1
|
Barra JM, Robino RA, Castro-Gutierrez R, Proia J, Russ HA, Ferreira LMR. Combinatorial genetic engineering strategy for immune protection of stem cell-derived beta cells by chimeric antigen receptor regulatory T cells. Cell Rep 2024; 43:114994. [PMID: 39561045 DOI: 10.1016/j.celrep.2024.114994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 10/07/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Regenerative medicine is a rapidly expanding field harnessing human pluripotent stem cell (hPSC)-derived cells and tissues to treat many diseases, including type 1 diabetes. However, graft immune protection remains a key challenge. Chimeric antigen receptor (CAR) technology confers new specificities to effector T cells and immunosuppressive regulatory T cells (Tregs). One challenge in CAR design is identifying target molecules unique to the cells of interest. Here, we employ combinatorial genetic engineering to confer CAR-Treg-mediated localized immune protection to stem cell-derived cells. We engineered hPSCs to express truncated epidermal growth factor receptor (EGFRt), a biologically inert and generalizable target for CAR-Treg homing and activation, and generated CAR-Tregs recognizing EGFRt. Strikingly, CAR-Tregs suppressed innate and adaptive immune responses in vitro and prevented EGFRt-hPSC-derived pancreatic beta-like cell (sBC [stem cell-derived beta cell]) graft immune destruction in vivo. Collectively, we provide proof of concept that hPSCs and Tregs can be co-engineered to protect hPSC-derived cells from immune rejection upon transplantation.
Collapse
Affiliation(s)
- Jessie M Barra
- Diabetes Institute, University of Florida, Gainesville, FL 32610, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Rob A Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Roberto Castro-Gutierrez
- Diabetes Institute, University of Florida, Gainesville, FL 32610, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - James Proia
- Diabetes Institute, University of Florida, Gainesville, FL 32610, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL 32610, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA.
| | - Leonardo M R Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
2
|
Zhang HM, Yang ML, Xi JZ, Yang GY, Wu QN. Mesenchymal stem cells-based drug delivery systems for diabetic foot ulcer: A review. World J Diabetes 2023; 14:1585-1602. [DOI: 10.4239/wjd.v14.i11.1585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/16/2023] [Accepted: 09/11/2023] [Indexed: 11/14/2023] Open
Abstract
The complication of diabetes, which is known as diabetic foot ulcer (DFU), is a significant concern due to its association with high rates of disability and mortality. It not only severely affects patients’ quality of life, but also imposes a substantial burden on the healthcare system. In spite of efforts made in clinical practice, treating DFU remains a challenging task. While mesenchymal stem cell (MSC) therapy has been extensively studied in treating DFU, the current efficacy of DFU healing using this method is still inadequate. However, in recent years, several MSCs-based drug delivery systems have emerged, which have shown to increase the efficacy of MSC therapy, especially in treating DFU. This review summarized the application of diverse MSCs-based drug delivery systems in treating DFU and suggested potential prospects for the future research.
