1
|
Lee CWZ, Mubarak MQE, Green AP, de Visser SP. How Does Replacement of the Axial Histidine Ligand in Cytochrome c Peroxidase by N δ-Methyl Histidine Affect Its Properties and Functions? A Computational Study. Int J Mol Sci 2020; 21:ijms21197133. [PMID: 32992593 PMCID: PMC7583937 DOI: 10.3390/ijms21197133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Heme peroxidases have important functions in nature related to the detoxification of H2O2. They generally undergo a catalytic cycle where, in the first stage, the iron(III)-heme-H2O2 complex is converted into an iron(IV)-oxo-heme cation radical species called Compound I. Cytochrome c peroxidase Compound I has a unique electronic configuration among heme enzymes where a metal-based biradical is coupled to a protein radical on a nearby Trp residue. Recent work using the engineered Nδ-methyl histidine-ligated cytochrome c peroxidase highlighted changes in spectroscopic and catalytic properties upon axial ligand substitution. To understand the axial ligand effect on structure and reactivity of peroxidases and their axially Nδ-methyl histidine engineered forms, we did a computational study. We created active site cluster models of various sizes as mimics of horseradish peroxidase and cytochrome c peroxidase Compound I. Subsequently, we performed density functional theory studies on the structure and reactivity of these complexes with a model substrate (styrene). Thus, the work shows that the Nδ-methyl histidine group has little effect on the electronic configuration and structure of Compound I and little changes in bond lengths and the same orbital occupation is obtained. However, the Nδ-methyl histidine modification impacts electron transfer processes due to a change in the reduction potential and thereby influences reactivity patterns for oxygen atom transfer. As such, the substitution of the axial histidine by Nδ-methyl histidine in peroxidases slows down oxygen atom transfer to substrates and makes Compound I a weaker oxidant. These studies are in line with experimental work on Nδ-methyl histidine-ligated cytochrome c peroxidases and highlight how the hydrogen bonding network in the second coordination sphere has a major impact on the function and properties of the enzyme.
Collapse
Affiliation(s)
- Calvin W. Z. Lee
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (C.W.Z.L.); (M.Q.E.M.); (A.P.G.)
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (C.W.Z.L.); (M.Q.E.M.); (A.P.G.)
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Anthony P. Green
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (C.W.Z.L.); (M.Q.E.M.); (A.P.G.)
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (C.W.Z.L.); (M.Q.E.M.); (A.P.G.)
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Correspondence: ; Tel.: +44-161-306-4882
| |
Collapse
|
2
|
Mubarak MQE, Visser SP. Computational Study on the Catalytic Reaction Mechanism of Heme Haloperoxidase Enzymes. Isr J Chem 2019. [DOI: 10.1002/ijch.201900099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M. Qadri E. Mubarak
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| | - Sam P. Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| |
Collapse
|
3
|
Colomban C, Tobing AH, Mukherjee G, Sastri CV, Sorokin AB, de Visser SP. Mechanism of Oxidative Activation of Fluorinated Aromatic Compounds by N-Bridged Diiron-Phthalocyanine: What Determines the Reactivity? Chemistry 2019; 25:14320-14331. [PMID: 31339185 DOI: 10.1002/chem.201902934] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Indexed: 11/06/2022]
Abstract
The biodegradation of compounds with C-F bonds is challenging due to the fact that these bonds are stronger than the C-H bond in methane. In this work, results on the unprecedented reactivity of a biomimetic model complex that contains an N-bridged diiron-phthalocyanine are presented; this model complex is shown to react with perfluorinated arenes under addition of H2 O2 effectively. To get mechanistic insight into this unusual reactivity, detailed density functional theory calculations on the mechanism of C6 F6 activation by an iron(IV)-oxo active species of the N-bridged diiron phthalocyanine system were performed. Our studies show that the reaction proceeds through a rate-determining electrophilic C-O addition reaction followed by a 1,2-fluoride shift to give the ketone product, which can further rearrange to the phenol. A thermochemical analysis shows that the weakest C-F bond is the aliphatic C-F bond in the ketone intermediate. The oxidative defluorination of perfluoroaromatics is demonstrated to proceed through a completely different mechanism compared to that of aromatic C-H hydroxylation by iron(IV)-oxo intermediates such as cytochrome P450 Compound I.
