1
|
Shindo A, Azuma M, Fujiwara K, Yoshida S, Horiguchi K. CD9/SOX2-positive cells in the intermediate lobe of the rat pituitary gland exhibit mesenchymal stem cell characteristics. Cell Tissue Res 2025; 399:277-290. [PMID: 39808267 DOI: 10.1007/s00441-024-03947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Adult tissue stem cells of the anterior pituitary gland, CD9/SOX2-positive cells, are believed to exist in the marginal cell layer (MCL) bordering the residual lumen of the Rathke's pouch. These cells migrate from the intermediate lobe side of the MCL (IL-MCL) to the anterior lobe side of the MCL and may be involved in supplying hormone-producing cells. Previous studies reported that some SOX2-positive cells of the anterior lobe differentiate into skeletal muscle cells. These findings suggest that CD9/SOX2-positive cells in the anterior pituitary have mesenchymal stem cell (MSC) properties. To substantiate this hypothesis, we examined whether CD9-positive cells isolated from IL-MCL of adult male rats differentiate into mesenchymal cells, such as endothelial cells, adipocytes, chondrocytes, and osteocytes. Immunohistochemical analysis revealed that the CD9-positive cells were positive for the MSC markers, CD349, CD105, CD271, and CD273 and were detected in the early postnatal period at the boundary between the posterior and intermediate lobes but not in the embryonic period. In addition, some adult tissue stem cells derived from neural crest cells and bone marrow haematopoietic stem cells were positive for both CD9 and MSC markers, indicating that several CD9/SOX2-positive cells in the IL-MCL of the pituitary gland are MSCs that invaded from external tissues during pituitary development in the early postnatal period and exist in the adult tissue stem cells as suppliers of hormone-producing and endothelial cells in the anterior lobe. These findings should have implications for the application of CD9/SOX2-positive cells in regenerative therapy of the pituitary.
Collapse
Affiliation(s)
- Ayano Shindo
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| | - Morio Azuma
- Department of Pharmacology, Graduate School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Ken Fujiwara
- Department of Biological Science, Faculty of Science, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama, Kanagawa, 259-1293, Japan
| | - Saishu Yoshida
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.
| |
Collapse
|
2
|
Horiguchi K, Tsukada T, Yoshida S, Fujiwara K, Nakakura T, Azuma M, Shindo A, Hasegawa R, Takigami S. Three-dimensional cell culture using CD9-positive cells isolated from marginal cell layer of intermediate lobe of rats sustains in vivo-like primary niche environment. J Reprod Dev 2024; 70:343-347. [PMID: 39135241 PMCID: PMC11461522 DOI: 10.1262/jrd.2024-033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/19/2024] [Indexed: 10/04/2024] Open
Abstract
The adenohypophysis is composed of the anterior and intermediate lobes (AL and IL, respectively), and secretes hormones that play an important role in reproduction. CD9- and SOX2-double (CD9/SOX2) positive cells located in the marginal cell layer (MCL) facing the Rathke's cleft in the AL and IL form the primary stem cell niche in the adult adenohypophysis of rats. In this study, we successfully obtained 3-dimensional (3D) cell aggregates that closely resembled the primary niche of MCL in vivo. After incubation in a Matrigel containing several growth factors, approximately 20% of the cells in the CD9/SOX2-positive cell aggregates were differentiated into hormone-producing cells. The cell aggregates generated in this study may provide insight into the regulation of the pituitary stem/progenitor cell niche and the turnover of hormone-producing cells.
Collapse
Affiliation(s)
- Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| | - Takehiro Tsukada
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Saishu Yoshida
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Ken Fujiwara
- Department of Biological Science, Faculty of Science, Kanagawa University, Kanagawa 259-1293, Japan
| | - Takashi Nakakura
- Department of Anatomy, Graduate School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| | - Morio Azuma
- Department of Pharmacology, Graduate School of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Ayano Shindo
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| | - Rumi Hasegawa
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| | - Shu Takigami
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| |
Collapse
|
3
|
Yoshida S, Yurino H, Kobayashi M, Nishimura N, Yano K, Fujiwara K, Hashimoto SI, Kato T, Kato Y. Expression and localization of tight junction-related proteins in adult rat pituitary stem/progenitor cell niches. J Reprod Dev 2022; 68:225-231. [PMID: 35418523 PMCID: PMC9184826 DOI: 10.1262/jrd.2021-150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pituitary endocrine cells are supplied by Sox2-expressing stem/progenitor cells in the anterior lobe of the adult pituitary gland. These SOX2-positive cells are maintained in two types of microenvironments (niches): the marginal cell layer (MCL)-niche and the parenchymal-niche. Recently, we isolated dense SOX2-positive cell clusters from the parenchymal-niche by taking advantage of their resistance to protease treatment as parenchymal stem/progenitor cell (PS)-clusters. In the present study, by analyzing these isolated PS-clusters, we attempted to identify novel structural characteristics of pituitary stem/progenitor cell niches. Quantitative real-time PCR showed that tight junction-related genes were distinctly expressed in the isolated PS-clusters. Immunocytostaining showed that the tight junction molecules, ZO-1 and occludin, were localized in the apical membrane facing the pseudo-follicle-like structure of the isolated PS-clusters regardless of the expression of S100β, which distinguishes the sub-population of SOX2-positive cells. Furthermore, immunohistochemistry of the pituitary glands of adult rats clearly demonstrated that ZO-1 and occludin were densely present in the parenchymal-niche encircling the pseudo-follicle, while they were observed in the apical membrane in the MCL-niche facing the residual lumen. Collectively, these tight junction-related proteins might be involved in the architecture and maintenance of the plasticity of pituitary stem/progenitor cell niches.