Collapse
Affiliation(s)
- Hong-Min Zhang
- Department of Endocrinology, People’s Hospital of Chongqing Liangjiang New Area, Chongqing 400030, China
| | - Meng-Liu Yang
- Department of Endocrinology, The Second Affiliated Hospital of The Chongqing Medical University, Chongqing 400030, China
| | - Jia-Zhuang Xi
- Department of Endocrinology, Dazu Hospital of Chongqing Medical University, The People’s Hospital of Dazu, Chongqing 406230, China
| | - Gang-Yi Yang
- Department of Endocrinology, The Second Affiliated Hospital of The Chongqing Medical University, Chongqing 400030, China
| | - Qi-Nan Wu
- Department of Endocrinology, Dazu Hospital of Chongqing Medical University, The People’s Hospital of Dazu, Chongqing 406230, China
| |
Collapse
|
3
|
Davis-Anderson K, Micheva-Viteva S, Solomon E, Hovde B, Cirigliano E, Harris J, Twary S, Iyer R. CRISPR/Cas9 Directed Reprogramming of iPSC for Accelerated Motor Neuron Differentiation Leads to Dysregulation of Neuronal Fate Patterning and Function. Int J Mol Sci 2023; 24:16161. [PMID: 38003351 PMCID: PMC10671572 DOI: 10.3390/ijms242216161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Neurodegeneration causes a significant disease burden and there are few therapeutic interventions available for reversing or slowing the disease progression. Induced pluripotent stem cells (iPSCs) hold significant potential since they are sourced from adult tissue and have the capacity to be differentiated into numerous cell lineages, including motor neurons. This differentiation process traditionally relies on cell lineage patterning factors to be supplied in the differentiation media. Genetic engineering of iPSC with the introduction of recombinant master regulators of motor neuron (MN) differentiation has the potential to shorten and streamline cell developmental programs. We have established stable iPSC cell lines with transient induction of exogenous LHX3 and ISL1 from the Tet-activator regulatory region and have demonstrated that induction of the transgenes is not sufficient for the development of mature MNs in the absence of neuron patterning factors. Comparative global transcriptome analysis of MN development from native and Lhx-ISL1 modified iPSC cultures demonstrated that the genetic manipulation helped to streamline the neuronal patterning process. However, leaky gene expression of the exogenous MN master regulators in iPSC resulted in the premature activation of genetic pathways characteristic of the mature MN function. Dysregulation of metabolic and regulatory pathways within the developmental process affected the MN electrophysiological responses.
Collapse
Affiliation(s)
- Katie Davis-Anderson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Sofiya Micheva-Viteva
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Emilia Solomon
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Blake Hovde
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Elisa Cirigliano
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jennifer Harris
- Information Systems and Modeling Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Scott Twary
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Rashi Iyer
- Physical Chemistry and Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| |
Collapse
|
4
|
Humbert MV, Spalluto CM, Bell J, Blume C, Conforti F, Davies ER, Dean LSN, Elkington P, Haitchi HM, Jackson C, Jones MG, Loxham M, Lucas JS, Morgan H, Polak M, Staples KJ, Swindle EJ, Tezera L, Watson A, Wilkinson TMA. Towards an artificial human lung: modelling organ-like complexity to aid mechanistic understanding. Eur Respir J 2022; 60:2200455. [PMID: 35777774 DOI: 10.1183/13993003.00455-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/11/2022] [Indexed: 11/05/2022]
Abstract
Respiratory diseases account for over 5 million deaths yearly and are a huge burden to healthcare systems worldwide. Murine models have been of paramount importance to decode human lung biology in vivo, but their genetic, anatomical, physiological and immunological differences with humans significantly hamper successful translation of research into clinical practice. Thus, to clearly understand human lung physiology, development, homeostasis and mechanistic dysregulation that may lead to disease, it is essential to develop models that accurately recreate the extraordinary complexity of the human pulmonary architecture and biology. Recent advances in micro-engineering technology and tissue engineering have allowed the development of more sophisticated models intending to bridge the gap between the native lung and its replicates in vitro Alongside advanced culture techniques, remarkable technological growth in downstream analyses has significantly increased the predictive power of human biology-based in vitro models by allowing capture and quantification of complex signals. Refined integrated multi-omics readouts could lead to an acceleration of the translational pipeline from in vitro experimental settings to drug development and clinical testing in the future. This review highlights the range and complexity of state-of-the-art lung models for different areas of the respiratory system, from nasal to large airways, small airways and alveoli, with consideration of various aspects of disease states and their potential applications, including pre-clinical drug testing. We explore how development of optimised physiologically relevant in vitro human lung models could accelerate the identification of novel therapeutics with increased potential to translate successfully from the bench to the patient's bedside.
