy. Interestingly, abnormal alternative splicing, as a strategy to regulate gene expression, is reportedly involved in the reprogramming of cell signaling pathways and epitopes on the tumor cell surface by changing splicing patterns of genes, thus rendering tumors resisted to targeted therapy and immunotherapy. Accordingly, increased knowledge regarding abnormal alternative splicing in tumors may help predict therapeutic resistance during targeted therapy and immunotherapy and lead to novel therapeutic approaches in cancer. Herein, we provide a brief synopsis of abnormal alternative splicing events in cancer progression and therapeutic resistance.
Collapse
Affiliation(s)
- Kun Deng
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Jingwei Yao
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jialu Huang
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Yubo Ding
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jianhong Zuo
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China; The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China; Clinical Laboratory, The Third Affiliated Hospital of University of South China, Hengyang, Hunan 421900, China.
| |
Collapse
|
11
|
Wu HY, Li QQ, Liang L, Qiu LL, Wei HW, Huang BY, Gang- C, He RQ, Huang ZG, Hou W, Hu QP, Pan SL. Prognostic alternative splicing signature in cervical squamous cell carcinoma. IET Syst Biol 2020; 14:314-322. [PMID: 33399095 PMCID: PMC8687194 DOI: 10.1049/iet-syb.2019.0095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/18/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
Basing on alternative splicing events (ASEs) databases, the authors herein aim to explore potential prognostic biomarkers for cervical squamous cell carcinoma (CESC). mRNA expression profiles and relevant clinical data of 223 patients with CESC were obtained from The Cancer Genome Atlas (TCGA). Correlated genes, ASEs and percent-splice-in (PSI) were downloaded from SpliceSeq, respectively. The PSI values of survival-associated alternative splicing events (SASEs) were used to construct the basis of a prognostic index (PI). A protein-protein interaction (PPI) network of genes related to SASEs was generated by STRING and analysed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Consequently, 41,776 ASEs were discovered in 19,724 genes, 2596 of which linked with 3669 SASEs. The PPI network of SASEs related genes revealed that TP53 and UBA52 were core genes. The low-risk group had a longer survival period than high-risk counterparts, both groups being defined according to PI constructed upon the top 20 splicing events or PI on the overall splicing events. The AUC value of ROC reached up to 0.88, demonstrating the prognostic potential of PI in CESC. These findings suggested that ASEs involve in the pathogenesis of CESC and may serve as promising prognostic biomarkers for this female malignancy.
Collapse
Affiliation(s)
- Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qi-Qi Li
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liang Liang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, People's Republic of China
| | - Lan-Lan Qiu
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hong-Wei Wei
- Department of Obstetrics and Gynecology, Women and Children Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bing-Ying Huang
- Department of Nephrology, Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chen Gang-
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Hou
- Department of Pediatrics, Guangxi Key Laboratory of Thalassemia Research, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qi-Ping Hu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
12
|
Ren F, Ji C, Huang Y, Aniagu S, Jiang Y, Chen T. AHR-mediated ROS production contributes to the cardiac developmental toxicity of PM2.5 in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:135097. [PMID: 31837856 DOI: 10.1016/j.scitotenv.2019.135097] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/03/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Recent studies have shown an association between maternal exposure to ambient fine particle matter (PM2.5) and congenital heart defects in the offspring, but the underlying molecular mechanisms are yet to be elucidated. Previously, we demonstrated that extractable organic matter (EOM) from PM2.5 induced heart defects in zebrafish embryos by activating the aromatic hydrocarbon receptor (AHR). Hence, we hypothesized that AHR mediates excessive reactive oxygen species (ROS) production, leading to the cardiac developmental toxicity of PM2.5. To test our hypothesis, we examined AHR activity and ROS levels in the heart of zebrafish embryos under a fluorescence microscope. mRNA expression levels were then quantified using qPCR whereas DNA damage and apoptosis were detected by immunofluorescence. Our results showed that the AHR inhibitor, CH223191 (CH) as well as the ROS scavenger, N-Acetyl-L-cysteine (NAC), significantly mitigated the PM2.5-induced cardiac malformations in zebrafish embryos. Furthermore, both CH and NAC diminished the EOM-elevated ROS generation, DNA damage and apoptosis in the test system. Incidentally, both CH and NAC attenuated the EOM-induced changes in the mRNA expression of genes involved in cardiac development (nkx2.5, sox9b), oxidative stress (nrf2a, nrf2b, gstp1, gstp2, sod2, ho1, cat) and apoptosis (p53, bax). We further confirmed that AHR activity is a necessary condition for EOM-induced ROS generation, DNA damage and apoptosis, through AHR knockdown. However, the ROS scavenger NAC did not counteract the EOM-induced AHR activity. In conclusion, our findings suggest that AHR mediates EOM-induced oxidative stress, resulting in DNA damage and apoptosis, thereby contributing to the cardiac developmental toxicity of PM2.5.