Collapse
Affiliation(s)
- Saishu Yoshida
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan.,Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kanagawa 214-8571, Japan.,Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hideaki Yurino
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-0934, Japan
| | - Masaaki Kobayashi
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan.,Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kanagawa 214-8571, Japan
| | - Naoto Nishimura
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kanagawa 214-8571, Japan
| | - Kentaro Yano
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan.,Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kanagawa 214-8571, Japan
| | - Ken Fujiwara
- Department of Biological Science, Kanagawa University, Kanagawa 259-1293 Japan
| | - Shin-Ichi Hashimoto
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-0934, Japan
| | - Takako Kato
- Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kanagawa 214-8571, Japan
| | - Yukio Kato
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan.,Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kanagawa 214-8571, Japan
| |
Collapse
|
4
|
Sabatino ME, Grondona E, De Paul AL. Architects of Pituitary Tumour Growth. Front Endocrinol (Lausanne) 2022; 13:924942. [PMID: 35837315 PMCID: PMC9273718 DOI: 10.3389/fendo.2022.924942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
The pituitary is a master gland responsible for the modulation of critical endocrine functions. Pituitary neuroendocrine tumours (PitNETs) display a considerable prevalence of 1/1106, frequently observed as benign solid tumours. PitNETs still represent a cause of important morbidity, due to hormonal systemic deregulation, with surgical, radiological or chronic treatment required for illness management. The apparent scarceness, uncommon behaviour and molecular features of PitNETs have resulted in a relatively slow progress in depicting their pathogenesis. An appropriate interpretation of different phenotypes or cellular outcomes during tumour growth is desirable, since histopathological characterization still remains the main option for prognosis elucidation. Improved knowledge obtained in recent decades about pituitary tumorigenesis has revealed that this process involves several cellular routes in addition to proliferation and death, with its modulation depending on many signalling pathways rather than being the result of abnormalities of a unique proliferation pathway, as sometimes presented. PitNETs can display intrinsic heterogeneity and cell subpopulations with diverse biological, genetic and epigenetic particularities, including tumorigenic potential. Hence, to obtain a better understanding of PitNET growth new approaches are required and the systematization of the available data, with the role of cell death programs, autophagy, stem cells, cellular senescence, mitochondrial function, metabolic reprogramming still being emerging fields in pituitary research. We envisage that through the combination of molecular, genetic and epigenetic data, together with the improved morphological, biochemical, physiological and metabolically knowledge on pituitary neoplastic potential accumulated in recent decades, tumour classification schemes will become more accurate regarding tumour origin, behaviour and plausible clinical results.
Collapse
Affiliation(s)
- Maria Eugenia Sabatino
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), Córdoba, Argentina
| | - Ezequiel Grondona
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Ana Lucía De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
- *Correspondence: Ana Lucía De Paul,
| |
Collapse
|
5
|
Guido CB, Sosa LDV, Perez PA, Zlocoswki N, Velazquez FN, Gutierrez S, Petiti JP, Mukdsi JH, Torres AI. Changes of stem cell niche during experimental pituitary tumor development. J Neuroendocrinol 2021; 33:e13051. [PMID: 34708474 DOI: 10.1111/jne.13051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
To investigate the putative stem cell/tumor stem cell (SC/TSC) niche contribution to hyperplasic/adenomatous pituitary lesions, we analyzed variation in the pituitary stem cell population during the development of experimental pituitary tumors. Pituitary tumors were induced in female F344 rats with estradiol benzoate for 5, 10, 20 and 30 days. Cells positive for GFRa2, Sox2, Sox9, Nestin, CD133 and CD44 were identified in the marginal zone and in the adenoparenchyma in both control and 30D groups, with predominant adenoparenchyma localization of GRFa2 and SOX9 found in tumoral pituitaries. GFRa2, Nestin, CD133 and CD44 were upregulated at the initial stages of tumor growth, whereas Sox9 significantly decreased at 5D, with Sox2 remaining invariable during the hyperplasic/adenomatous development. In addition, isolated pituispheres from normal and tumoral pituitary glands enriched in SC/TSC were characterized. Pituispheres from the 30D glands were positive for the above-mentioned markers and showed a significant increase in the proliferation. In conclusion, our data revealed pituitary SC pool fluctuations during hyperplastic/adenomatous development, with differential localization of the SC/TSC niche in this process. These findings may help to provide a better understanding of these cell populations, which is crucial for achieving advancements in the field of pituitary tumor biology.