Collapse
Affiliation(s)
- Maria Victoria Humbert
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Cosma Mirella Spalluto
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- M.V. Humbert and C.M. Spalluto are co-first authors and contributed equally to this work
| | - Joseph Bell
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Cornelia Blume
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Franco Conforti
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Elizabeth R Davies
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Lareb S N Dean
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Paul Elkington
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hans Michael Haitchi
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Claire Jackson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Mark G Jones
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Matthew Loxham
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jane S Lucas
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Hywel Morgan
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Marta Polak
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Karl J Staples
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Emily J Swindle
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Liku Tezera
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Infection and Immunity, Faculty of Medicine, University College London, London, UK
| | - Alastair Watson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Tom M A Wilkinson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
5
|
Ong SLM, Baelde HJ, van IJzendoorn DGP, Bovée JVMG, Szuhai K. Identification of stable housekeeping genes for induced pluripotent stem cells and -derived endothelial cells for drug testing. Sci Rep 2022; 12:16160. [PMID: 36171445 PMCID: PMC9519970 DOI: 10.1038/s41598-022-20435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
There are no validated housekeeping genes in induced pluripotent stem cells (iPSC) and derived endothelial iPSC (iPSC-EC). Thus a comparison of gene expression levels is less reliable, especially during drug treatments. Here, we utilized transcriptome sequencing data of iPSC and iPSC-EC with or without CRISPR-Cas9 induced translocation to identify a panel of 15 candidate housekeeping genes. For comparison, five commonly used housekeeping genes (B2M, GAPDH, GUSB, HMBS, and HPRT1) were included in the study. The panel of 20 candidate genes were investigated for their stability as reference genes. This panel was analyzed and ranked based on stability using five algorithms, delta-Ct, bestkeeper, geNorm, Normfinder, and Reffinder. Based on the comprehensive ranking of Reffinder, the stability of the top two genes—RPL36AL and TMBIM6, and the bottom two genes—UBA1 and B2M, were further studied in iPSC-EC with and without genetic manipulation, and after treatment with telatinib. Using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), it was shown that gene expression of the top two housekeeping genes, RPL36AL and TMBIM6, remained stable during drug treatment. We identified a panel of housekeeping genes that could be utilized in various conditions using iPSC and iPSC-derived endothelial cells as well as genetically modified iPSC for drug treatment.
Collapse
Affiliation(s)
- Sheena L M Ong
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
6
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
7
|
Grand Moursel L, Visser M, Servant G, Durmus S, Zuurmond AM. CRISPRing future medicines. Expert Opin Drug Discov 2021; 16:463-473. [PMID: 33322954 DOI: 10.1080/17460441.2021.1850687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: The ability to engineer mammalian genomes in a quick and cost-effective way has led to rapid adaptation of CRISPR technology in biomedical research. CRISPR-based engineering has the potential to accelerate drug discovery, to support the reduction of high attrition rate in drug development and to enhance development of cell and gene-based therapies.Areas covered: How CRISPR technology is transforming drug discovery is discussed in this review. From target identification to target validation in both in vitro and in vivo models, CRISPR technology is positively impacting the early stages of drug development by providing a straightforward way to genome engineering. This property also attracted attention for CRISPR application in the cell and gene therapy area.Expert opinion: CRISPR technology is rapidly becoming the preferred tool for genome engineering and nowadays it is hard to imagine the drug discovery pipeline without this technology. With the years to come, CRISPR technology will undoubtedly be further refined and will flourish into a mature technology that will play a key role in supporting genome engineering requirements in the drug discovery pipeline as well as in cell and gene therapy development.
