1
|
Afroz R, Goodwin JE. Wnt Signaling in Atherosclerosis: Mechanisms to Therapeutic Implications. Biomedicines 2024; 12:276. [PMID: 38397878 PMCID: PMC10886882 DOI: 10.3390/biomedicines12020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis is a vascular disease in which inflammation plays a pivotal role. Receptor-mediated signaling pathways regulate vascular inflammation and the pathophysiology of atherosclerosis. Emerging evidence has revealed the role of the Wnt pathway in atherosclerosis progression. The Wnt pathway influences almost all stages of atherosclerosis progression, including endothelial dysfunction, monocyte infiltration, smooth muscle cell proliferation and migration, and plaque formation. Targeting the Wnt pathway to treat atherosclerosis represents a promising therapeutic approach that remains understudied. Blocking Wnt signaling utilizing small molecule inhibitors, recombinant proteins, and/or neutralizing antibodies ameliorates atherosclerosis in preclinical models. The Wnt pathway can be potentially manipulated through targeting Wnt ligands, receptors, co-receptors, and downstream signaling molecules. However, there are challenges associated with developing a real world therapeutic compound that targets the Wnt pathway. This review focuses on the role of Wnt signaling in atherosclerosis development, and the rationale for targeting this pathway for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Rizwana Afroz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
2
|
Kantaputra P, Jatooratthawichot P, Jintakanon K, Intachai W, Pradermdutsadeeporn P, Adisornkanj P, Tongsima S, Ngamphiw C, Olsen B, Tucker AS, Cairns JRK. Mutations in LRP6 highlight the role of WNT signalling in oral exostoses and dental anomalies. Arch Oral Biol 2022; 142:105514. [DOI: 10.1016/j.archoralbio.2022.105514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
|
3
|
Gui Y, Zheng H, Cao RY. Foam Cells in Atherosclerosis: Novel Insights Into Its Origins, Consequences, and Molecular Mechanisms. Front Cardiovasc Med 2022; 9:845942. [PMID: 35498045 PMCID: PMC9043520 DOI: 10.3389/fcvm.2022.845942] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Foam cells play a vital role in the initiation and development of atherosclerosis. This review aims to summarize the novel insights into the origins, consequences, and molecular mechanisms of foam cells in atherosclerotic plaques. Foam cells are originated from monocytes as well as from vascular smooth muscle cells (VSMC), stem/progenitor cells, and endothelium cells. Novel technologies including lineage tracing and single-cell RNA sequencing (scRNA-seq) have revolutionized our understanding of subtypes of monocyte- and VSMC-derived foam cells. By using scRNA-seq, three main clusters including resident-like, inflammatory, and triggering receptor expressed on myeloid cells-2 (Trem2 hi ) are identified as the major subtypes of monocyte-derived foam cells in atherosclerotic plaques. Foam cells undergo diverse pathways of programmed cell death including apoptosis, autophagy, necroptosis, and pyroptosis, contributing to the necrotic cores of atherosclerotic plaques. The formation of foam cells is affected by cholesterol uptake, efflux, and esterification. Novel mechanisms including nuclear receptors, non-coding RNAs, and gut microbiota have been discovered and investigated. Although the heterogeneity of monocytes and the complexity of non-coding RNAs make obstacles for targeting foam cells, further in-depth research and therapeutic exploration are needed for the better management of atherosclerosis.
Collapse
Affiliation(s)
- Yuzhou Gui
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai, China
| | - Hongchao Zheng
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Richard Y. Cao
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Guo Q, Lai Y, Chu J, Chen X, Gao M, Sang C, Dong J, Pu J, Ma C. LRP6 Polymorphisms Is Associated With Sudden Cardiac Death in Patients With Chronic Heart Failure in the Chinese Han Population. Front Cardiovasc Med 2022; 8:815595. [PMID: 35187114 PMCID: PMC8854291 DOI: 10.3389/fcvm.2021.815595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) plays a critical role in cardiovascular homeostasis. The deficiency of LRP6 is associated with a high risk of arrhythmias. However, the association between genetic variations of LRP6 and sudden cardiac death (SCD) remains unknown. This study aims to explore the association between common variants of LRP6 and the prognosis of chronic heart failure (CHF) patients. From July 2005 to December 2009, patients with CHF were enrolled from 10 hospitals in China. The single-nucleotide polymorphism (SNP) rs2302684 was selected for the evaluation of the effect of LRP6 polymorphisms on the survival in patients with CHF. A total of 1,437 patients with CHF were finally included for the analysis. During a median follow-up of 61 months (range 0.4–129 months), a total of 546 (38.0%) patients died, including 201 (36.8%) cases with SCD and 345 (63.2%) cases with non-SCD. Patients carrying A allele of rs2302684 had an increased risk of all-cause death (adjusted HR 1.452, 95% CI 1.189–1.706; P < 0.001) and SCD (adjusted HR 1.783, 95% CI 1.337–2.378; P < 0.001). Therefore, the SNP rs2302684 T>A in LRP6 indicated higher risks of all-cause death and SCD in patients with CHF. LRP6 could be added as a novel predictor of SCD and might be a potential therapeutic target in the prevention of SCD in the CHF population.
