1
|
Zhang Y, Li H, Wang Y, Nie M, Zhang K, Pan J, Zhang Y, Ye Z, Zufall RA, Lynch M, Long H. Mitogenomic architecture and evolution of the soil ciliates Colpoda. mSystems 2024; 9:e0116123. [PMID: 38259100 PMCID: PMC10878089 DOI: 10.1128/msystems.01161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Colpoda are cosmopolitan unicellular eukaryotes primarily inhabiting soil and benefiting plant growth, but they remain one of the least understood taxa in genetics and genomics within the realm of ciliated protozoa. Here, we investigate the architecture of de novo assembled mitogenomes of six Colpoda species, using long-read sequencing and involving 36 newly isolated natural strains in total. The mitogenome sizes span from 43 to 63 kbp and typically contain 28-33 protein-coding genes. They possess a linear structure with variable telomeres and central repeats, with one Colpoda elliotti strain isolated from Tibet harboring the longest telomeres among all studied ciliates. Phylogenomic analyses reveal that Colpoda species started to diverge more than 326 million years ago, eventually evolving into two distinct groups. Collinearity analyses also reveal significant genomic divergences and a lack of long collinear blocks. One of the most notable features is the exceptionally high level of gene rearrangements between mitochondrial genomes of different Colpoda species, dominated by gene loss events. Population-level mitogenomic analysis on natural strains also demonstrates high sequence divergence, regardless of geographic distance, but the gene order remains highly conserved within species, offering a new species identification criterion for Colpoda species. Furthermore, we identified underlying heteroplasmic sites in the majority of strains of three Colpoda species, albeit without a discernible recombination signal to account for this heteroplasmy. This comprehensive study systematically unveils the mitogenomic structure and evolution of these ancient and ecologically significant Colpoda ciliates, thus laying the groundwork for a deeper understanding of the evolution of unicellular eukaryotes.IMPORTANCEColpoda, one of the most widespread ciliated protozoa in soil, are poorly understood in regard to their genetics and evolution. Our research revealed extreme mitochondrial gene rearrangements dominated by gene loss events, potentially leading to the streamlining of Colpoda mitogenomes. Surprisingly, while interspecific rearrangements abound, our population-level mitogenomic study revealed a conserved gene order within species, offering a potential new identification criterion. Phylogenomic analysis traced their lineage over 326 million years, revealing two distinct groups. Substantial genomic divergence might be associated with the lack of extended collinear blocks and relaxed purifying selection. This study systematically reveals Colpoda ciliate mitogenome structures and evolution, providing insights into the survival and evolution of these vital soil microorganisms.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province, China
| | - Haichao Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Yaohai Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Mu Nie
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Kexin Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiao Pan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Yu Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong Province, China
| | - Zhiqiang Ye
- School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Rebecca A. Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Hongan Long
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
Wang SH, Hu SY, Li M, Liu M, Sun H, Zhao JR, Chen WT, Yuan ML. Comparative Mitogenomic Analyses of Darkling Beetles (Coleoptera: Tenebrionidae) Provide Evolutionary Insights into tRNA-like Sequences. Genes (Basel) 2023; 14:1738. [PMID: 37761878 PMCID: PMC10530909 DOI: 10.3390/genes14091738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Tenebrionidae is widely recognized owing to its species diversity and economic importance. Here, we determined the mitochondrial genomes (mitogenomes) of three Tenebrionidae species (Melanesthes exilidentata, Anatolica potanini, and Myladina unguiculina) and performed a comparative mitogenomic analysis to characterize the evolutionary characteristics of the family. The tenebrionid mitogenomes were highly conserved with respect to genome size, gene arrangement, base composition, and codon usage. All protein-coding genes evolved under purifying selection. The largest non-coding region (i.e., control region) showed several unusual features, including several conserved repetitive fragments (e.g., A+T-rich regions, G+C-rich regions, Poly-T tracts, TATA repeat units, and longer repetitive fragments) and tRNA-like structures. These tRNA-like structures can bind to the appropriate anticodon to form a cloverleaf structure, although base-pairing is not complete. We summarized the quantity, types, and conservation of tRNA-like sequences and performed functional and evolutionary analyses of tRNA-like sequences with various anticodons. Phylogenetic analyses based on three mitogenomic datasets and two tree inference methods largely supported the monophyly of each of the three subfamilies (Stenochiinae, Pimeliinae, and Lagriinae), whereas both Tenebrioninae and Diaperinae were consistently recovered as polyphyletic. We obtained a tenebrionid mitogenomic phylogeny: (Lagriinae, (Pimeliinae, ((Tenebrioninae + Diaperinae), Stenochiinae))). Our results provide insights into the evolution and function of tRNA-like sequences in tenebrionid mitogenomes and contribute to our general understanding of the evolution of Tenebrionidae.