Collapse
Affiliation(s)
| | - Mijke Visser
- Charles River Laboratories, Leiden, The Netherlands
| | | | - Selvi Durmus
- Charles River Laboratories, Leiden, The Netherlands
| | | |
Collapse
|
8
|
Antao AM, Karapurkar JK, Lee DR, Kim KS, Ramakrishna S. Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems. Comput Struct Biotechnol J 2020; 18:3649-3665. [PMID: 33304462 PMCID: PMC7710510 DOI: 10.1016/j.csbj.2020.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
CRISPR/Cas systems are popular genome editing tools that belong to a class of programmable nucleases and have enabled tremendous progress in the field of regenerative medicine. We here outline the structural and molecular frameworks of the well-characterized type II CRISPR system and several computational tools intended to facilitate experimental designs. The use of CRISPR tools to generate disease models has advanced research into the molecular aspects of disease conditions, including unraveling the molecular basis of immune rejection. Advances in regenerative medicine have been hindered by major histocompatibility complex-human leukocyte antigen (HLA) genes, which pose a major barrier to cell- or tissue-based transplantation. Based on progress in CRISPR, including in recent clinical trials, we hypothesize that the generation of universal donor immune-engineered stem cells is now a realistic approach to tackling a multitude of disease conditions.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, South Korea
- CHA Stem Cell Institute, CHA University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- College of Medicine, Hanyang University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
9
|
O'Brien SJ, Ekman MB, Manek S, Galandiuk S. CRISPR-mediated gene editing for the surgeon scientist. Surgery 2019; 166:129-137. [PMID: 30922545 DOI: 10.1016/j.surg.2019.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
Tremendous advances have occurred in gene editing during the past 20 years with the development of a number of systems. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9) system represents an exciting area of research. This review examines both the relevant studies pertaining to the history, current status, and modifications of this system, in comparison with other gene-editing systems and future applications, and limitations of the CRISPR-Cas9 gene-editing system, with a focus on applications of relevance to the surgeon scientist. The CRISPR-Cas9 system was described initially in 2012 for gene editing in bacteria and then in human cells, and since then, a number of modifications have improved the efficiency and specificity of gene editing. Clinical studies have been limited because further research is required to verify its safety in patients. Some clinical trials in oncology have opened, and early studies have shown that gene editing may have a particular role in the field of organ transplantation and in the care of trauma patients. Gene editing is likely to play an important role in future research in many aspects of the surgery arena.
Collapse
Affiliation(s)
- Stephen J O'Brien
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY
| | - Matthew B Ekman
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY
| | - Stephen Manek
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY
| | - Susan Galandiuk
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY.
| |
Collapse
|
10
|
Alateeq S, Ovchinnikov D, Tracey T, Whitworth D, Al-Rubaish A, Al-Ali A, Wolvetang E. Identification of on-target mutagenesis during correction of a beta-thalassemia splice mutation in iPS cells with optimised CRISPR/Cas9-double nickase reveals potential safety concerns. APL Bioeng 2018; 2:046103. [PMID: 31069325 PMCID: PMC6481731 DOI: 10.1063/1.5048625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
Precise and accurate gene correction is crucial for enabling iPSC-based therapies, and Cas9-Nickase based approaches are increasingly considered for in vivo correction of diseases such as beta-thalassemia. Here, we generate footprint-free induced pluripotent stem cells from a patient with a beta-thalassemia mutation (IVSII-1 G > A) and employ a double Cas9nickase-mediated correction strategy combined with a piggyBac transposon-modified donor vector for gene correction. Our approach further aimed to minimize the formation of adjacent single-strand breaks at the targeted allele through the destruction of the binding site for one guide and the use of a synonymous protospacer adjacent motif blocking mutation (canonical PAM sequence 5'-NGG-3' is changed to 5'-NCG-3', where N indicates any nucleobase) for the other guide. We show that this strategy indeed not only permits bi-allelic seamless repair of the beta-globin gene splice site mutation and negligible off-target mutagenesis or re-editing of the targeted allele but also results in unexpected on-target mutagenesis with some guide RNAs (gRNAs) in several targeted clones. This study thus not only validates a framework for seamless gene correction with enhanced specificity and accuracy but also highlights potential safety concerns associated with Cas9-nickase based gene correction.