Collapse
Affiliation(s)
- Cédric Colomban
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon, IRCELYON, UMR 5256, CNRS Université Lyon 1, 2 Av. Albert Einstein, 69626, Villeurbanne Cedex, France
| | - Anthonio H Tobing
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical Science, The University of, Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Gourab Mukherjee
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical Science, The University of, Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Alexander B Sorokin
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon, IRCELYON, UMR 5256, CNRS Université Lyon 1, 2 Av. Albert Einstein, 69626, Villeurbanne Cedex, France
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical Science, The University of, Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
4
|
Chatfield DC, Morozov AN. Proximal Pocket Controls Alkene Oxidation Selectivity of Cytochrome P450 and Chloroperoxidase toward Small, Nonpolar Substrates. J Phys Chem B 2018; 122:7828-7838. [PMID: 30052045 DOI: 10.1021/acs.jpcb.8b04279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This paper examines the influence of the proximal pockets of cytochrome P450CAM and chloroperoxidase (CPO) on the relative favorability of catalytic epoxidation and allylic hydroxylation of olefins, a type of alkene oxidation selectivity. The study employs quantum mechanical models of the active site to isolate the proximal pocket's influence on the barrier for the selectivity-determining step for each reaction, using cyclohexene and cis-β-methylstyrene as substrates. The proximal pocket is found to preference epoxidation by 2-5 kcal/mol, the largest value being for CPO, converting the active heme-thiolate moiety from being intrinsically hydroxylation-selective to being intrinsically epoxidation-selective. This theoretical study, the first to correctly predict these enzymes' preference for epoxidation of allylic substrates, strongly suggests that the proximal pocket is the key determinant of alkene oxidation selectivity. The selectivity for epoxidation can be rationalized in terms of the proximal pocket's modulation of the thiolate's electron "push" and consequent influence on the heme redox potential and the basicity of the trans ligand.
Collapse
Affiliation(s)
- David C Chatfield
- Department of Chemistry and Biochemistry , Florida International University , 11200 8th Street , Miami , Florida 33199 , United States
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry , Florida International University , 11200 8th Street , Miami , Florida 33199 , United States
| |
Collapse
|
5
|
Postils V, Saint-André M, Timmins A, Li XX, Wang Y, Luis JM, Solà M, de Visser SP. Quantum Mechanics/Molecular Mechanics Studies on the Relative Reactivities of Compound I and II in Cytochrome P450 Enzymes. Int J Mol Sci 2018; 19:E1974. [PMID: 29986417 PMCID: PMC6073316 DOI: 10.3390/ijms19071974] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 02/03/2023] Open
Abstract
The cytochromes P450 are drug metabolizing enzymes in the body that typically react with substrates through a monoxygenation reaction. During the catalytic cycle two reduction and protonation steps generate a high-valent iron (IV)-oxo heme cation radical species called Compound I. However, with sufficient reduction equivalents present, the catalytic cycle should be able to continue to the reduced species of Compound I, called Compound II, rather than a reaction of Compound I with substrate. In particular, since electron transfer is usually on faster timescales than atom transfer, we considered this process feasible and decided to investigate the reaction computationally. In this work we present a computational study using density functional theory methods on active site model complexes alongside quantum mechanics/molecular mechanics calculations on full enzyme structures of cytochrome P450 enzymes. Specifically, we focus on the relative reactivity of Compound I and II with a model substrate for O⁻H bond activation. We show that generally the barrier heights for hydrogen atom abstraction are higher in energy for Compound II than Compound I for O⁻H bond activation. Nevertheless, for the activation of such bonds, Compound II should still be an active oxidant under enzymatic conditions. As such, our computational modelling predicts that under high-reduction environments the cytochromes P450 can react with substrates via Compound II but the rates will be much slower.
Collapse
Affiliation(s)
- Verònica Postils
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany i Farnés, 69, 17003 Girona, Catalonia, Spain.
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Maud Saint-André
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Amy Timmins
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Xiao-Xi Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany i Farnés, 69, 17003 Girona, Catalonia, Spain.
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany i Farnés, 69, 17003 Girona, Catalonia, Spain.
| | - Sam P de Visser
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|