1
|
Feki I, Hadrich F, Mahmoudi A, Llorent-Martínez EJ, Bouallagui Z, Souilem S, Louati M, Chamkha M, Sayadi S. Thymelaea hirsuta extract attenuates testosterone-induced benign prostatic hyperplasia in rats: Effect on oxidative stress, inflammation and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025:119373. [PMID: 39828147 DOI: 10.1016/j.jep.2025.119373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Benign prostatic hyperplasia (BPH) is one of the most prominent diseases of the aged men urinary system. It is associated with cellular proliferation, hormonal imbalance, oxidative stress, inflammation and apoptosis. Traditionally, Thymelaea hirsuta (L.) (TH) leaves and flowers were used as a decoction or infusion in traditional medicine to treat skin disorders, urinary tract infection and infertility. To date, its potential protective effects for benign prostatic hyperplasia (BPH) have not been investigated. AIM OF THE STUDY This study explored the effects of Thymelaea hirsuta extract (THE) on the development of BPH using a rat model of testosterone induced BPH. MATERIALS AND METHODS the THE phenolic composition was identified by liquid chromatography with a diode array detector (LC-DAD). Then, 21 male Wistar rats (Ten-week old) weighting 200-250 g were separated into three groups: the group 1 was considered as a control while the group 2 and 3 received intramuscular injection of testosterone at dose of 3 mg/kg (BPH). Only the group 3 received orally THE at dose of 36mg /kg. After four-week experimental time, the animals were sacrificed, and reproductive tissue was taken for histological and immunohistochemical analyses. Biochemical tests were also carried out. Additionally, the protein expression levels including in the inflammation pathway were analyzed by western blot. RESULTS Our results revealed that TH treatment reduced the prostate weight and index. Orally THE administration improved the prostate biochemical and morphological characteristic in BPH rats and then lead to a normal prostate morphology restoration. As expected, THE supplementation significantly inhibited rat prostate enlargement, improved the pathological feature and reduced the epithelial thickness. Additionally, the anti-hyperplasic effect of THE is related to its possible ability to regulate the apoptotic and inflammatory pathways. Indeed, immunohistochemical and western blot analyses display a significant regulation of the apoptotic markers (Bax and Bcl-2) and a decrease in the inflammatory protein expression (NF-κB and TNF-α). Similarly, THE treatment increased the prostate cells' endogenous antioxidant capacity through the improvement of GSH level and the SOD activity. Conversely, it decreased the prostatic lipid peroxidation content. The HPLC-ESI-MSn analysis showed that chlorogenic acid and vicenin-2 were putatively identified as the major compounds of THE. CONCLUSION The advanced results revealed the THE efficiency in the prevention of the testosterone-induced BPH in rats indicating that THE can be used as an alternative therapy for BPH management.
Collapse
Affiliation(s)
- Ines Feki
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia.
| | - Fatma Hadrich
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Asma Mahmoudi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Eulogio J Llorent-Martínez
- Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas S/N, E-23071 Jaén, Spain
| | - Zouhaier Bouallagui
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Safa Souilem
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Mariem Louati
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
2
|
Kim SO, Choi A, Lee HH, Lee JY, Park SJ, Kim BH. Purple corn extract improves benign prostatic hyperplasia by inhibiting 5 alpha-reductase type 2 and inflammation in testosterone propionate-induced rats. Front Pharmacol 2025; 15:1485072. [PMID: 39830338 PMCID: PMC11739163 DOI: 10.3389/fphar.2024.1485072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
Benign prostatic hyperplasia (BPH) is a health issue caused by an enlarged prostate in older men. Its prevalence increases with age, and it results in urination-related problems. This works studied the effect of purple corn extract (PCE) on improving BPH symptoms using a testosterone propionate (TP)-induced rat model. PCE reduced the enlargement and weight of the prostate through the inhibition of the conversion of testosterone to dihydrotestosterone (DHT) by inhibiting 5α-reductase type 2 (Srd5a2) in TP-induced BPH rats. In these rats, PCE decreased androgen receptor (AR) expression, AR-mediated signaling, and cell proliferation and increased apoptotic cell death. Finally, PCE exhibited anti-inflammatory activity through the regulation of the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf-2) axis. These results indicate that the Srd5a2 inhibition and anti-inflammatory activity are some of the beneficial effects of PCE that improve BPH symptoms.