Collapse
Affiliation(s)
- Su-Hao Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; (S.-H.W.); (S.-Y.H.); (M.L.); (M.L.); (H.S.); (J.-R.Z.); (W.-T.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Shi-Yun Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; (S.-H.W.); (S.-Y.H.); (M.L.); (M.L.); (H.S.); (J.-R.Z.); (W.-T.C.)
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou 730020, China
| | - Min Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; (S.-H.W.); (S.-Y.H.); (M.L.); (M.L.); (H.S.); (J.-R.Z.); (W.-T.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Min Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; (S.-H.W.); (S.-Y.H.); (M.L.); (M.L.); (H.S.); (J.-R.Z.); (W.-T.C.)
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou 730020, China
| | - Hao Sun
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; (S.-H.W.); (S.-Y.H.); (M.L.); (M.L.); (H.S.); (J.-R.Z.); (W.-T.C.)
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou 730020, China
| | - Jia-Rui Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; (S.-H.W.); (S.-Y.H.); (M.L.); (M.L.); (H.S.); (J.-R.Z.); (W.-T.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Wen-Ting Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; (S.-H.W.); (S.-Y.H.); (M.L.); (M.L.); (H.S.); (J.-R.Z.); (W.-T.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ming-Long Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; (S.-H.W.); (S.-Y.H.); (M.L.); (M.L.); (H.S.); (J.-R.Z.); (W.-T.C.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
3
|
Wei Z, Shi A. The complete mitochondrial genomes of four lagriine species (Coleoptera, Tenebrionidae) and phylogenetic relationships within Tenebrionidae. PeerJ 2023; 11:e15483. [PMID: 37283890 PMCID: PMC10241167 DOI: 10.7717/peerj.15483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
It is common to use whole mitochondrial genomes to analyze phylogenetic relationships among insects. In this study, seven mitogenomes of Tenebrionidae are newly sequenced and annotated. Among them, four species (Cerogira janthinipennis (Fairmaire, 1886), Luprops yunnanus (Fairmaire, 1887), Anaedus unidentasus Wang & Ren, 2007, and Spinolyprops cribricollis Schawaller, 2012) represent the subfamily Lagriinae. In this subfamily, the mitogenomes of the tribes Goniaderini (A. unidentasus) and Lupropini (L. yunnanus and S. cribricollis) were first reported; they were found to be 15,328-16,437 bp in length and encode 37 typical mitochondrial genes (13 PCGs, 2 rRNAs, 22 tRNAs, and a single noncoding control region). Most protein-coding genes in these mitogenomes have typical ATN start codons and TAR or an incomplete stop codon T-. In these four lagriine species, F, L2, I, and N are the most frequently used amino acids. In the 13 PCGs, the gene atp8 (Pi = 0.978) was the most diverse nucleotide, while cox1 was the most conserved gene with the lowest value (Pi = 0.211). The phylogenetic results suggest that Pimelinae, Lagriinae, Blaptinae, Stenochiinae, and Alleculinae are monophyletic, Diaperinae is paraphyletic, and Tenebrioninae appears polyphyletic. In Lagriinae, the tribe Lupropini appears paraphyletic because Spinolyprops is clustered with Anaedus in Goniaderini. These mitogenomic data provide important molecular data for the phylogeny of Tenebrionidae.