Collapse
Affiliation(s)
- Qi Guo
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yiwei Lai
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jianmin Chu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuhua Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingyang Gao
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Caihua Sang
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jianzeng Dong
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jielin Pu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
- *Correspondence: Jielin Pu
| | - Changsheng Ma
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Changsheng Ma
| |
Collapse
|
5
|
Liu Y, Neogi A, Mani A. The role of Wnt signalling in development of coronary artery disease and its risk factors. Open Biol 2020; 10:200128. [PMID: 33081636 PMCID: PMC7653355 DOI: 10.1098/rsob.200128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023] Open
Abstract
The Wnt signalling pathways are composed of a highly conserved cascade of events that govern cell differentiation, apoptosis and cell orientation. Three major and distinct Wnt signalling pathways have been characterized: the canonical Wnt pathway (or Wnt/β-catenin pathway), the non-canonical planar cell polarity pathway and the non-canonical Wnt/Ca2+ pathway. Altered Wnt signalling pathway has been associated with diverse diseases such as disorders of bone density, different malignancies, cardiac malformations and heart failure. Coronary artery disease is the most common type of heart disease in the United States. Atherosclerosis is a multi-step pathological process, which starts with lipid deposition and endothelial cell dysfunction, triggering inflammatory reactions, followed by recruitment and aggregation of monocytes. Subsequently, monocytes differentiate into tissue-resident macrophages and transform into foam cells by the uptake of modified low-density lipoprotein. Meanwhile, further accumulations of lipids, infiltration and proliferation of vascular smooth muscle cells, and deposition of the extracellular matrix occur under the intima. An atheromatous plaque or hyperplasia of the intima and media is eventually formed, resulting in luminal narrowing and reduced blood flow to the myocardium, leading to chest pain, angina and even myocardial infarction. The Wnt pathway participates in all different stages of this process, from endothelial dysfunction to lipid deposit, and from initial inflammation to plaque formation. Here, we focus on the role of Wnt cascade in pathophysiological mechanisms that take part in coronary artery disease from both clinical and experimental perspectives.
Collapse
Affiliation(s)
- Ya Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Arpita Neogi
- Yale Cardiovascular Genetics Program, Yale University, New Haven, CT, USA
| | - Arya Mani
- Yale Cardiovascular Genetics Program, Yale University, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Medicine, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Low-density lipoprotein receptor-related protein 6-mediated signaling pathways and associated cardiovascular diseases: diagnostic and therapeutic opportunities. Hum Genet 2020; 139:447-459. [PMID: 32076828 DOI: 10.1007/s00439-020-02124-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is a member of the low-density lipoprotein receptors (LDLRs) family and accumulating evidence points to the critical role of LRP6 in cardiovascular health and homeostasis. In addition to presenting the well-appreciated roles in canonical signaling regulating blood pressure, blood glucose, lipid metabolism, atherosclerosis, cardiac valve disease, cardiac development, Alzheimer's disease and tumorigenesis, LRP6 also inhibits non-canonical Wnt signals that promote arterial smooth muscle cell proliferation and vascular calcification. Noticeably, the role of LRP6 is displayed in cardiometabolic disease, an increasingly important clinical burden with aging and obesity. The prospect for cardiovascular diseases treatment via targeting LRP6-mediated signaling pathways may improve central blood pressure and lipid metabolism, and reduce neointima formation and myocardial ischemia-reperfusion injury. Thus, a deep and comprehensive understanding of LRP6 structure, function and signaling pathways will contribute to clinical diagnosis, therapy and new drug development for LRP6-related cardiovascular diseases.