Collapse
|
3
|
Wang F, Ma DY, Yang JT, Lyu DF, Gao QH, Li CL, Zhong CF. Mechanisms and Efficacy of Chinese Herbal Medicines in Benign Prostatic Hyperplasia. Chin J Integr Med 2025; 31:73-82. [PMID: 39190272 DOI: 10.1007/s11655-024-3916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 08/28/2024]
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common diseases in elderly men, the incidence of which gradually increases with age and leads to lower urinary tract symptoms (LUTS), which seriously affects the quality of life of patients. Chinese herbal medicines (CHMs) are widely used for the treatment of BPH in China and some other countries. To explore the molecular mechanisms of CHMs for BPH, we conducted a review based on peer-reviewed English-language publications in PubMed and Web of Science databases from inception to December 31, 2023. This article primarily reviewed 32 papers on the use of CHMs and its active compounds in the treatment of BPH, covering animal and cell experiments, and identified relevant mechanisms of action. The results suggest that the mechanisms of action of CHMs in treating BPH may involve the regulation of sex hormones, downregulation of cell growth factors, anti-inflammatory and antioxidative effects, inhibition of cell proliferation, and promotion of apoptosis. CHMs also exhibit α-blocker-like effects, with the potential to relax urethral smooth muscle and alleviate LUTS. Additionally, we also reviewed 4 clinical trials and meta-analyses of CHMs for the treatment of BPH patients, which provided initial evidence of the safety and effectiveness of CHMs treatment. CHMs treatment for BPH shows advantages as a multi-component, multi-target, and multi-pathway therapy, which can mitigate the severity of the disease, improve LUTS, and may become a reliable treatment option in the future.
Collapse
Affiliation(s)
- Fu Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Dong-Yue Ma
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jiu-Tian Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dong-Fang Lyu
- Department of Andrology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Qing-He Gao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Chun-Lei Li
- Faculty of Medicine, Linyi University, Linyi, Shandong Province, 276000, China
| | - Chong-Fu Zhong
- Department of Andrology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
4
|
Nwe SY, Uttarawichien T, Boonsom T, Thongphichai W, Dasuni Wasana PW, Sritularak B, Payuhakrit W, Sukrong S, Towiwat P. Bioassay-guided isolation of two antiproliferative metabolites from Pterocarpus indicus Willd. against TGF-β-induced prostate stromal cells (WPMY-1) proliferation via PI3K/AKT signaling pathway. Front Pharmacol 2024; 15:1452887. [PMID: 39421674 PMCID: PMC11483373 DOI: 10.3389/fphar.2024.1452887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Benign prostatic hyperplasia (BPH) is the enlargement of the prostate gland, primarily occurring in aging men, in which transforming growth factor-beta (TGF-β) plays a critical role in prostate cell hyperproliferation and leads to uncomfortable urinary symptoms in BPH patients. Pterocarpus indicus Willd. is well known for its ethnopharmacological applications for treating ailments such as diuresis and bladder stones. Methods This study aimed to examine the effect of P. indicus extract (PI extract) on TGF-β-induced WPMY-1 cell proliferation, followed by bioassay-guided fractionation to isolate the active metabolites. Angolensin (Ang) and maackiain (Mac) were isolated from bioassay-guided fractionation. Network analysis was performed to investigate the potential mechanisms. Furthermore, network analysis of the Ang-Mac combination in BPH highlighted the potential top ten pathways, including PI3K/AKT signaling pathway. Accordingly, subsequent investigation focused on evaluating the effect of PI extract, Ang, Mac, and Ang-Mac combination on the expression of PCNA, p53, and PI3K/AKT protein localization and expression. Results and discussion Results revealed inhibition of cell proliferation in TGF-β-induced WPMY-1 cells, correlating with downregulated PCNA expression. While PI extract and Mac induced apoptosis via p53 upregulation, Ang and Ang-Mac combination did not significantly affect apoptosis through the p53 pathway. Additionally, both metabolites exhibited potent inhibition of p-PI3K and p-AKT protein localization and expression in the nucleus of TGF-β-induced WPMY-1 cells. This study suggests that PI extract, Ang, and Mac are promising compounds for treating BPH, as evidenced by in silico and in vitro studies. Additionally, Ang and Mac could be used to standardize PI extract in future investigations.
