1
|
Liu C, Sun H, Zhang S, Li X, Ma L. Maggot kinase: A novel and cost-effective fibrinolytic enzyme from maggots. Int J Biol Macromol 2024:137350. [PMID: 39521217 DOI: 10.1016/j.ijbiomac.2024.137350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Maggot kinase, a novel fibrinolytic enzyme source, has been isolated from fly maggots and comprehensively characterized. Using CM-52 ion exchange chromatography and affinity chromatography, we obtained a highly purified and active form of the enzyme. In particular, the fibrinolytic activity of maggot kinase, evaluated using the fibrin plate method, was found to be 8.98 ± 0.08 × 105 U/mg, demonstrating significant efficacy. Further structural analysis using mass spectrometry revealed that maggot kinase consists of a primary sequence of 226 amino acid residues with a molecular weight of 22.91 kDa. In vitro thrombolytic assays demonstrated the enzyme's remarkable ability to degrade the essential fibrinogen subunits (α, β, and γ), thereby facilitating clot lysis. Notably, our studies in a mouse model underscored the significant in vivo thrombolytic activity of maggot kinase, demonstrating its potential to inhibit thrombosis. The finding is particularly significant considering the widespread use of fly maggots in agriculture and animal husbandry due to their rapid growth cycle and minimal nutritional requirements. Our research highlights the untapped potential of fly maggots as a source for maggot kinase development for antithrombotic drug and functional food applications.
Collapse
Affiliation(s)
- Can Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs of China, Beijing University of Agriculture, Beijing 102206, PR China.
| | - Huiting Sun
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs of China, Beijing University of Agriculture, Beijing 102206, PR China
| | - Shihao Zhang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs of China, Beijing University of Agriculture, Beijing 102206, PR China
| | - Xin Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs of China, Beijing University of Agriculture, Beijing 102206, PR China
| | - Lanqing Ma
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs of China, Beijing University of Agriculture, Beijing 102206, PR China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, PR China.
| |
Collapse
|
2
|
Niu C, Liu G, Yang S, He L, Liu C, Zheng F, Wang J, Li Q. Enhanced expression of a novel trypsin from Streptomyces fradiae in Komagataella phaffii GS115 through combinational strategies of propeptide engineering and self-degredation sites modification. Int J Biol Macromol 2024; 254:127382. [PMID: 37838138 DOI: 10.1016/j.ijbiomac.2023.127382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/09/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
This study aimed to enhance the expression level of a novel trypsin gene from Streptomyces fradiae ATCC14544 in Komagataella phaffii GS115 through the combinational use of propeptide engineering and self-degradation residues modification strategies. An artificial propeptide consisted of thioredoxin TrxA, the bovine propeptide DDDDK and the hydrophobic peptide FVEF was introduced to replace the original propeptide while the self-degradation residue sites were predicted and analyzed through alanine screening. The results showed that the quantity and enzymatic activity of asft with engineered propeptide reached 47.02 mg/mL and 33.9 U/mL, which were 9.6 % and 59.29 % higher than those of wild-type (42.9 mg/mL and 13.8 U/mL). Moreover, the introduction of R295A/R315A mutation further enhanced the enzymatic activity (58.86 U/mL) and obviously alleviated the phenomena of self-degradation. The tolerance of trypsin towards alkaline environment was also improved since the optimal pH was shifted from pH 9.0 to pH 9.5 and the half-life value at pH 10 was significantly extended. Finally, the fermentation media composition and condition were optimized and trypsin activity in optimal condition reached 160.58 U/mL, which was 2.73-fold and 11.64-fold of that before optimization or before engineering. The results obtained in this study indicated that the combinational use of propeptide engineering and self-degradation sites modification might have great potential application in production of active trypsins.