Collapse
Affiliation(s)
- Carolina Beatriz Guido
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Liliana Del Valle Sosa
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Pablo Aníbal Perez
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Natacha Zlocoswki
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Fabiola Noelia Velazquez
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Silvina Gutierrez
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Juan Pablo Petiti
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Jorge Humberto Mukdsi
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Alicia Inés Torres
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| |
Collapse
|
6
|
Horiguchi K, Fujiwara K, Tsukada T, Nakakura T, Yoshida S, Hasegawa R, Takigami S, Ohsako S. CD9-positive cells in the intermediate lobe migrate into the anterior lobe to supply endocrine cells. Histochem Cell Biol 2021; 156:301-313. [PMID: 34185148 DOI: 10.1007/s00418-021-02009-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
The adenohypophysis is composed of the anterior and intermediate lobes (AL and IL), and secretes important hormones for growth, sexual development, metabolism, and reproduction. In the marginal cell layer (MCL) facing Rathke's cleft between the IL and AL, cluster of differentiation (CD) 9-, CD81-, S100β-, and SOX2-quadruple positive (CD9/CD81/S100β/SOX2-positive) cells in the adult IL are settled as tissue-resident stem/progenitor cells supplying hormone-producing cells to the AL. However, it is unclear how CD9/CD81/S100β/SOX2-positive cells in the IL-side MCL migrate into the AL across Rathke's cleft. In the present study, we performed chimeric pituitary tissue culture using S100β/GFP-transgenic rats and Wistar rats, and traced the footprint of S100β/GFP-expressing cells. We detected IL-side S100β/GFP-expressing cells in the AL tissue, demonstrating that these cells migrate from the IL to the AL. However, the cells failed to migrate in the opposite direction. Consistently, scanning electron microscopic analysis revealed well-developed cytoplasmic protrusions in the IL-side MCL, but not in the AL-side MCL, suggesting that IL-side CD9/CD81/S100β/SOX2-positive cells had higher migratory activity. We also searched for a specific marker for IL-side CD9/CD81/S100β/SOX2-positive cells and identified tetraspanin 1 (TSPAN1) from microarray analysis. Downregulation of Tspan1 by specific siRNA impaired cell migration and significantly reduced expression of snail family transcriptional repressor 2 (Slug), a marker of epithelial-mesenchymal transition (EMT). Therefore, CD9/CD81/S100β/SOX2-positive cells in the IL-side MCL can be stem/progenitor cells that provide stem/progenitor cells to the AL-side MCL via SLUG-mediated EMT and cell migration.
Collapse
Affiliation(s)
- K Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.
| | - K Fujiwara
- Department of Biological Science, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
| | - T Tsukada
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - T Nakakura
- Department of Anatomy, Graduate School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo, 173-8605, Japan
| | - S Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - R Hasegawa
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| | - S Takigami
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| | - S Ohsako
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| |
Collapse
|
7
|
Oguchi A, Higuchi M, Yamano Y. Localization of putative pituitary stem/progenitor cells in female dairy cattle. J Vet Med Sci 2021; 83:1031-1038. [PMID: 34011782 PMCID: PMC8349808 DOI: 10.1292/jvms.21-0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Research on sex-determining region Y-box 2 (SOX2)-positive pituitary stem/progenitor cells, as a source of hormone-producing cells, is progressing rapidly in rodents. However, the stem/progenitor cells supplying hormone-producing cells that are essential for growth, reproduction, and lactation in bovines have not yet been identified. In this study, we characterized SOX2-positive cells in the pituitary gland of dairy cattle (Holstein heifers) after sexual maturity. Immunofluorescence analysis revealed that the localization pattern of SOX2-positive cells in the dairy cattle pituitary gland was similar to that observed in the rodent pituitary gland; the marginal cell layer (MCL), dense cell clusters, and single cells scattered in the parenchyma of the anterior lobe. Furthermore, most of the SOX2-positive cells were positive for the pituitary stem/progenitor cell niche markers E-cadherin and cytokeratin 8+18, which have been reported in rodents. In addition, in the MCL of the anterior lobe, there was a subpopulation of SOX2-positive cells positive for paired-related homeobox 1 and 2, whereas negative for S100β. Moreover, in the parenchyma of the anterior lobe, co-localization of SOX2 and pituitary hormones was infrequent. In summary, this study reveals the localization of putative pituitary stem/progenitor cells positive for SOX2 in dairy cattle. These results provide valuable information to support further investigation of cell supply in the dairy cattle pituitary gland.
Collapse
Affiliation(s)
- Ai Oguchi
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| | - Masashi Higuchi
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| | - Yoshiaki Yamano
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| |
Collapse
|
8
|
Horiguchi K, Fujiwara K, Takeda Y, Nakakura T, Tsukada T, Yoshida S, Hasegawa R, Takigami S, Ohsako S. CD9-positive cells in the intermediate lobe of the pituitary gland are important supplier for prolactin-producing cells in the anterior lobe. Cell Tissue Res 2021; 385:713-726. [PMID: 33961126 DOI: 10.1007/s00441-021-03460-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/08/2021] [Indexed: 11/28/2022]
Abstract
A supply of hormone-producing cells from stem/progenitor cells is critical to sustain the endocrine activity of the pituitary gland. In the adenohypophysis composing the anterior and intermediate lobe (AL and IL, respectively), stem/progenitor cells expressing sex-determining region Y-box 2 (SOX2) and S100β are located in the marginal cell layer (MCL) facing Rathke's cleft (primary niche) and the parenchyma of the AL (secondary niche). Our previous studies using mice and rats indicated that the tetraspanin superfamily CD9 and CD81 are expressed in S100β/SOX2-positive cells of primary and secondary niches (named CD9/CD81/S100β/SOX2-positive cell), and the cells located in the AL-side niches exhibit plasticity and multipotency. However, it is unclear whether CD9/CD81/S100β/SOX2-positive cells in the IL-side primary niche are stem/progenitor cells for the AL or IL. Here, we successfully isolated pure CD9/CD81/S100β/SOX2-positive cells from the IL-side primary niche. They had a higher level of S100β and SOX2 mRNA and a greater pituisphere forming capacity than those of CD9/CD81/S100β/SOX2-positive cells isolated from the AL. They also had capacity to differentiate into all types of adenohypophyseal hormone-producing cells, concomitantly with the loss of CD9 expression. Loss of CD9 and CD81 function in CD9/CD81/S100β/SOX2-positive cells by siRNA treatment impaired prolactin cell differentiation. Consistently, in the pituitary gland of CD9/CD81 double knockout mice, dysgenesis of the MCL and a lower population of prolactin cells were observed. These results suggest that the CD9/CD81/S100β/SOX2-positive cells in the MCL of the IL-side are potential suppliers of adult core stem cells in the AL.