Collapse
|
4
|
Wang Y, Cao J, Guo X, Guo C, Li W, Murányi D. Comparative analysis of mitochondrial genomes among the family Peltoperlidae (Plecoptera: Systellognatha) and phylogenetic implications. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.979847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nowadays, the position of Peltoperlidae in Systellognatha has been resolved based on morphological analyses. However, there are different opinions based on molecular data. To date, only three peltoperlid mitogenomes are available, and more sampling is needed to obtain precise phylogenetic relationships. In this study, we obtained the complete mitogenomes of Cryptoperla kawasawai (15,832 bp) and Peltoperlopsis sagittata (15,756 bp). Our results show that gene content, gene order, DmTTF binding site, nucleotide composition, codon usage, ribonucleic acid (RNA) structure, and structural elements in the control region are highly conserved in peltoperlids. Heatmap analysis of codon usage shows that the AT-rich codons UUA, AUU, UUU, and AUA were commonly used codons in the Peltoperlidae. Evolutionary rate analyses of protein-coding genes reveal that different genes have been subject to different rates of molecular evolution correlated with the GC content. All tRNA genes in peltoperlid mitogenomes have a canonical cloverleaf secondary structure except for trnS1, whose dihydrouridine arm simply forms a loop. The control region of the family has several distinct structural characteristics and has the potential to serve as effective phylogenetic markers. Phylogenetic analyses support the monophyly of Perloidea, but the monophyly of Pteronarcyoidea is still not supported. The Peltoperlidae is placed as the earliest branch within the Systellognatha, and the estimated phylogenetic relationship is: Peltoperlidae + {(Styloperlidae + Pteronarcyidae) + [Perlidae + (Chloroperlidae + Perlodidae)]}. Our results provide new insight into the phylogeny of this group.
Collapse
|
5
|
Wu C, Zhou Y, Tian T, Li TJ, Chen B. First report of complete mitochondrial genome in the subfamily Alleculinae and mitochondrial genome-based phylogenetics in Tenebrionidae (Coleoptera: Tenebrionoidea). INSECT SCIENCE 2022; 29:1226-1238. [PMID: 34791791 DOI: 10.1111/1744-7917.12983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Despite worldwide distribution and rich diversity, the knowledge of mitochondrial genome (mtgenome) characteristics within the family Tenebrionidae (Coleoptera) is still very limited, and phylogenetics remain unresolved for the family. In this study, the mtgenomes for 12 species are newly sequenced and annotated. Three of the species represent the first report of complete mtgenomes from the subfamily Alleculinae. Comparative analysis of 36 tenebrionid mtgenomes finds that gene composition and order are the same as a theoretical ancestral insect mtgenome, and AT bias, length variation, and codon usage are consistent with other reported beetle mtgenomes. Some intergenic overlap and gap sequences may contain phylogenetically informative information, whereas neither the conserved nor repeat sequences in the control region do. The subfamilies Lagriinae, Pimeliinae, Stenochiinae, and Alleculinae are found to be monophyletic, and the subfamilies Diaperinae and Tenebrioninae polyphyletic in our study. Furthermore, Lagriinae is sister to the rest of the subfamilies. At the tribal level, the tribes Lagriini in the subfamily Lagrrinae; Strongyliini in Stenochiinae; Cteniopodini in Alleculinae; and Triboliini, Opatrini, and Amarygmini in Tenebrioninae are monophyletic; while Diaperini in Diaperinae, and Tenebrionini in Tenebrioninae are polyphyletic.