Collapse
Affiliation(s)
- Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guozheng Liu
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shijing Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Linman He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Wang Z, Jin X, Zhang X, Xie X, Tu Z, He X. From Function to Metabolome: Metabolomic Analysis Reveals the Effect of Probiotic Fermentation on the Chemical Compositions and Biological Activities of Perilla frutescens Leaves. Front Nutr 2022; 9:933193. [PMID: 35898707 PMCID: PMC9309800 DOI: 10.3389/fnut.2022.933193] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/20/2022] [Indexed: 01/22/2023] Open
Abstract
This study aimed to investigate the impact of probiotic fermentation on the active components and functions of Perilla frutescens leaves (PFL). PFL was fermented for 7 days using six probiotics (Lactobacillus Plantarum SWFU D16, Lactobacillus Plantarum ATCC 8014, Lactobacillus Rhamnosus ATCC 53013, Streptococcus Thermophilus CICC 6038, Lactobacillus Casei ATCC 334, and Lactobacillus Bulgaricus CICC 6045). The total phenol and flavonoid contents, antioxidant abilities, as well as α-glucosidase and acetylcholinesterase inhibition abilities of PFL during the fermentation process were evaluated, and its bioactive compounds were further quantified by high-performance liquid chromatography (HPLC). Finally, non-targeted ultra-HPLC-tandem mass spectroscopy was used to identify the metabolites affected by fermentation and explore the possible mechanisms of the action of fermentation. The results showed that most of the active component contents and functional activities of PFL exhibited that it first increased and then decreased, and different probiotics had clearly distinguishable effects from each other, of which fermentation with ATCC 53013 for 1 day showed the highest enhancement effect. The same trend was also confirmed by the result of the changes in the contents of 12 phenolic acids and flavonoids by HPLC analysis. Further metabolomic analysis revealed significant metabolite changes under the best fermentation condition, which involved primarily the generation of fatty acids and their conjugates, flavonoids. A total of 574 and 387 metabolites were identified in positive ion and negative ion modes, respectively. Results of Spearman's analysis indicated that some primary metabolites and secondary metabolites such as flavonoids, phenols, and fatty acids might play an important role in the functional activity of PFL. Differential metabolites were subjected to the KEGG database and 97 metabolites pathways were obtained, of which biosyntheses of unsaturated fatty acids, flavonoid, and isoflavonoid were the most enriched pathways. The above results revealed the potential reason for the differences in metabolic and functional levels of PFL after fermentation. This study could provide a scientific basis for the further study of PFL, as well as novel insights into the action mechanism of probiotic fermentation on the chemical composition and biological activity of food/drug.
Collapse
Affiliation(s)
- Zhenxing Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- College of Life Sciences, Southwest Forestry University, Kunming, China
- National R&D Center for Freshwater Fish Processing, College of Health, Jiangxi Normal University, Nanchang, China
| | - Ximeng Jin
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Xuechun Zhang
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Xing Xie
- National R&D Center for Freshwater Fish Processing, College of Health, Jiangxi Normal University, Nanchang, China
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, College of Health, Jiangxi Normal University, Nanchang, China
| | - Xiahong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- College of Horticulture and Landscape, Southwest Forestry University, Kunming, China
| |
Collapse
|
4
|
Papagiannopoulos A, Selianitis D, Chroni A, Allwang J, Li Y, Papadakis CM. Preparation of trypsin-based nanoparticles, colloidal properties and ability to bind bioactive compounds. Int J Biol Macromol 2022; 208:678-687. [PMID: 35341884 DOI: 10.1016/j.ijbiomac.2022.03.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022]
Abstract
Nanoparticles (NPs) based on the proteolytic enzyme trypsin (TRY) were prepared by a biocompatible methodology. TRY co-assembled with the anionic polysaccharide chondroitin sulfate (CS) in complexes with well-defined distributions of radii in the range of 100-200 nm by electrostatic complexation at acidic conditions. At pH 7 the complexes were unstable and lost their monomodal size distribution which is potentially related to TRY's weak positive net surface charge and a large negative charge patch that forms at neutral pH. Thermal treatment at conditions which were not expected to interfere with TRY's proteolytic activity was used to stabilize the complexes into NPs that resisted disintegration at pH 7 taking advantage of the ability of the TRY globules to thermally aggregate. The secondary conformation of TRY within the NPs was found fairly unperturbed even after thermal treatment which is crucial for its physiological function. The CS-TRY NPs could bind and encapsulate the bioactive substances curcumin (CUR) and β-carotene (β-C) owing to TRY's hydrophobic domains. The CS-TRY NPs may be considered as a platform for the immobilized active enzyme and multifunctional NPs for hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Angeliki Chroni
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Johannes Allwang
- Soft Matter Physics Group, Physics Department, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Yanan Li
- Soft Matter Physics Group, Physics Department, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Christine M Papadakis
- Soft Matter Physics Group, Physics Department, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
5
|
Zhang X, Gao M, Chattha SA, Zhu Y, Peng B, Ye Y. Application of acidic protease in the pickling to simplify the pelt bating process. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00068-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Traditionally, universally used pelt bating technologies rely on the application of trypsin, neutral and alkaline microbial proteases but suffer from complicated operation, limited bating efficiency and unsatisfactory leather performance. Therefore, devising a new pelt bating approach to achieve high bating efficiency and excellent leather performance has always been wished for by the leather industry. To pursue this goal, years of persistent research work enabled us to develop a novel approach for pelt bating by means of acidic proteases in pickling process. Initially, basic enzymatic characteristics and bating effectiveness of several typical acidic proteases in pelt pickling medium were investigated; then, the bating effectiveness through the quantitative characterization of protease activity of the optimal acidic protease was compared with that of the conventional bating enzyme. The results indicated that all of the selected acidic proteases had good salt-tolerance and exhibited optimum activity at pH 3.0–4.0. The novel pickling-bating method based on microbial origin acidic protease L80A led to an outstanding performance on pelt bating at the dosage of 150 U/mL of collagenolytic activity. The bating effectiveness of acidic protease L80A was comparable to and even better than that of trypsin BEM due to its moderate proteolytic ability. Moreover, the deep and even penetration of acidic protease in the pelt permitted it to produce soft, organoleptically stable and overall better quality crust leather than that of the conventional trypsin bating method. Additionally, pelt bating was performed along with the pickling process without extra inactivation and washing operation, making the bating operation more efficient, economical, and environment friendly. Results had made us to conclude that this cutting-edge acidic proteases based pickling-bating method could be the first step/ way forward to replace the decades-old traditional pelt bating technology.