Collapse
Affiliation(s)
- Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.
| | - Ken Fujiwara
- Department of Biological Science, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Takashi Nakakura
- Department of Anatomy, Graduate School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo, 173-8605, Japan
| | - Takehiro Tsukada
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Rumi Hasegawa
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| | - Shu Takigami
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| | - Shunji Ohsako
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| |
Collapse
|
9
|
Stucker S, De Angelis J, Kusumbe AP. Heterogeneity and Dynamics of Vasculature in the Endocrine System During Aging and Disease. Front Physiol 2021; 12:624928. [PMID: 33767633 PMCID: PMC7987104 DOI: 10.3389/fphys.2021.624928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
The endocrine system consists of several highly vascularized glands that produce and secrete hormones to maintain body homeostasis and regulate a range of bodily functions and processes, including growth, metabolism and development. The dense and highly vascularized capillary network functions as the main transport system for hormones and regulatory factors to enable efficient endocrine function. The specialized capillary types provide the microenvironments to support stem and progenitor cells, by regulating their survival, maintenance and differentiation. Moreover, the vasculature interacts with endocrine cells supporting their endocrine function. However, the structure and niche function of vasculature in endocrine tissues remain poorly understood. Aging and endocrine disorders are associated with vascular perturbations. Understanding the cellular and molecular cues driving the disease, and age-related vascular perturbations hold potential to manage or even treat endocrine disorders and comorbidities associated with aging. This review aims to describe the structure and niche functions of the vasculature in various endocrine glands and define the vascular changes in aging and endocrine disorders.
Collapse
Affiliation(s)
| | | | - Anjali P. Kusumbe
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Weselek G, Keiner S, Fauser M, Wagenführ L, Müller J, Kaltschmidt B, Brandt MD, Gerlach M, Redecker C, Hermann A, Storch A. Norepinephrine is a negative regulator of the adult periventricular neural stem cell niche. Stem Cells 2020; 38:1188-1201. [PMID: 32473039 DOI: 10.1002/stem.3232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
The limited proliferative capacity of neuroprogenitor cells (NPCs) within the periventricular germinal niches (PGNs) located caudal of the subventricular zone (SVZ) of the lateral ventricles together with their high proliferation capacity after isolation strongly implicates cell-extrinsic humoral factors restricting NPC proliferation in the hypothalamic and midbrain PGNs. We comparatively examined the effects of norepinephrine (NE) as an endogenous candidate regulator of PGN neurogenesis in the SVZ as well as the periventricular hypothalamus and the periaqueductal midbrain. Histological and neurochemical analyses revealed that the pattern of NE innervation of the adult PGNs is inversely associated with their in vivo NPC proliferation capacity with low NE levels coupled to high NPC proliferation in the SVZ but high NE levels coupled to low NPC proliferation in hypothalamic and midbrain PGNs. Intraventricular infusion of NE decreased NPC proliferation and neurogenesis in the SVZ-olfactory bulb system, while pharmacological NE inhibition increased NPC proliferation and early neurogenesis events in the caudal PGNs. Neurotoxic ablation of NE neurons using the Dsp4-fluoxetine protocol confirmed its inhibitory effects on NPC proliferation. Contrarily, NE depletion largely impairs NPC proliferation within the hippocampus in the same animals. Our data indicate that norepinephrine has opposite effects on the two fundamental neurogenic niches of the adult brain with norepinephrine being a negative regulator of adult periventricular neurogenesis. This knowledge might ultimately lead to new therapeutic approaches to influence neurogenesis in hypothalamus-related metabolic diseases or to stimulate endogenous regenerative potential in neurodegenerative processes such as Parkinson's disease.