Collapse
|
7
|
Michalczyk ER, Chen L, Maia MB, DiPietro LA. A Role for Low-Density Lipoprotein Receptor-Related Protein 6 in Blood Vessel Regression in Wound Healing. Adv Wound Care (New Rochelle) 2020; 9:1-8. [PMID: 31871825 PMCID: PMC6918844 DOI: 10.1089/wound.2019.1019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/25/2019] [Indexed: 01/22/2023] Open
Abstract
Objective: The healing of skin wounds is typified by a pattern of robust angiogenesis followed by vascular regression. Pigment epithelium-derived factor (PEDF), a recognized endogenous antiangiogenic protein, regulates vascular regression in resolving wounds through an unknown receptor. Among the multiple receptors for PEDF that have been identified, low-density lipoprotein receptor-related protein 6 (Lrp6) has been described as a regulator of angiogenesis in multiple systems. The purpose of the current study was to determine if the Lrp6 receptor plays a role in vessel regression in wounds. Approach: Excisional skin wounds were prepared on C57BL/6 mice. RT-PCR and immunoblots were performed to measure Lrp6 expression over a time course of wound healing. Immunohistochemistry was performed to localize Lrp6 in both recombinant PEDF (rPEDF)-treated and control wounds. To examine whether Lrp6 is critical to the regulation of capillary regression in vivo, wounds were treated with Lrp6 siRNA to minimize its presence in wounds. Immunohistochemistry for CD31 was performed to quantify blood vessel density. Results: PCR and immunoblots revealed significant increases in Lrp6 expression during the vascular regression phase of wound healing. Lrp6 was found to colocalize with CD31+ endothelial cells in wounds. The addition of rPEDF to wounds caused an increase in Lrp6-CD31+ endothelial cell colocalization. Inhibition of Lrp6 by siRNA impeded the vascular regression phase of healing. Innovation: This study is the first to demonstrate an association between Lrp6 and vessel regression in wound healing. Conclusion: Lrp6 is expressed in wounds in a temporal and spatial manner that suggests it may be a receptor for PEDF during vascular regression. PEDF increases Lrp6 expression in the wound vasculature, and inhibition of Lrp6 blocked vascular regression in wounds. The results suggest that Lrp6 is important to vascular regression in wounds, possibly through direct interaction with PEDF.
Collapse
Affiliation(s)
- Elizabeth R. Michalczyk
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Mariana B. Maia
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
8
|
Kang S, Pu JL. WITHDRAWN: Low Density Lipoprotein Receptor Related Protein 6-mediated Cardiovascular Diseases and associated signaling pathways. Can J Cardiol 2019. [DOI: 10.1016/j.cjca.2019.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
9
|
Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul Pharmacol 2018; 112:54-71. [PMID: 30115528 DOI: 10.1016/j.vph.2018.08.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022]
Abstract
During atherosclerosis, the gradual accumulation of lipids into the subendothelial space of damaged arteries results in several lipid modification processes followed by macrophage uptake in the arterial wall. The way in which these modified lipoproteins are dealt with determines the likelihood of cholesterol accumulation within the monocyte-derived macrophage and thus its transformation into the foam cell that makes up the characteristic fatty streak observed in the early stages of atherosclerosis. The unique expression of chemokine receptors and cellular adhesion molecules expressed on the cell surface of monocytes points to a particular extravasation route that they can take to gain entry into atherosclerotic site, in order to undergo differentiation into the phagocytic macrophage. Indeed several GWAS and animal studies have identified key genes and proteins required for monocyte recruitment as well cholesterol handling involving lipid uptake, cholesterol esterification and cholesterol efflux. A re-examination of the previously accepted paradigm of macrophage foam cell origin has been called into question by recent studies demonstrating shared expression of scavenger receptors, cholesterol transporters and pro-inflammatory cytokine release by alternative cell types present in the neointima, namely; endothelial cells, vascular smooth muscle cells and stem/progenitor cells. Thus, therapeutic targets aimed at a more heterogeneous foam cell population with shared functions, such as enhanced protease activity, and signalling pathways, mediated by non-coding RNA molecules, may provide greater therapeutic outcome in patients. Finally, studies targeting each aspect of foam cell formation and death using both genetic knock down and pharmacological inhibition have provided researchers with a clearer understanding of the cellular processes at play, as well as helped researchers to identify key molecular targets, which may hold significant therapeutic potential in the future.