Collapse
|
6
|
Production of Extracellular Alkaline Serine Protease from Pediococcus acidilactici NCDC 252: Isolation, Purification, Physicochemical and Catalytic Characterization. Catal Letters 2021. [DOI: 10.1007/s10562-020-03331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
King RAN, Climacosa FMM, Santos BMM, Caoili SEC. A Human Erythrocyte-based Haemolysis Assay for the Evaluation of Human Complement Activity. Altern Lab Anim 2020; 48:127-135. [PMID: 33006498 DOI: 10.1177/0261192920953170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The complement system consists of at least 50 proteins that serve as one of the first lines of defence against foreign, or damaged, cells and invading microorganisms. Its dysregulation underlies the pathophysiology of many different diseases, which makes functional assays of complement activity crucial; they are, however, underutilised. Standard haemolysis assays for the analysis of complement function employ sensitised non-human erythrocytes (e.g. from the sheep, guinea-pig or rabbit), the use of which raises animal welfare concerns. To provide an alternative to the use of such animal-derived products for complement function assays, we developed a method that employs modified human erythrocytes to evaluate the activity of complement pathways. Human erythrocytes were subjected to various chemical and/or proteolytic treatments involving 2,4,6-trinitrobenzene sulphonate (TNBS) and pancreatin. Haemolysis assays demonstrated that sequential treatment with TNBS and pancreatin resulted in significantly greater complement-mediated haemolysis, as compared to TNBS or pancreatin treatment alone. Evidence that lysis of the modified erythrocytes was complement-mediated was provided by the chelation and subsequent restoration of calcium in the plasma. Thus, such modified human erythrocytes could be used as an alternative to animal-derived erythrocytes in haemolysis assays, in order to evaluate complement activity in human plasma during, for example, the screening of patients for complement deficiencies and other abnormalities in a clinical setting.
Collapse
Affiliation(s)
- Ruby Anne N King
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, 54733College of Medicine, University of the Philippines Manila, Philippines
| | - Fresthel Monica M Climacosa
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, 54733College of Medicine, University of the Philippines Manila, Philippines
- Department of Medical Microbiology, College of Public Health, 54733University of the Philippines Manila, Philippines
| | - Bobbie Marie M Santos
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, 54733College of Medicine, University of the Philippines Manila, Philippines
- Department of Ophthalmology and Visual Sciences, 172611Philippine General Hospital, Manila, Philippines
| | - Salvador Eugenio C Caoili
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, 54733College of Medicine, University of the Philippines Manila, Philippines
| |
Collapse
|
8
|
Wang Z, Li X, Tian J, Chu Y, Tian Y. Cloning, heterologous expression and characterization of a novel streptomyces trypsin in Bacillus subtilis SCK6. Int J Biol Macromol 2020; 147:890-897. [PMID: 31739056 DOI: 10.1016/j.ijbiomac.2019.09.248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/21/2019] [Accepted: 09/24/2019] [Indexed: 01/10/2023]
Abstract
A novel streptomyces trypsin GM2938 was selected as the object of study. The active GM2938 contains 223 amino acid residues. Constructing recombinant plasmid and transforming Bacillus subtilis SCK6, the heterogenous expression of GM2938 was achieved. Through optimization of fermentation conditions, the expression level of GM2938 reached 1622.2 U/mL (esterase activity) and 33.8 U/mL (amidase activity). The recombinant trypsin was purified and measured: the specific activity of esterase was 5.6 × 103 U/mg, and the specific activity of amidase was 1.1 × 103 U/mg. Furthermore, the enzymatic properties of GM2938 were explore: the optimal reaction temperature and pH were 50 °C and 9.0, respectively; the recombinant enzyme show high stability at 25 °C and range of pH 5.0-9.0; Ca2+, K+, Mg2+, EDTA, DTT, DMSO, methanol, glycerin and ethanediol could promote the esterase and amidase activities at the investigated concentrations, while Fe2+, SDS, tritonx-100, acetone, chloroform and n-hexane inhibited the trypsin activities. Kinetic parameters of GM2938 were calculated: the Km of BAEE was 3.15 × 10-5 mol·L-1, Vmax value was 2.87 × 10-4 mol·L-1·min-1; the Km of BAPAN was 2.20 × 10-4 mol·L-1, the Vmax was 2.40 × 10-4 mol·L-1·min-1. These properties give trypsin GM2938 a potential application prospect.