Collapse
Affiliation(s)
- Grit Weselek
- Department of Neurology, University of Rostock, Rostock, Germany.,Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Germany
| | - Silke Keiner
- Hans Berger Department of Neurology, Jena University Hospital, Germany
| | - Mareike Fauser
- Department of Neurology, University of Rostock, Rostock, Germany.,Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Lisa Wagenführ
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Julia Müller
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology and Molecular Neurobiology, University of Bielefeld, Germany
| | - Moritz D Brandt
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Manfred Gerlach
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Redecker
- Hans Berger Department of Neurology, Jena University Hospital, Germany.,Department of Neurology, Klinikum Lippe, Lemgo, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Germany.,Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University of Rostock, Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany.,Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Germany
| |
Collapse
|
11
|
Würth R, Thellung S, Corsaro A, Barbieri F, Florio T. Experimental Evidence and Clinical Implications of Pituitary Adenoma Stem Cells. Front Endocrinol (Lausanne) 2020; 11:54. [PMID: 32153500 PMCID: PMC7044184 DOI: 10.3389/fendo.2020.00054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Pituitary adenomas, accounting for 15% of diagnosed intracranial neoplasms, are usually benign and pharmacologically and surgically treatable; however, the critical location, mass effects and hormone hypersecretion sustain their significant morbidity. Approximately 35% of pituitary tumors show a less benign course since they are highly proliferative and invasive, poorly resectable, and likely recurring. The latest WHO classification of pituitary tumors includes pituitary transcription factor assessment to determine adenohypophysis cell lineages and accurate designation of adenomas, nevertheless little is known about molecular and cellular pathways which contribute to pituitary tumorigenesis. In malignant tumors the identification of cancer stem cells radically changed the concepts of both tumorigenesis and pharmacological approaches. Cancer stem cells are defined as a subset of undifferentiated transformed cells from which the bulk of cancer cells populating a tumor mass is generated. These cells are able to self-renew, promoting tumor progression and recurrence of malignant tumors, also conferring cytotoxic drug resistance. On the other hand, the existence of stem cells within benign tumors is still debated. The presence of adult stem cells in human and murine pituitaries where they sustain the high plasticity of hormone-producing cells, allowed the hypothesis that putative tumor stem cells might exist in pituitary adenomas, reinforcing the concept that the cancer stem cell model could also be applied to pituitary tumorigenesis. In the last few years, the isolation and phenotypic characterization of putative pituitary adenoma stem-like cells was performed using a wide and heterogeneous variety of experimental models and techniques, although the role of these cells in adenoma initiation and progression is still not completely definite. The assessment of possible pituitary adenoma-initiating cell population would be of extreme relevance to better understand pituitary tumor biology and to identify novel potential diagnostic markers and pharmacological targets. In this review, we summarize the most updated studies focused on the definition of pituitary adenoma stem cell phenotype and functional features, highlighting the biological processes and intracellular pathways potentially involved in driving tumor growth, relapse, and therapy resistance.
Collapse
Affiliation(s)
- Roberto Würth
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Stefano Thellung
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Federica Barbieri
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Tullio Florio
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
12
|
Tsukada T, Isowa Y, Kito K, Yoshida S, Toneri S, Horiguchi K, Fujiwara K, Yashiro T, Kato T, Kato Y. Identification of TGFβ-induced proteins in non-endocrine mouse pituitary cell line TtT/GF by SILAC-assisted quantitative mass spectrometry. Cell Tissue Res 2019; 376:281-293. [PMID: 30666536 DOI: 10.1007/s00441-018-02989-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/29/2018] [Indexed: 01/04/2023]
|
13
|
Yoshida S, Fujiwara K, Inoue T, Sasaki E, Kametani Y, Takekoshi S, Inoshita N, Kato T, Kato Y. Localization of SOX2-positive stem/progenitor cells in the anterior lobe of the common marmoset (Callithrix jacchus) pituitary. J Reprod Dev 2018; 64:417-422. [PMID: 30033984 PMCID: PMC6189570 DOI: 10.1262/jrd.2018-043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on mouse and rat pituitaries reported that Sox2-expressing cells play roles as stem/progenitor cells in the adult pituitary gland. The presence of cells with stem cell-like properties in the pituitary adenoma and SOX2-positive cells has been demonstrated in the human pituitary. However, considering the difficulty in fully examining the stem/progenitor cell properties in the human pituitary, in the present study, we analyzed the SOX2-positive cells in the pituitary of the adult common marmoset (Callithrix jacchus), which is used as a non-human primate model. Immunohistochemistry demonstrated that localization pattern of SOX2-positive cells in the common marmoset pituitary was similar to that observed in the rodent pituitary, i.e., in the two types of niches (marginal cell layer and parenchymal-niche) and as scattered single cells in the parenchyma of the anterior lobe. Furthermore, most of the SOX2-positive cells express S100 and were located in the center or interior of LAMININ-positive micro-lobular structures. Collectively, the present study reveals properties of SOX2-positive cells in the common marmoset pituitary and suggests that the common marmoset proves to be a useful tool for analyzing pituitary stem/progenitor cells in a non-human primate model.
Collapse
Affiliation(s)
- Saishu Yoshida
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan.,Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kanagawa 214-8571, Japan
| | - Ken Fujiwara
- Division of Histology and Cell Biology, Department of Anatomy, Jichii Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Takashi Inoue
- Central Institute for Experimental Animals, Kanagawa 210-0821, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, Kanagawa 210-0821, Japan.,Keio Advanced Research Center, Keio University, Tokyo 160-8582, Japan
| | - Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Susumu Takekoshi
- Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Naoko Inoshita
- Department of Pathology, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Takako Kato
- Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kanagawa 214-8571, Japan
| | - Yukio Kato
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kanagawa 214-8571, Japan.,Department of Life Science, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| |
Collapse
|
14
|
Yoo S, Blackshaw S. Regulation and function of neurogenesis in the adult mammalian hypothalamus. Prog Neurobiol 2018; 170:53-66. [PMID: 29631023 DOI: 10.1016/j.pneurobio.2018.04.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/20/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
Over the past two decades, evidence has accumulated that neurogenesis can occur in both the juvenile and adult mammalian hypothalamus. Levels of hypothalamic neurogenesis can be regulated by dietary, environmental and hormonal signals. Since the hypothalamus has a central role in controlling a broad range of homeostatic physiological processes, these findings may have far ranging behavioral and medical implications. However, many questions in the field remain unresolved, including the cells of origin of newborn hypothalamic neurons and the extent to which these cells actually regulate hypothalamic-controlled behaviors. In this manuscript, we conduct a critical review of the literature on postnatal hypothalamic neurogenesis in mammals, lay out the main outstanding controversies in the field, and discuss how best to advance our knowledge of this fascinating but still poorly understood process.