Collapse
Affiliation(s)
- Chuan Wu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Yong Zhou
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Tian Tian
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Ting-Jing Li
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
6
|
Barbhuiya PA, Uddin A, Chakraborty S. Codon usage pattern and evolutionary forces of mitochondrial ND genes among orders of class Amphibia. J Cell Physiol 2020; 236:2850-2868. [PMID: 32960450 DOI: 10.1002/jcp.30050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022]
Abstract
In this study, we used a bioinformatics approach to analyze the nucleotide composition and pattern of synonymous codon usage in mitochondrial ND genes in three amphibian groups, that is, orders Anura, Caudata, and Gymnophiona to identify the commonality and the differences of codon usage as no research work was reported yet. The high value of the effective number of codons revealed that the codon usage bias (CUB) was low in mitochondrial ND genes among the orders. Nucleotide composition analysis suggested that for each gene, the compositional features differed among Anura, Caudata, and Gymnophiona and the GC content was lower than AT content. Furthermore, a highly significant difference (p < .05) for GC content was found in each gene among the orders. The heat map showed contrasting patterns of codon usage among different ND genes. The regression of GC12 on GC3 suggested a narrow range of GC3 distribution and some points were located in the diagonal, indicating both mutation pressure and natural selection might influence the CUB. Moreover, the slope of the regression line was less than 0.5 in all ND genes among orders, indicating natural selection might have played the dominant role whereas mutation pressure had played a minor role in shaping CUB of ND genes across orders.
Collapse
Affiliation(s)
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Hailakandi, Assam, India
| | | |
Collapse
|
7
|
Peng Z, Zanganeh J, Doroodchi E, Moghtaderi B. Flame Propagation and Reflections of Pressure Waves through Fixed Beds of RTO Devices: A CFD Study. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhengbiao Peng
- The Priority Research Centre (PRC) for Frontier Energy Technologies & Utilisation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jafar Zanganeh
- The Priority Research Centre (PRC) for Frontier Energy Technologies & Utilisation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Elham Doroodchi
- The Priority Research Centre (PRC) for Frontier Energy Technologies & Utilisation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Behdad Moghtaderi
- The Priority Research Centre (PRC) for Frontier Energy Technologies & Utilisation, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
8
|
Comparative mitogenomic analysis of species in the subfamily Amphinemurinae (Plecoptera: Nemouridae) reveal conserved mitochondrial genome organization. Int J Biol Macromol 2019; 138:292-301. [PMID: 31319083 DOI: 10.1016/j.ijbiomac.2019.07.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 11/21/2022]
Abstract
The subfamily Amphinemurinae has five genera in China, with each genus of similar morphology. To gain a better understanding of architecture and evolution of mitogenome in Amphinemurinae, mitogenomes of eight species representing four genera (Amphinemura, Indonemoura, Protonemura and Sphaeronemoura) in the subfamily Amphinemurinae were sequenced, and a comparative mitogenomic analysis of five genera (including a published stonefly genus, Mesonemoura) was carried out. By comparative analysis, we found highly conserved genome organization of ten Amphinemurinae species including genome contents, gene order, nucleotide composition, codon usage, amino acid composition, as well as genome asymmetry. GC content was the most significant factor in determining codon bias among organisms. The Ka/Ks values for all PCGs were far lower than 1, indicating that these genes were evolving under purifying selection. We also found some important conserved stem and loop in the cloverleaf structure of tRNAs, and found conserved helices and loops in each domain of the secondary structure of rRNAs. The presence of structural elements in the control region is also discussed. The phylogenetic analyses indicated that within Amphinemurinae, Sphaeronemoura was assigned the sister group of Mesonemoura. Our analyses inferred a relationship within Euholognatha: ((Nemouridae + Notonemouridae) + (Taeniopterygidae + Capniidae) + Scopuridae) + Leuctridae.
Collapse
|
9
|
Barbhuiya PA, Uddin A, Chakraborty S. Genome‐wide comparison of codon usage dynamics in mitochondrial genes across different species of amphibian genus
Bombina. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:99-112. [DOI: 10.1002/jez.b.22852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/10/2019] [Accepted: 03/20/2019] [Indexed: 01/16/2023]
Affiliation(s)
| | - Arif Uddin
- Department of ZoologyMoinul Hoque Choudhury Memorial Science CollegeHailakandi Assam India
| | | |
Collapse
|
10
|
Monceau K, Moreau J, Richet J, Motreuil S, Moret Y, Dechaume-Moncharmont FX. Larval personality does not predict adult personality in a holometabolous insect. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|