Collapse
Affiliation(s)
- San Yoon Nwe
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, Thailand
- Herb Guardian Co., Ltd., Nonthaburi, Thailand
| | - Tamonwan Uttarawichien
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, Thailand
| | - Teerawat Boonsom
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, Thailand
| | - Wisuwat Thongphichai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, Thailand
| | - Peththa Wadu Dasuni Wasana
- Animal Models of Chronic Inflammation-associated Diseases for Drug Discovery Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Witchuda Payuhakrit
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suchada Sukrong
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn School of Integrated Innovation, Chulalongkorn University, Bangkok, Thailand
| | - Pasarapa Towiwat
- Animal Models of Chronic Inflammation-associated Diseases for Drug Discovery Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Kanu SC, Ejezie FE, Ejezie CS, Eleazu CO. Effect of methanol extract of Plectranthus esculentus N.E.Br tuber and its fractions on indices of benign prostatic hyperplasia in Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118301. [PMID: 38735419 DOI: 10.1016/j.jep.2024.118301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many ethnopharmacological properties (anti-tumor, etc.) have been credited to Plectranthus esculentus tuber but the scientific basis has not been established. AIM OF THE STUDY To evaluate the effect of methanol extract of P. esculentus tuber (MEPET) (phase 1) and its fractions (phase 2) on benign prostatic hyperplasia (BPH) in rats. MATERIALS AND METHODS The study was conducted in two phases. Phase 1, thirty-five male albino rats (6 weeks old) were divided into seven groups of five rats each: normal control (NC) received olive oil (subcutaneously) and water (orally); disease control (DC) received testosterone propionate (TP) (3 mg/kg) and water; test groups (1,2,3 and 4) received TP + MEPET at 100, 200, 400, 600 mg/kg respectively; positive control, received TP + finasteride (5 mg/70 kg). After 28 days, their relative prostate weights (RPW) and prostate specific antigen (PSA) were determined. Phase 2, thirty rats were divided into 6 groups of 5 rats each: NC received olive oil (subcutaneously daily) and dimethyl sulfoxide (DMSO) (orally); DC received TP (3 mg/kg), and DMSO; test group 1 received TP and aqueous fraction of MEPET (400 mg/kg); test group 2 received TP and methanol fraction of MEPET (400 mg/kg); test group 3 received TP, and ethyl acetate fraction of MEPET (400 mg/kg); positive control received TP and finasteride (5 mg/70 kg). After 28 days, their erythrocyte sedimentation rates, RPW, prostate levels of PSA, DHT, inflammatory, apoptotic markers and prostate histology were determined. RESULTS Ethyl acetate fraction of MEPET modulated most of the parameters of BPH in the rats in a manner akin to finasteride as corroborated by prostate histology. CONCLUSIONS EFPET could be useful in the treatment of BPH.
Collapse
Affiliation(s)
- Shedrach C Kanu
- Department of Medical Biochemistry, College of Medicine, University of Nigeria Enugu Campus, Enugu State, Nigeria; Department of Biochemistry, Alex-Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria.
| | - Fidelis E Ejezie
- Department of Medical Biochemistry, College of Medicine, University of Nigeria Enugu Campus, Enugu State, Nigeria
| | - Chioma S Ejezie
- Department of Haematology and Immunology, University of Nigeria Teaching Hospital, Ituku-Ozalla Enugu, Nigeria
| | - Chinedum O Eleazu
- Department of Biochemistry, Alex-Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
6
|
Krishnamoorthi R, Ganapathy A A, Hari Priya VM, Kumaran A. Future aspects of plant derived bioactive metabolites as therapeutics to combat benign prostatic hyperplasia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118207. [PMID: 38636573 DOI: 10.1016/j.jep.2024.118207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Benign prostatic hyperplasia (BPH), characterized by prostate enlargement due to cell proliferation, is a common urinary disorder in men over 50, manifesting as lower urinary tract symptoms (LUTS). Currently, several therapeutic options are accessible for treating BPH, including medication therapy, surgery and watchful waiting. Conventional drugs such as finasteride and dutasteride are used as 5α-reductase inhibitors for the treatment of BPH. However long-term use of these drugs is restricted due to their unpleasant side effects. Despite the range of available medical therapies, the effective treatment against BPH is still inadequate. Certain therapeutic plants and their phytochemicals have the aforementioned goals and work by regulating this enzyme. AIM OF THE STUDY This review aims to provide a comprehensive insight to advancements in diagnosis of BPH, modern treatment methods and the significance of ethnobotanically relevant medicinal plants as alternative therapeutics for managing BPH. MATERIAL AND METHODS A thorough and systematic literature search was performed using electronic databases and search engines such as PubMed, Web of Science, NCBI and SciFinder till October 2023. Specific keywords such as "benign prostatic hyperplasia", "medicinal plants", "phytochemicals", "pharmacology", "synergy", "ethnobotany", "5-alpha reductase", "alpha blocker" and "toxicology". By include these keywords, a thorough investigation of pertinent papers was assured, and important data about the many facets of BPH could be retrieved. RESULTS After conducting the above investigation, 104 herbal remedies were found to inhibit Phosphodiesterase-5 (PDE-5) inhibition, alpha-blockers, or 5α -reductase inhibition effects which are supported by in vitro, in vivo and clinical trial studies evidence. Of these, 89 plants have ethnobotanical significance as alpha-blockers, alpha-reductase inhibition, or PDE-5 inhibition, and the other fifteen plants were chosen based on their ability to reduce BPH risk factors. Several phytocompounds, including, rutaecarpine, vaccarin, rutin, kaempferol, β-sitosterol, quercetin, dicaffeoylquinic acid, rutaevin, and phytosterol-F have been reported to be useful for the management of BPH. The use of combination therapy offers a strong approach to treating long-term conditions compare to single plant extract drugs. Furthermore, several botanical combinations such as lycopene and curcumin, pumpkin seed oil and saw palmetto oil, combinations of extracts from Funtumia africana (Benth.) Stapf and Abutilon mauritianum (Jacq.) Medik., and Hypselodelphys poggeana (K.Schum.) Milne-Redh. and Spermacoce radiata (DC.) Sieber ex Hiern are also supported through in vitro and in vivo studies for managing BPH through recuperation in patients with chronic long-term illnesses, as measured by the International Prostate Symptom Score. CONCLUSION The review proposes and endorses careful utilization of conventional medications that may be investigated further to discover possible PDE-5, 5 alpha-reductase, an alpha-blocker inhibitor for managing BPH. Even though most conventional formulations, such as 5 alpha-reductase, are readily available, systemic assessment of the effectiveness and mechanism of action of the herbal constituents is still necessary to identify novel chemical moieties that can be further developed for maximum efficacy. However, there exist abundant botanicals and medicinal plants across several regions of Africa, Asia, and the Americas, which can be further studied and developed for utilization as a potential phytotherapeutic for the management of BPH.