Collapse
Affiliation(s)
- Eithne M Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Stuart W A Pearce
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
10
|
Chen Z, Li Y, Jiang G, Yang C, Wang Y, Wang X, Fang B, Zhang G, Sun Y, Qian J, Gong H, Zou Y. Knockdown of LRP6 activates Drp1 to inhibit survival of cardiomyocytes during glucose deprivation. Biomed Pharmacother 2018; 103:1408-1414. [PMID: 29864925 DOI: 10.1016/j.biopha.2018.04.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022] Open
Abstract
Lipoprotein receptor-related protein 6 (LRP6) binds to Wnt ligands to transduce signal by stabilization of β-catenin, which has been involved in the regulation of embryonic development and metabolism et al. Here, we observed LRP6 decreased in human hearts with dilated cardiomyopathy (DCM), and it also decreased in cultured cardiomyocytes under glucose- deprivation (GD). Knockdown of LRP6 greatly inhibited cell viability in cardiomyocytes under GD, but it didn't induce the effect in cardiomyocytes at baseline. Overexpression of LRP6 increased the cell viability in GD-cardiomyocytes. To explore potential molecular mechanisms, we detected the phosphorylation of dynamin-related protein 1(Drp1) and active β-catenin in cardiomyocytes under GD. Knockdown of LRP6 enhanced p-Drp1(S616) level while it didn't alter the p-Drp1(S637) and active β-catenin level in GD-cardiomyocytes. Drp1 inhibitor significantly suppressed the increase in p-Drp1 at S616 and improved the cell viability in GD-cardiomyocytes with knockdown of LRP6. Further analysis showed that knockdown of LRP6 also increased the phosphorylation of mammalian target of rapamycin (mTOR), and Drp1 inhibitor greatly inhibited the increase in p-mTOR level in GD-cardiomyocytes. The present study indicated that knockdown of LRP6 inhibited the cell viability by activation of Drp1 in GD-cardiomyocytes, and the phosphorylation of mTOR may be involved in the process. It suggests that LRP6 can prevent cardiomyocytes from death in nutrition-deprived condition.
Collapse
Affiliation(s)
- Zhidan Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Guoliang Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Chunjie Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiang Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bo Fang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Guoping Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yongxin Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Juying Qian
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Chen Z, Li Y, Wang Y, Qian J, Ma H, Wang X, Jiang G, Liu M, An Y, Ma L, Kang L, Jia J, Yang C, Zhang G, Chen Y, Gao W, Fu M, Huang Z, Tang H, Zhu Y, Ge J, Gong H, Zou Y. Cardiomyocyte-Restricted Low Density Lipoprotein Receptor-Related Protein 6 (LRP6) Deletion Leads to Lethal Dilated Cardiomyopathy Partly Through Drp1 Signaling. Am J Cancer Res 2018; 8:627-643. [PMID: 29344294 PMCID: PMC5771081 DOI: 10.7150/thno.22177] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/14/2017] [Indexed: 11/17/2022] Open
Abstract
Low density lipoprotein receptor-related protein 6 (LRP6), a wnt co-receptor, regulates multiple functions in various organs. However, the roles of LRP6 in the adult heart are not well understood. Methods: We observed LRP6 expression in heart with end-stage dilated cardiomyopathy (DCM) by western blot. Tamoxifen-inducible cardiac-specific LRP6 knockout mouse was constructed. Hemodynamic and echocardiographic analyses were performed to these mice. Results: Cardiac LRP6 expression was dramatically decreased in patients with end-stage dilated cardiomyopathy (DCM) compared to control group. Tamoxifen-inducible cardiac-specific LRP6 knockout mice developed acute heart failure and mitochondrial dysfunction with reduced survival. Proteomic analysis suggests the fatty acid metabolism disorder involving peroxisome proliferator-activated receptors (PPARs) signaling in the LRP6 deficient heart. Accumulation of mitochondrial targeting to autophagosomes and lipid droplet were observed in LRP6 deletion hearts. Further analysis revealed cardiac LRP6 deletion suppressed autophagic degradation and fatty acid utilization, coinciding with activation of dynamin-related protein 1 (Drp1) and downregulation of nuclear TFEB (Transcription factor EB). Injection of Mdivi-1, a Drp1 inhibitor, not only promoted nuclear translocation of TFEB, but also partially rescued autophagic degradation, improved PPARs signaling, and attenuated cardiac dysfunction induced by cardiac specific LRP6 deletion. Conclusions: Cardiac LRP6 deficiency greatly suppressed autophagic degradation and fatty acid utilization, and subsequently leads to lethal dilated cardiomyopathy and cardiac dysfunction through activation of Drp1 signaling. It suggests that heart failure progression may be attenuated by therapeutic modulation of LRP6 expression.
Collapse
|