Collapse
Affiliation(s)
- Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
15
|
Isolation and characterisation of CD9-positive pituitary adult stem/progenitor cells in rats. Sci Rep 2018; 8:5533. [PMID: 29615783 PMCID: PMC5882946 DOI: 10.1038/s41598-018-23923-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/22/2018] [Indexed: 01/28/2023] Open
Abstract
S100β protein and SOX2-double positive (S100β/SOX2-positive) cells have been suggested to be adult pituitary stem/progenitor cells exhibiting plasticity and multipotency. The aim of the present study was to isolate S100β/SOX2-positive cells from the adult anterior lobes of rats using a specific antibody against a novel membrane marker and to study their characteristics in vitro. We found that cluster of differentiation (CD) 9 is expressed in the majority of adult rat S100β/SOX2-positive cells, and we succeeded in isolating CD9-positive cells using an anti-CD9 antibody with a pluriBead-cascade cell isolation system. Cultivation of these cells showed their capacity to differentiate into endothelial cells via bone morphogenetic protein signalling. By using the anterior lobes of prolactinoma model rats, the localisation of CD9-positive cells was confirmed in the tumour-induced neovascularisation region. Thus, the present study provides novel insights into adult pituitary stem/progenitor cells involved in the vascularisation of the anterior lobe.
Collapse
|
16
|
Ueharu H, Yoshida S, Kanno N, Horiguchi K, Nishimura N, Kato T, Kato Y. SOX10-positive cells emerge in the rat pituitary gland during late embryogenesis and start to express S100β. Cell Tissue Res 2017; 372:77-90. [PMID: 29130118 DOI: 10.1007/s00441-017-2724-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/26/2017] [Indexed: 12/19/2022]
Abstract
In the pituitary gland, S100β-positive cells localize in the neurohypophysis and adenohypophysis but the lineage of the two groups remains obscure. S100β is often observed in many neural crest-derived cell types. Therefore, in this study, we investigate the origin of pituitary S100β-positive cells by immunohistochemistry for SOX10, a potent neural crest cell marker, using S100β-green fluorescence protein-transgenic rats. On embryonic day 21.5, a SOX10-positive cell population, which was also positive for the stem/progenitor cell marker SOX2, emerged in the pituitary stalk and posterior lobe and subsequently expanded to create a rostral-caudal gradient on postnatal day 3 (P3). Thereafter, SOX10-positive cells appeared in the intermediate lobe by P15, localizing to the boundary facing the posterior lobe, the gap between the lobule structures and the marginal cell layer, a pituitary stem/progenitor cell niche. Subsequently, there was an increase in SOX10/S100β double-positive cells; some of these cells in the gap between the lobule structures showed extended cytoplasm containing F-actin, indicating a feature of migration activity. The proportion of SOX10-positive cells in the postnatal anterior lobe was lower than 0.025% but about half of them co-localized with the pituitary-specific progenitor cell marker PROP1. Collectively, the present study identified that one of the lineages of S100β-positive cells is a SOX10-positive one and that SOX10-positive cells express pituitary stem/progenitor cell marker genes.
Collapse
Affiliation(s)
- Hiroki Ueharu
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Saishu Yoshida
- Institute of Reproduction and Endocrinology, Meiji University, Tokyo, Kanagawa, 214-8571, Japan
| | - Naoko Kanno
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kotaro Horiguchi
- Institute of Reproduction and Endocrinology, Meiji University, Tokyo, Kanagawa, 214-8571, Japan.,Laboratory of Anatomy and Cell Biology, Faculty of Health Sciences, Kyorin University, Mitaka, Tokyo, 181-8612, Japan
| | - Naoto Nishimura
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takako Kato
- Institute of Reproduction and Endocrinology, Meiji University, Tokyo, Kanagawa, 214-8571, Japan
| | - Yukio Kato
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan. .,Institute of Reproduction and Endocrinology, Meiji University, Tokyo, Kanagawa, 214-8571, Japan. .,Department of Life Science, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
17
|
Yoshida S, Kato T, Kanno N, Nishimura N, Nishihara H, Horiguchi K, Kato Y. Cell type-specific localization of Ephs pairing with ephrin-B2 in the rat postnatal pituitary gland. Cell Tissue Res 2017; 370:99-112. [PMID: 28660300 DOI: 10.1007/s00441-017-2646-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 05/06/2017] [Indexed: 01/20/2023]
Abstract
Sox2-expressing stem/progenitor cells in the anterior lobe of the pituitary gland form two types of micro-environments (niches): the marginal cell layer and dense cell clusters in the parenchyma. In relation to the mechanism of regulation of niches, juxtacrine signaling via ephrin and its receptor Eph is known to play important roles in various niches. The ephrin and Eph families are divided into two subclasses to create ephrin/Eph signaling in co-operation with confined partners. Recently, we reported that ephrin-B2 localizes specifically to both pituitary niches. However, the Ephs interacting with ephrin-B2 in these pituitary niches have not yet been identified. Therefore, the present study aims to identify the Ephs interacting with ephrin-B2 and the cells that produce them in the rat pituitary gland. In situ hybridization and immunohistochemistry demonstrated cell type-specific localization of candidate interacting partners for ephrin-B2, including EphA4 in cells located in the posterior lobe, EphB1 in gonadotropes, EphB2 in corticotropes, EphB3 in stem/progenitor cells and EphB4 in endothelial cells in the adult pituitary gland. In particular, double-immunohistochemistry showed cis-interactions between EphB3 and ephrin-B2 in the apical cell membranes of stem/progenitor cell niches throughout life and trans-interactions between EphB2 produced by corticotropes and ephrin-B2 located in the basolateral cell membranes of stem/progenitor cells in the early postnatal pituitary gland. These data indicate that ephrin-B2 plays a role in pituitary stem/progenitor cell niches by selective interaction with EphB3 in cis and EphB2 in trans.