Collapse
Affiliation(s)
- Raman Krishnamoorthi
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India
| | - Anand Ganapathy A
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - V M Hari Priya
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Alaganandam Kumaran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Kyoda Y, Shibamori K, Shindo T, Maehana T, Hashimoto K, Kobayashi K, Tanaka T, Fukuta F, Masumori N. Intrinsic and extrinsic factors causing hyperplasia of the prostate. Int J Urol 2024; 31:705-717. [PMID: 38462732 PMCID: PMC11524118 DOI: 10.1111/iju.15446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Prostatic hyperplasia is very common in elderly men and is a typical disease that reduces quality of life. Histologically, hyperplasia of the prostate gland causes obstruction at the bladder outlet, resulting in symptoms such as a weak urine stream. Various factors have been considered to cause histological enlargement of the prostate, but the underlying cause is still unknown. The factors that cause prostate hyperplasia can be broadly classified into intrinsic and extrinsic ones. Extrinsic factors include things that we directly come into contact with such as bacteria and food. On the other hand, intrinsic factors are those that cause changes in functions originally provided in the body due to some cause, including extrinsic factors, such as chronic inflammation and an imbalance of sex hormones. A large number of reports have been made to date regarding the etiology of prostatic hyperplasia, although they have not yet clarified the fundamental cause(s). The various factors currently known should be outlined for future research. Should it be possible to prevent this highly prevalent prostatic hyperplasia which is mainly cause of dcreasing quality of life, there is no doubt that it would be a huge contribution to humanity.
Collapse
Affiliation(s)
- Yuki Kyoda
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Kosuke Shibamori
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Tetsuya Shindo
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Takeshi Maehana
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Kohei Hashimoto
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Ko Kobayashi
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Toshiaki Tanaka
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Fumimasa Fukuta
- Department of UrologySteel Memorial Muroran HospitalMuroranJapan
| | - Naoya Masumori
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
8
|
Elbialy A, Kappala D, Desai D, Wang P, Fadiel A, Wang SJ, Makary MS, Lenobel S, Sood A, Gong M, Dason S, Shabsigh A, Clinton S, Parwani AV, Putluri N, Shvets G, Li J, Liu X. Patient-Derived Conditionally Reprogrammed Cells in Prostate Cancer Research. Cells 2024; 13:1005. [PMID: 38920635 PMCID: PMC11201841 DOI: 10.3390/cells13121005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Prostate cancer (PCa) remains a leading cause of mortality among American men, with metastatic and recurrent disease posing significant therapeutic challenges due to a limited comprehension of the underlying biological processes governing disease initiation, dormancy, and progression. The conventional use of PCa cell lines has proven inadequate in elucidating the intricate molecular mechanisms driving PCa carcinogenesis, hindering the development of effective treatments. To address this gap, patient-derived primary cell cultures have been developed and play a pivotal role in unraveling the pathophysiological intricacies unique to PCa in each individual, offering valuable insights for translational research. This review explores the applications of the conditional reprogramming (CR) cell culture approach, showcasing its capability to rapidly and effectively cultivate patient-derived normal and tumor cells. The CR strategy facilitates the acquisition of stem cell properties by primary cells, precisely recapitulating the human pathophysiology of PCa. This nuanced understanding enables the identification of novel therapeutics. Specifically, our discussion encompasses the utility of CR cells in elucidating PCa initiation and progression, unraveling the molecular pathogenesis of metastatic PCa, addressing health disparities, and advancing personalized medicine. Coupled with the tumor organoid approach and patient-derived xenografts (PDXs), CR cells present a promising avenue for comprehending cancer biology, exploring new treatment modalities, and advancing precision medicine in the context of PCa. These approaches have been used for two NCI initiatives (PDMR: patient-derived model repositories; HCMI: human cancer models initiatives).