Collapse
Affiliation(s)
- Zhikuan Wang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science & Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xiaoguang Li
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science & Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jiewei Tian
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science & Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yiwen Chu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, PR China.
| | - Yongqiang Tian
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science & Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
9
|
Characterization of a trypsin-like protease 1 produced by a probiotic Lactobacillus plantarum subsp. plantarum PTCC 1896 from skimmed milk based medium. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Transcriptional Changes in the Xylose Operon in Bacillus licheniformis and Their Use in Fermentation Optimization. Int J Mol Sci 2019; 20:ijms20184615. [PMID: 31540366 PMCID: PMC6769896 DOI: 10.3390/ijms20184615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
The xylose operon is an efficient biological element used for the regulation of gene expression in Bacillus licheniformis. Although the mechanism underlying the xylose-mediated regulation of this operon has been elucidated, the transcriptional changes that occur under various fermentation conditions remain unclear. In this study, the effects of different conditions on xylose operon expression were investigated. Significant upregulation was observed during the transition from the logarithmic phase to the stationary phase (2.5-fold, n = 3, p < 0.01). Glucose suppressed transcription over 168-fold (n = 3, p < 0.01). Meanwhile, the inhibitory effect of glucose hardly strengthened at concentrations from 20 to 180 g/L. Furthermore, the transcription of the xylose operon increased at elevated temperatures (25-42 °C) and was optimal at a neutral pH (pH 6.5-7.0). Based on these findings, relevant fermentation strategies (delaying the induction time, using dextrin as a carbon source, increasing the fermentation temperature, and maintaining a neutral pH) were proposed. Subsequently, these strategies were validated through the use of maltogenic amylase as a reporter protein, as an 8-fold (n = 3, p < 0.01) increase in recombinant enzyme activity compared to that under unoptimized conditions was observed. This work contributes to the development of fermentation optimization and furthers the use of the xylose operon as an efficient expression element.
Collapse
|
11
|
Guncheva M, Stippler E. Effect of Four Commonly Used Dissolution Media Surfactants on Pancreatin Proteolytic Activity. AAPS PharmSciTech 2017; 18:1402-1407. [PMID: 27586964 DOI: 10.1208/s12249-016-0618-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/14/2016] [Indexed: 12/20/2022] Open
Abstract
Proteolytic enzymes are often used in dissolution testing of cross-linked gelatin capsules that do not conform to the dissolution specification. Their catalytic activity, however, can be affected when they are added to a dissolution media containing solubility enhancers, such as surfactants. The aim of this study was to assess the activity of pancreatic proteases in presence of four commonly used surfactants. We found that pancreatin exhibits remarkable proteolytic activity in the presence of Tween 80, even at the concentrations as high as 250 times its critical micelle concentration (cmc) in water, whereas, Triton X-100 enhanced the proteolytic activity of pancreatin when added at concentrations above its cmc in water. Both surfactants are non-ionic surfactants. On the other hand, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), which are ionic surfactants, have a detrimental effect on the proteolytic activity of pancreatin. For example, a 50% reduction of the pancreatin activity was found in samples which contain a minor amount of SDS (0.05% w/v) in comparison to a surfactant-free reaction. Additionally, no activity was observed for the pancreatin-SDS samples which were incubated for 30 min at 40°C prior to testing. CTAB had an impact on pancreatin activity at concentrations higher than its cmc. Data from this manuscript can be used as a benchmark for optimization of the dissolution procedures that require use of both surfactants and enzymes.
Collapse
|