Collapse
Affiliation(s)
| | - Dmitry Ovchinnikov
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Timothy Tracey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Deanne Whitworth
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Abdullah Al-Rubaish
- Department of Internal Medicine, College of Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam 31451, Kingdom of Saudi Arabia
| | - Amein Al-Ali
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31451, Kingdom of Saudi Arabia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
11
|
Faber SC, McCullough SD. Through the Looking Glass: In Vitro Models for Inhalation Toxicology and Interindividual Variability in the Airway. ACTA ACUST UNITED AC 2018; 4:115-128. [PMID: 31380467 DOI: 10.1089/aivt.2018.0002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With 7 million deaths reported annually from air pollution alone, it is evident that adverse effects of inhaled toxicant exposures remain a major public health concern in the 21st century. Assessment and characterization of the impacts of air pollutants on human health stems from epidemiological and clinical studies, which have linked both outdoor and indoor air contaminant exposure to adverse pulmonary and cardiovascular health outcomes. Studies in animal models support epidemiological findings and have been critical in identifying systemic effects of environmental chemicals on cognitive abilities, liver disease, and metabolic dysfunction following inhalation exposure. Likewise, traditional monoculture systems have aided in identifying biomarkers of susceptibility to inhaled toxicants and served as a screening platform for safety assessment of pulmonary toxicants. Despite their contributions, in vivo and classic in vitro models have not been able to accurately represent the heterogeneity of the human population and account for interindividual variability in response to inhaled toxicants and susceptibility to the adverse health effects. Development of new technologies that can investigate genetic predisposition, are cost and time efficient, and are ethically sound, will enhance elucidation of mechanisms of inhalation toxicity, and aid in the development of novel pharmaceuticals and/or safety evaluation. This review will describe the classic and novel cell-based inhalation toxicity models and how these emerging technologies can be incorporated into regulatory or nonregulatory testing to address interindividual variability and improve overall human health.
Collapse
Affiliation(s)
- Samantha C Faber
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shaun D McCullough
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
12
|
Sniecinski I, Seghatchian J. Emerging stem cell based strategies for treatment of childhood diseases. Transfus Apher Sci 2018; 57:311-315. [PMID: 29793820 DOI: 10.1016/j.transci.2018.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell therapy is an important regenerative medicine approach, in which either differentiated cells or stem cells capable of differentiation are transplanted into an individual with the objective of yielding specific cell types in the damaged tissue and consequently restoring its function. The most successful example of cell therapy is hematopoietic stem cell transplantation, leading to regeneration of patient's blood cells, now a widely established procedure for many hematopoietic diseases. Development of cellular therapies for other tissues then followed in the footsteps of the hematopoietic experience. Nowadays, there are numerous ongoing clinical trials using various types of stem cells and some of them become approved cell-based products for use by patients. The aim of this review is to highlight some of advances and challenges of cell-based therapies including.
Collapse
Affiliation(s)
- Irena Sniecinski
- Department of Transfusion Medicine, Division of Hematology, Stem Cells Transplantation, City of Hope National Cancer Center, Duarte, CA, USA.
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety improvement, Audit/Inspection, and DDR Strategies, London, UK
| |
Collapse
|
13
|
Wegscheid ML, Anastasaki C, Gutmann DH. Human stem cell modeling in neurofibromatosis type 1 (NF1). Exp Neurol 2017; 299:270-280. [PMID: 28392281 DOI: 10.1016/j.expneurol.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/15/2017] [Accepted: 04/05/2017] [Indexed: 01/03/2023]
Abstract
The future of precision medicine is heavily reliant on the use of human tissues to identify the key determinants that account for differences between individuals with the same disorder. This need is exemplified by the neurofibromatosis type 1 (NF1) neurogenetic condition. As such, individuals with NF1 are born with a germline mutation in the NF1 gene, but may develop numerous distinct neurological problems, ranging from autism and attention deficit to brain and peripheral nerve sheath tumors. Coupled with accurate preclinical mouse models, the availability of NF1 patient-derived induced pluripotent stem cells (iPSCs) provides new opportunities to define the critical factors that underlie NF1-associated nervous system disease pathogenesis and progression. In this review, we discuss the generation and potential applications of iPSC technology to the study of NF1.