Collapse
Affiliation(s)
- Saishu Yoshida
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa, Japan.,Institute of Reproduction and Endocrinology, Meiji University, Kanagawa, Japan
| | - Takako Kato
- Institute of Reproduction and Endocrinology, Meiji University, Kanagawa, Japan
| | - Naoko Kanno
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa, Japan
| | - Naoto Nishimura
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa, Japan
| | - Hiroto Nishihara
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa, Japan
| | - Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo, Japan
| | - Yukio Kato
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa, Japan. .,Institute of Reproduction and Endocrinology, Meiji University, Kanagawa, Japan. .,Department of Life Science, School of Agriculture, Meiji University, Kanagawa, Japan.
| |
Collapse
|
18
|
Cheung LYM, Davis SW, Brinkmeier ML, Camper SA, Pérez-Millán MI. Regulation of pituitary stem cells by epithelial to mesenchymal transition events and signaling pathways. Mol Cell Endocrinol 2017; 445:14-26. [PMID: 27650955 PMCID: PMC5590650 DOI: 10.1016/j.mce.2016.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022]
Abstract
The anterior pituitary gland is comprised of specialized cell-types that produce and secrete polypeptide hormones in response to hypothalamic input and feedback from target organs. These specialized cells arise from stem cells that express SOX2 and the pituitary transcription factor PROP1, which is necessary to establish the stem cell pool and promote an epithelial to mesenchymal-like transition, releasing progenitors from the niche. The adult anterior pituitary responds to physiological challenge by mobilizing the SOX2-expressing progenitor pool and producing additional hormone-producing cells. Knowledge of the role of signaling pathways and extracellular matrix components in these processes may lead to improvements in the efficiency of differentiation of embryonic stem cells or induced pluripotent stem cells into hormone producing cells in vitro. Advances in our basic understanding of pituitary stem cell regulation and differentiation may lead to improved diagnosis and treatment for patients with hypopituitarism.
Collapse
Affiliation(s)
- Leonard Y M Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208-0001, USA.
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| | - María Inés Pérez-Millán
- Institute of Biomedical Investgations (UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Carreno G, Gonzalez-Meljem JM, Haston S, Martinez-Barbera JP. Stem cells and their role in pituitary tumorigenesis. Mol Cell Endocrinol 2017; 445:27-34. [PMID: 27720895 DOI: 10.1016/j.mce.2016.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 12/17/2022]
Abstract
The presence of adult pituitary stem cells (PSCs) has been described in murine systems by comprehensive cellular profiling and genetic lineage tracing experiments. PSCs are thought to maintain multipotent capacity throughout life and give rise to all hormone-producing cell lineages, playing a role in pituitary gland homeostasis. Additionally, PSCs have been proposed to play a role in pituitary tumorigenesis, in both adenomas and adamantinomatous craniopharyngiomas. In this manuscript, we discuss the different approaches used to demonstrate the presence of PSCs in the murine adult pituitary, from marker analyses to genetic tracing. In addition, we review the published literature suggesting the existence of tumor stem cells in mouse and human pituitary tumors. Finally, we discuss the potential role of PSCs in pituitary tumorigenesis in the context of current models of carcinogenesis and present evidence showing that in contrast to pituitary adenoma, which follows a classical cancer stem cell paradigm, a novel mechanism has been revealed for paracrine, non-cell autonomous tumor initiation in adamantinomatous craniopharyngioma, a benign but clinically aggressive pediatric tumor.
Collapse
Affiliation(s)
- Gabriela Carreno
- Developmental Biology and Cancer Program, Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Jose Mario Gonzalez-Meljem
- Developmental Biology and Cancer Program, Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Scott Haston
- Developmental Biology and Cancer Program, Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Program, Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom.
| |
Collapse
|
20
|
Nishihara H, Yoshida S, Kanno N, Nishimura N, Ueharu H, Ohgane J, Kato T, Kato Y. Involvement of DNA methylation in regulating rat Prop1 gene expression during pituitary organogenesis. J Reprod Dev 2017; 63:37-44. [PMID: 27773885 PMCID: PMC5320428 DOI: 10.1262/jrd.2016-102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PROP1 is a pituitary specific transcription factor that plays a crucial role in pituitary organogenesis. The Prop1 shows varied expression
patterns that promptly emerge and then fade during the early embryonic period. However, the regulatory mechanisms governing Prop1 expression
remain unclear. Here, we investigated whether Prop1 was under epigenetic regulation by DNA methylation. Bisulfite sequencing was performed on
DNA obtained from the pituitary glands and livers of rats on embryonic days (E) 13.5 and E14.5, and postnatal days (P) 4 and P30. The methylation of CpG sites
in seven regions from 3-kb upstream of the Prop1 transcription start site through to its second intron were examined. Certain differences in
CpG-methylation levels were observed in Region-1 (–2772 b to –2355 b), Region-4 (–198 b to +286 b), Region-5 (+671 b to +990 b), and Region-6 (+1113 b to +1273
b) based on comparisons between pituitary and liver DNA on E13.5. DNA methylation in pituitary glands on E14.5, P4, and P30 was generally similar to that
observed in in the pituitary gland on E13.5, whereas the anterior and intermediate lobes of the pituitary gland on P4 and P30 showed only small differences.