Collapse
Affiliation(s)
- Abdalla Elbialy
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Computational Oncology Unit, The University of Chicago Comprehensive Cancer Center, 900 E 57th Street, KCBD Bldg., STE 4144, Chicago, IL 60637, USA
| | - Deepthi Kappala
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Dhruv Desai
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Peng Wang
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Ahmed Fadiel
- Computational Oncology Unit, The University of Chicago Comprehensive Cancer Center, 900 E 57th Street, KCBD Bldg., STE 4144, Chicago, IL 60637, USA
| | - Shang-Jui Wang
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mina S. Makary
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Division of Vascular and Interventional Radiology, Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Scott Lenobel
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Division of Musculoskeletal Imaging, Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Akshay Sood
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Michael Gong
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shawn Dason
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmad Shabsigh
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Steven Clinton
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Anil V. Parwani
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
| | - Jenny Li
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xuefeng Liu
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, Urology, and Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Yang J, Ma D, Zhao Z, Guo J, Ren K, Wang F, Guo J. Exploring the mechanism of action of the combination of cinnamon and motherwort in the treatment of benign prostatic hyperplasia: A network pharmacology study. Medicine (Baltimore) 2024; 103:e37902. [PMID: 38669415 PMCID: PMC11049697 DOI: 10.1097/md.0000000000037902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Cinnamon and motherwort are traditional Chinese medicines and are often combined to treat benign prostatic hyperplasia; however, the specific therapeutic mechanisms involved remain unclear. Therefore, in this study, we applied a network pharmacology approach to investigate the potential mechanisms of action of the drug pair cinnamon and motherwort (PCM) for the treatment of benign prostatic hyperplasia. Relevant targets for the use of PCM to treat benign prostatic hyperplasia were obtained through databases. Protein-protein interactions were then identified by the STRING database and core targets were screened. Enrichment analysis was conducted through the Metascape platform. Finally, molecular docking experiments were carried out to evaluate the affinity between the target proteins and ligands of PCM. We identified 22 active ingredients in PCM, 315 corresponding targets and 130 effective targets of PCM for the treatment of benign prostatic hyperplasia. These targets were related to the PI3K-Akt, MAPK, FoxO, TNF, and IL-17 signaling pathways. Network pharmacology was used to identify the effective components and action targets of PCM. We also identified potential mechanisms of action for PCM in the treatment of benign prostatic hyperplasia. Our results provide a foundation for expanding the clinical application of PCM and provide new ideas and directions for further research on the mechanisms of action of PCM and its components for the treatment of benign prostatic hyperplasia.
Collapse
Affiliation(s)
- Jiutian Yang
- Graduate School of Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - Dongyue Ma
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - Ziwei Zhao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - Jun Guo
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
- Graduate School of China Academy of Chinese Medical Sciences, Dongzhimen, Dongcheng District, Beijing, China
| | - Kai Ren
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - Fu Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - Jun Guo
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| |
Collapse
|
10
|
Lee SM, Lee SM, Song J. Effects of Taraxaci Herba (Dandelion) on Testosterone Propionate-Induced Benign Prostatic Hyperplasia in Rats. Nutrients 2024; 16:1189. [PMID: 38674879 PMCID: PMC11054461 DOI: 10.3390/nu16081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is the non-malignant enlargement of the prostate, associated with lower urinary tract symptoms (LUTSs). Taraxaci Herba (TH), commonly known as dandelion, has traditionally been utilized in East Asia to treat symptoms related to LUTSs. Based on this traditional use, our study aimed to explore the inhibitory effects of TH on BPH progression using a testosterone propionate-induced rat model. To induce BPH, male Sprague Dawley rats were castrated and injected subcutaneously with testosterone propionate (3 mg/kg/day) for 28 days. Concurrently, TH extract was administered orally at doses of 100 and 300 mg/kg/day throughout the four-week period of testosterone propionate injections. The TH extract significantly reduced both the absolute and relative weights of the prostate, along with histopathological changes in the gland. Moreover, it lowered serum levels of testosterone and dihydrotestosterone and reduced the expression of the androgen receptor in the prostate. Additionally, the TH extract modulated the protein expressions of Bax and Bcl-2, which are key regulators of apoptosis in prostate cells. Collectively, our findings suggest that TH inhibits BPH development partially by modulating androgen signaling and inducing apoptosis within the prostate.