Collapse
Affiliation(s)
- Fei Ren
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- Medical College of Soochow University, Suzhou, China
| | - Yujie Huang
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
13
|
Gomez-Verjan JC, Vazquez-Martinez ER, Rivero-Segura NA, Medina-Campos RH. The RNA world of human ageing. Hum Genet 2018; 137:865-879. [DOI: 10.1007/s00439-018-1955-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
|
14
|
Abstract
The cyclic nucleotides cAMP and cGMP are well-characterized second messenger molecules regulating many important intracellular processes, such as differentiation, proliferation, and apoptosis. The latter is a highly regulated process of programmed cell death wherein several regulatory proteins, like those belonging to the Bcl-2 family, are involved. The initiation of apoptosis is regulated by three different pathways: the intrinsic or mitochondrial, the extrinsic, and the ER stress pathway. Recently, it has been published that the pyrimidine cyclic nucleotides cCMP and cUMP also function as second messenger molecules, and additionally have an effect on apoptosis signaling pathways. cCMP induced PKA-independent apoptosis via the intrinsic and ER-stress pathway in S49 mouse lymphoma cells, and cCMP as well as cUMP induced apoptosis in human HEL cells via the intrinsic pathway. However, in human K-562 cells, which are known to be multidrug-resistant, cCMP and cUMP had no effect. Summarized in this chapter are the initiation of apoptosis by cCMP and cUMP regarding the various apoptotic pathways, the enzymes involved in apoptosis, as well as the most relevant methods for the detection and examination of apoptosis and the corresponding signaling pathways.
Collapse
|
15
|
Deschênes M, Chabot B. The emerging role of alternative splicing in senescence and aging. Aging Cell 2017; 16:918-933. [PMID: 28703423 PMCID: PMC5595669 DOI: 10.1111/acel.12646] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
Deregulation of precursor mRNA splicing is associated with many illnesses and has been linked to age-related chronic diseases. Here we review recent progress documenting how defects in the machinery that performs intron removal and controls splice site selection contribute to cellular senescence and organismal aging. We discuss the functional association linking p53, IGF-1, SIRT1, and ING-1 splice variants with senescence and aging, and review a selection of splicing defects occurring in accelerated aging (progeria), vascular aging, and Alzheimer's disease. Overall, it is becoming increasingly clear that changes in the activity of splicing factors and in the production of key splice variants can impact cellular senescence and the aging phenotype.