These results indicate that Prop1 is under regulation by CpG methylation during the early period of pituitary primordium development around
E13.5.
Collapse
Affiliation(s)
- Hiroto Nishihara
- Laboratory of Molecular Biology and Gene Regulation, Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Notch signaling-mediated cell-to-cell interaction is dependent on E-cadherin adhesion in adult rat anterior pituitary. Cell Tissue Res 2016; 368:125-133. [DOI: 10.1007/s00441-016-2540-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/09/2016] [Indexed: 01/07/2023]
|
22
|
Expression and localization of forkhead box protein FOXJ1 in S100β-positive multiciliated cells of the rat pituitary. Med Mol Morphol 2016; 50:59-67. [PMID: 27660208 DOI: 10.1007/s00795-016-0148-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022]
Abstract
S100β-positive cells exist in the marginal cell layer (MCL) of the adenohypophysis and follicle structure in the parenchyma of anterior lobe (ALFS) in pituitary. They have multiple functions as phagocytes or cells that regulate hormone secretion. Majority of S100β-positive cells in the adenohypophysis express sex determining region Y-box 2 protein (SOX2), a stem cell marker; therefore, S100β/SOX2 double positive cells are also considered as one type of stem/progenitor cells. MCL and ALFS are consisting of morphologically two types of cells, i.e., multiciliated cells and non-ciliated cells. However, the relationship between the S100β-positive cells and multiciliated cells in the pituitary is largely unknown. In the present study, we first immunohistochemically verified the feature of multiciliated cells in MCL and ALFS. We then examined the expression patterns of FOXJ1, an essential expression factor for multiciliated cell-differentiation, and SOX2 in the S100β-positive multiciliated cells by in situ hybridization and immunohistochemistry. We identified anew the S100β/SOX2/FOXJ1 triple positive multiciliated cells, and revealed that they were dispersed throughout the MCL and ALFS. These results indicate that the MCL and ALFS are consisting of morphologically and functionally distinct two types of cells, i.e., S100β/SOX2 double positive non-ciliated cells and S100β/SOX2/FOXJ1 triple positive multiciliated cells.
Collapse
|
23
|
Vaca AM, Guido CB, Sosa LDV, Nicola JP, Mukdsi J, Petiti JP, Torres AI. The expansion of adult stem/progenitor cells and their marker expression fluctuations are linked with pituitary plastic adaptation during gestation and lactancy. Am J Physiol Endocrinol Metab 2016; 311:E367-79. [PMID: 27302752 DOI: 10.1152/ajpendo.00077.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
Extensive evidence has revealed variations in the number of hormone-producing cells in the pituitary gland, which occur under physiological conditions such as gestation and lactancy. It has been proposed that new hormone-producing cells differentiate from stem cells. However, exactly how and when this takes place is not clear. In this work, we used immunoelectron microscopy to identify adult pituitary stem/progenitor cells (SC/P) localized in the marginal zone (MZ), and additionally, we detected GFRa2-, Sox2-, and Sox9-positive cells in the adenoparenchyma (AP) by fluorescence microscopy. Then, we evaluated fluctuations of SC/P mRNA and protein level markers in MZ and AP during gestation and lactancy. An upregulation in stemness markers was shown at term of gestation (AT) in MZ, whereas there were more progenitor cell markers in the middle of gestation and active lactancy. Concerning committed cell markers, we detected a rise in AP at beginning of lactancy (d1L). We performed a BrdU uptake analysis in MZ and AP cells. The highest level of BrdU uptake was observed in MZ AT cells, whereas in AP this was detected in d1L, followed by a decrease in both the MZ and AP. Finally, we detected double immunostaining for BrdU-GFRa2 in MZ AT cells and BrdU-Sox9 in the AP d1L cells. Taken together, we hypothesize that the expansion of the SC/P niche took place mainly in MZ from pituitary rats in AT and d1L. These results suggest that the SC niche actively participates in pituitary plasticity during these reproductive states, contributing to the origin of hormone cell populations.
Collapse
Affiliation(s)
- Alicia Maldré Vaca
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Carolina Beatriz Guido
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Liliana Del Valle Sosa
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Juan Pablo Nicola
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Centro de Investigaciones en Bioquímica Clínica e Inmunología-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Jorge Mukdsi
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Juan Pablo Petiti
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Alicia Ines Torres
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| |
Collapse
|
24
|
Bloch W. Stem Cell Activation in Adult Organisms. Int J Mol Sci 2016; 17:ijms17071005. [PMID: 27347939 PMCID: PMC4964381 DOI: 10.3390/ijms17071005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/17/2023] Open
Affiliation(s)
- Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Muengersdorf 6, Cologne 50933, Germany.
| |
Collapse
|