Collapse
Affiliation(s)
| | | | - Jungbin Song
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
11
|
Gong GY, Xi SY, Li CC, Tang WL, Fu XM, Huang YP. Bushen Tongluo formula ameliorated testosterone propionate-induced benign prostatic hyperplasia in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155048. [PMID: 37651753 DOI: 10.1016/j.phymed.2023.155048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a common disease in older men worldwide. However, there is currently no effective treatment for BPH. Bushen Tongluo Formula (Kidney-supplementing and collaterals-unblocking formula [KCF]) is a traditional Chinese medicine formula commonly used to ameliorate the symptoms of BPH, although the specific molecular mechanisms remain unclear. PURPOSE We aimed to discover the effects and potential mechanisms of KCF against BPH. METHODS Sixty male SD rats were randomly assigned to one of six group (n = 10): control, low-dosage KCF, medium-dosage KCF, high-dosage KCF, BPH model, and finasteride. A rat model of BPH was established by surgical castration followed by subcutaneous injection of testosterone propionate (TP) for 4 weeks. After treatment, the prostate index, histopathological staining, serum levels of estradiol (E2) and dihydrotestosterone (DHT), protein/mRNA levels of E-cadherin, TGF-β1, caspase-3, Ki67, and vimentin, abundances of serum metabolites, and the proliferation, cell cycle, and apoptosis of BPH-1 cells were documented. RESULTS KCF treatment for 4 weeks reduced the prostate volume and prostate index, alleviated histopathological changes to the prostate of rats with TP-induced BPH, decreased serum levels of E2 and DHT, reduced protein/mRNA levels of TGF-β1 and vimentin, and increased E-cadherin levels. Moreover, KCF-spiked serum inhibited proliferation of BPH-1 cells, blocked the cell cycle, and promoted apoptosis. KCF was also found to regulate the contents of three metabolites (D-maltose, citric acid, and fumaric acid). CONCLUSION The present study was the first to report that KCF exhibited therapeutic effects against BPH by regulating energy metabolism and inhibiting epithelial-mesenchymal transition in prostate tissues. Hence, KCF presents a viable treatment option for BPH.
Collapse
Affiliation(s)
- Guo-Yu Gong
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, No. 4221-122, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Sheng-Yan Xi
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, No. 4221-122, Xiang'an South Road, Xiamen, Fujian 361102, China; Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, No. 2000, Xiang'an East Road, Xiamen, Fujian 361101, China.
| | - Cheng-Chen Li
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, No. 51, Anwai Xiaoguan Street, Beijing 100029, China
| | - Wen-Li Tang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, No. 4221-122, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Xue-Ming Fu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, No. 4221-122, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yuan-Peng Huang
- Department of Geriatrics, Xiamen Hospital of Traditional Chinese Medicine, No. 1739, Xianyue Road, Xiamen, Fujian 361015, China.
| |
Collapse
|
12
|
El-Shafei NH, Zaafan MA, Kandil EA, Sayed RH. Simvastatin ameliorates testosterone-induced prostatic hyperplasia in rats via modulating IGF-1/PI3K/AKT/FOXO signaling. Eur J Pharmacol 2023; 950:175762. [PMID: 37164119 DOI: 10.1016/j.ejphar.2023.175762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
Benign prostatic hyperplasia (BPH) is characterized by non-malignant enlargement of prostate cells causing many lower urinary tract symptoms. BPH pathogenesis includes androgens receptors signaling pathways, oxidative stress, apoptosis, and possibly changes in IGF-1/PI3K/AKT/FOXO pathway. Altogether, modulating IGF-1/PI3K/AKT/FOXO signaling along with regulating oxidative stress and apoptosis might preserve prostatic cells from increased proliferation. Beyond statins' common uses, they also have anti-inflammatory, antioxidant, and anti-tumor effects. This study aims to determine simvastatin's beneficial effect on testosterone-induced BPH. Rats were randomly allocated into four groups, 9 rats each. The control group received olive oil subcutaneously and distilled water orally for 30 consecutive days. The second group received simvastatin (20 mg/kg, p.o.) dissolved in distilled water. The BPH-induced group received testosterone enanthate (3 mg/kg, s.c.) dissolved in olive oil, and the BPH-induced treated group received both simvastatin and testosterone. Testosterone significantly increased prostate index and severity of histopathological alterations in prostate tissues as well as 5-alpha reductase enzyme level in contrast to simvastatin treatment that reversed the testosterone-induced alterations in these parameters. Likewise, testosterone up-regulated IGF-1/PI3K/AKT signaling pathway and down-regulated FOXO transcription factor. It also decreased apoptotic markers level in prostatic tissue BAX, caspase-3, and caspase-9, while it elevated Bcl-2 level. In addition, it alleviated reduced GSH and GPX5 levels and SOD activity. Simvastatin treatment significantly opposed testosterone's effect on all aforementioned parameters. In conclusion, this study demonstrates that simvastatin is a possible treatment for BPH which may be attributed to its effect on IGF-1/PI3K/AKT/FOXO signaling pathway as well as anti-oxidant and apoptotic effects.