Collapse
Affiliation(s)
- Mathieu Deschênes
- Department of Microbiology and Infectious DiseasesFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecJ1E 4K8Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious DiseasesFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecJ1E 4K8Canada
| |
Collapse
|
16
|
Tapia-Vieyra JV, Delgado-Coello B, Mas-Oliva J. Atherosclerosis and Cancer; A Resemblance with Far-reaching Implications. Arch Med Res 2017; 48:12-26. [PMID: 28577865 DOI: 10.1016/j.arcmed.2017.03.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/02/2017] [Indexed: 02/07/2023]
Abstract
Atherosclerosis and cancer are chronic diseases considered two of the main causes of death all over the world. Taking into account that both diseases are multifactorial, they share not only several important molecular pathways but also many ethiological and mechanistical processes from the very early stages of development up to the advanced forms in both pathologies. Factors involved in their progression comprise genetic alterations, inflammatory processes, uncontrolled cell proliferation and oxidative stress, as the most important ones. The fact that external effectors such as an infective process or a chemical insult have been proposed to initiate the transformation of cells in the artery wall and the process of atherogenesis, emphasizes many similarities with the progression of the neoplastic process in cancer. Deregulation of cell proliferation and therefore cell cycle progression, changes in the synthesis of important transcription factors as well as adhesion molecules, an alteration in the control of angiogenesis and the molecular similarities that follow chronic inflammation, are just a few of the processes that become part of the phenomena that closely correlates atherosclerosis and cancer. The aim of the present study is therefore, to provide new evidence as well as to discuss new approaches that might promote the identification of closer molecular ties between these two pathologies that would permit the recognition of atherosclerosis as a pathological process with a very close resemblance to the way a neoplastic process develops, that might eventually lead to novel ways of treatment.
Collapse
Affiliation(s)
| | - Blanca Delgado-Coello
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
17
|
Latorre E, Harries LW. Splicing regulatory factors, ageing and age-related disease. Ageing Res Rev 2017; 36:165-170. [PMID: 28456680 DOI: 10.1016/j.arr.2017.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
Alternative splicing is a co-transcriptional process, which allows for the production of multiple transcripts from a single gene and is emerging as an important control point for gene expression. Alternatively expressed isoforms often have antagonistic function and differential temporal or spatial expression patterns, yielding enormous plasticity and adaptability to cells and increasing their ability to respond to environmental challenge. The regulation of alternative splicing is critical for numerous cellular functions in both pathological and physiological conditions, and deregulated alternative splicing is a key feature of common chronic diseases. Isoform choice is controlled by a battery of splicing regulatory proteins, which include the serine arginine rich (SRSF) proteins and the heterogeneous ribonucleoprotein (hnRNP) classes of genes. These important splicing regulators have been implicated in age-related disease, and in the ageing process itself. This review will outline the important contribution of splicing regulator proteins to ageing and age-related disease.
Collapse
|
18
|
Sun Y, Su Q, Li L, Wang X, Lu Y, Liang J. MiR-486 regulates cardiomyocyte apoptosis by p53-mediated BCL-2 associated mitochondrial apoptotic pathway. BMC Cardiovasc Disord 2017; 17:119. [PMID: 28486954 PMCID: PMC5424355 DOI: 10.1186/s12872-017-0549-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/02/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cardiomyocyte apoptosis is a common pathological manifestation that occurs in several heart diseases. This study aimed to explore the mechanism of microRNA-486 (miR-486) in cardiomyocyte apoptosis by interfering with the p53-activated BCL-2 associated mitochondrial pathway. METHODS miR-486 mimics and inhibitors were transfected into the primary cardiomyocytes of suckling Sprague-Dawley rat pups, and H2O2 was used to induce apoptosis. Flow cytometry and TUNEL were both used to detect cardiomyocyte apoptosis, while the relative mRNA transcript and protein levels of miR-486, p53, Bbc3, BCL-2, and cleaved caspase-3 were detected using RT-PCR and western blot analysis, respectively. RESULTS miR-486 overexpression significantly decreased the expressions of p53, Bbc3 and cleaved caspase-3 (P < 0.05), and BCL-2 expression was significantly increased (P < 0.05), which in turn caused a significant decrease in the rate of cardiomyocyte apoptosis (P < 0.05). In contrast, miR-486 silencing resulted in an elevated rate of cardiomyocyte apoptosis (P < 0.05). CONCLUSION miR-486 may regulate cardiomyocyte apoptosis via p53-mediated BCL-2 associated mitochondrial apoptotic pathway. Therefore, up-regulating miR-486 expression in cardiomyocytes can effectively reduce the activation of the BCL-2 associated mitochondrial apoptotic pathway, consequently protecting cardiomyocytes.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qiang Su
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Xiantao Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yuanxi Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jiabao Liang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|