Collapse
Affiliation(s)
- Michelle L Wegscheid
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
14
|
May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells. Cells 2017; 6:cells6010005. [PMID: 28178187 PMCID: PMC5371870 DOI: 10.3390/cells6010005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/16/2022] Open
Abstract
In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods.
Collapse
|
15
|
Strauss DG, Blinova K. Clinical Trials in a Dish. Trends Pharmacol Sci 2016; 38:4-7. [PMID: 27876286 DOI: 10.1016/j.tips.2016.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
Clinical trials 'in a dish' involve testing medical therapies for safety or effectiveness in the laboratory with human tissue. This has become possible owing to recent biotechnology advances including induced pluripotent stem cells, organs-on-a-chip, and whole-genome sequencing. We provide here an overview of the landscape and highlight steps the FDA is taking to advance the science of clinical trials in a dish and to support the development and validation of new regulatory paradigms to assess drug safety using these new technologies.
Collapse
Affiliation(s)
- David G Strauss
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Ksenia Blinova
- Division of Biomedical Physics, Office of Science of Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
16
|
Shah RR, Cholewa-Waclaw J, Davies FCJ, Paton KM, Chaligne R, Heard E, Abbott CM, Bird AP. Efficient and versatile CRISPR engineering of human neurons in culture to model neurological disorders. Wellcome Open Res 2016; 1:13. [PMID: 27976757 DOI: 10.12688/wellcomeopenres.10011.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The recent identification of multiple new genetic causes of neurological disorders highlights the need for model systems that give experimental access to the underlying biology. In particular, the ability to couple disease-causing mutations with human neuronal differentiation systems would be beneficial. Gene targeting is a well-known approach for dissecting gene function, but low rates of homologous recombination in somatic cells (including neuronal cells) have traditionally impeded the development of robust cellular models of neurological disorders. Recently, however, CRISPR/Cas9 gene editing technologies have expanded the number of systems within which gene targeting is possible. Here we adopt as a model system LUHMES cells, a commercially available diploid human female mesencephalic cell line that differentiates into homogeneous mature neurons in 1-2 weeks. We describe optimised methods for transfection and selection of neuronal progenitor cells carrying targeted genomic alterations using CRISPR/Cas9 technology. By targeting the endogenous X-linked MECP2 locus, we introduced four independent missense mutations that cause the autism spectrum disorder Rett syndrome and observed the desired genetic structure in 3-26% of selected clones, including gene targeting of the inactive X chromosome. Similar efficiencies were achieved by introducing neurodevelopmental disorder-causing mutations at the autosomal EEF1A2 locus on chromosome 20. Our results indicate that efficiency of genetic "knock-in" is determined by the location of the mutation within the donor DNA molecule. Furthermore, we successfully introduced an mCherry tag at the MECP2 locus to yield a fusion protein, demonstrating that larger insertions are also straightforward in this system. We suggest that our optimised methods for altering the genome of LUHMES cells make them an attractive model for the study of neurogenetic disorders.
Collapse
Affiliation(s)
- Ruth R Shah
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | - Faith C J Davies
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Katie M Paton
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Ronan Chaligne
- Centre de Recherche, Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3215, Institut National de la Santé et de la Recherche Médicale U934, Paris, France
| | - Edith Heard
- Centre de Recherche, Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3215, Institut National de la Santé et de la Recherche Médicale U934, Paris, France
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Adrian P Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Could CRISPR be the solution for gene editing’s Gordian knot? Cell Biol Toxicol 2016; 32:465-467. [DOI: 10.1007/s10565-016-9359-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
|