Collapse
Affiliation(s)
- Nyera H El-Shafei
- Department of Pharmacology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Egypt
| | - Mai A Zaafan
- Department of Pharmacology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Egypt
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
13
|
Buț MG, Jîtcă G, Imre S, Vari CE, Ősz BE, Jîtcă CM, Tero-Vescan A. The Lack of Standardization and Pharmacological Effect Limits the Potential Clinical Usefulness of Phytosterols in Benign Prostatic Hyperplasia. PLANTS (BASEL, SWITZERLAND) 2023; 12:1722. [PMID: 37111945 PMCID: PMC10142909 DOI: 10.3390/plants12081722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The prevalence of benign prostatic hyperplasia (BPH) markedly increases with age. Phytotherapeutic approaches have been developed over time owing to the adverse side effects of conventional medications such as 5-reductase inhibitors and α1-adrenergic receptor antagonists. Therefore, dietary supplements (DS) containing active compounds that benefit BPH are widely available. Phytosterols (PSs) are well recognized for their role in maintaining blood cholesterol levels; however, their potential in BPH treatment remains unexplored. This review aims to provide a general overview of the available data regarding the clinical evidence and a good understanding of the detailed pharmacological roles of PSs-induced activities at a molecular level in BPH. Furthermore, we will explore the authenticity of PSs content in DS used by patients with BPH compared to the current legislation and appropriate analytical methods for tracking DS containing PSs. The results showed that PSs might be a useful pharmacological treatment option for men with mild to moderate BPH, but the lack of standardized extracts linked with the regulation of DS containing PSs and experimental evidence to elucidate the mechanisms of action limit the use of PSs in BPH. Moreover, the results suggest multiple research directions in this field.
Collapse
Affiliation(s)
- Mădălina-Georgiana Buț
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (M.-G.B.); (C.-M.J.)
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| | - George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Silvia Imre
- Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| | - Camil Eugen Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Bianca Eugenia Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Carmen-Maria Jîtcă
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (M.-G.B.); (C.-M.J.)
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| |
Collapse
|
14
|
Hwangbo H, Kim MY, Ji SY, Park BS, Kim T, Yoon S, Kim H, Kim SY, Jung H, Kim T, Lee H, Kim GY, Choi YH. Mixture of Corni Fructus and Schisandrae Fructus improves testosterone-induced benign prostatic hyperplasia through regulating 5α-reductase 2 and androgen receptor. Nutr Res Pract 2023; 17:32-47. [PMID: 36777802 PMCID: PMC9884594 DOI: 10.4162/nrp.2023.17.1.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND/OBJECTIVES Benign prostatic hyperplasia (BPH) characterized by an enlarged prostate gland is common in elderly men. Corni Fructus (CF) and Schisandrae Fructus (SF) are known to have various pharmacological effects, including antioxidant and anti-inflammatory activities. In this study, we evaluated the inhibitory efficacy of CF, SF, and their mixture (MIX) on the development of BPH using an in vivo model of testosterone-induced BPH. MATERIALS/METHODS Six-week-old male Sprague-Dawley rats were randomly divided into seven groups. To induce BPH, testosterone propionate (TP) was injected to rats except for those in the control group. Finasteride, saw palmetto (SP), CF, SF, and MIX were orally administered along with TP injection. At the end of treatment, histological changes in the prostate and the level of various biomarkers related to BPH were evaluated. RESULTS Our results showed that BPH induced by TP led to prostate weight and histological changes. Treatment with MIX effectively improved TP-induced BPH by reducing prostate index, lumen area, epithelial thickness, and expression of BPH biomarkers such as 5α-reductase type 2, prostate-specific antigen, androgen receptor, and proliferating cell nuclear antigen compared to treatment with CF or SF alone. Moreover, MIX further reduced levels of elevated serum testosterone, dihydrotestosterone, and prostate-specific antigen in BPH compared to the SP, a positive control. BPH was also improved more by MIX than by CF or SF alone. CONCLUSIONS Based on the results, MIX is a potential natural therapeutic candidate for BPH by regulating 5α-reductase and AR signaling pathway.
Collapse
Affiliation(s)
- Hyun Hwangbo
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Min Yeong Kim
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.,Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Seon Yeong Ji
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.,Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Beom Su Park
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - TaeHee Kim
- Hamsoapharm Central Research, Jinan 55442, Korea
| | - Seonhye Yoon
- R&D Center, Naturetech Co. Ltd., Jincheon 27858, Korea
| | - Hyunjin Kim
- R&D Center, Naturetech Co. Ltd., Jincheon 27858, Korea
| | - Sung Yeon Kim
- BIO Center, Chungbuk Technopark, Ochang 28115, Korea
| | - Haeun Jung
- BIO Center, Chungbuk Technopark, Ochang 28115, Korea
| | - Taeiung Kim
- BIO Center, Chungbuk Technopark, Ochang 28115, Korea
| | - Hyesook Lee
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.,Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.,Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| |
Collapse
|
15
|
Park S, Hwang YH, Baek EB, Hong EJ, Won YS, Kwun HJ. Inhibitory effects of Hydrocotyle ramiflora on testosterone-induced benign prostatic hyperplasia in rats. Int Urol Nephrol 2023; 55:17-28. [PMID: 36107291 DOI: 10.1007/s11255-022-03362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Benign prostatic hyperplasia (BPH) is a urogenital disorder that affects approximately 85% of males who are over 50 years of age. Hydrocotyle ramiflora (HR), belonging to Apiaceae family, is used to treat urinary system diseases such as urine retention in traditional Chinese herbal medicine. In this study, we evaluated the effects of HR in the BPH animal model. METHODS We induced BPH in rats via subcutaneous (sc) injections of testosterone propionate (TP, 3 mg/kg). Rats were also administered HR (150 mg/kg), finasteride (10 mg/kg), or vehicle via oral gavage. After induction, prostate glands were collected, weighed, and processed for further analysis, including histopathological examination and immunohistochemistry. In addition, the mRNA expression of inflammatory cytokines in prostatic tissues was determined by quantitative real-time PCR (qRT-PCR). The protein expression of pro-apoptotic markers was examined using western blotting. RESULTS HR treatment significantly reduced the prostate weight, epithelial thickness, and proliferating cell nuclear antigen (PCNA) expression, with the levels of cleaved caspase-3 and Bcl-2-associated X (Bax) protein considerably increased compared to BPH group. HR also decreased inflammatory cell infiltration and pro-inflammatory cytokine levels compared with BPH group. Furthermore, the expression of phosphor-nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) were reduced by HR treatment. CONCLUSION These results indicate that HR suppresses the development of BPH associated with anti-proliferative, pro-apoptotic, and anti-inflammatory effects, suggesting it is a potential alternative therapeutic agent for BPH.
Collapse
Affiliation(s)
- Suyoung Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672, Yuseong-daero, Yuseong-gu, Daejeon, 34054, South Korea
| | - Eun-Bok Baek
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Eun-Ju Hong
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanji-ro, Cheongwon-gu, Cheongju, 28116, South Korea
| | - Hyo-Jung Kwun
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea.
| |
Collapse
|
16
|
Su J, Li Y, Liu Q, Peng G, Qin C, Li Y. Identification of SSBP1 as a ferroptosis-related biomarker of glioblastoma based on a novel mitochondria-related gene risk model and in vitro experiments. J Transl Med 2022; 20:440. [PMID: 36180956 PMCID: PMC9524046 DOI: 10.1186/s12967-022-03657-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common primary malignant brain tumor that leads to lethality. Several studies have demonstrated that mitochondria play an important role in GBM and that mitochondria-related genes (MRGs) are potential therapeutic targets. However, the role of MRGs in GBM remains unclear. Methods Differential expression and univariate Cox regression analyses were combined to screen for prognostic differentially-expressed (DE)-MRGs in GBM. Based on LASSO Cox analysis, 12 DE-MRGs were selected to construct a risk score model. Survival, time dependent ROC, and stratified analyses were performed to evaluate the performance of this risk model. Mutation and functional enrichment analyses were performed to determine the potential mechanism of the risk score. Immune cell infiltration analysis was used to determine the association between the risk score and immune cell infiltration levels. CCK-8 and transwell assays were performed to evaluate cell proliferation and migration, respectively. Mitochondrial reactive oxygen species (ROS) levels and morphology were measured using a confocal laser scanning microscope. Genes and proteins expression levels were investigated by quantitative PCR and western blotting, respectively. Results We identified 21 prognostic DE-MRGs, of which 12 DE-MRGs were selected to construct a prognostic risk score model for GBM. This model presented excellent performance in predicting the prognosis of patients with GBM and acted as an independent predictive factor. Functional enrichment analysis revealed that the risk score was enriched in the inflammatory response, extracellular matrix, and pro-cancer-related and immune related pathways. Additionally, the risk score was significantly associated with gene mutations and immune cell infiltration in GBM. Single-stranded DNA-binding protein 1 (SSBP1) was considerably upregulated in GBM and associated with poor prognosis. Furthermore, SSBP1 knockdown inhibited GBM cell progression and migration. Mechanistically, SSBP1 knockdown resulted in mitochondrial dysfunction and increased ROS levels, which, in turn, increased temozolomide (TMZ) sensitivity in GBM cells by enhancing ferroptosis. Conclusion Our 12 DE-MRGs-based prognostic model can predict the GBM patients prognosis and 12 MRGs are potential targets for the treatment of GBM. SSBP1 was significantly upregulated in GBM and protected U87 cells from TMZ-induced ferroptosis, which could serve as a prognostic and therapeutic target/biomarker for GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03657-4.
Collapse
Affiliation(s)
- Jun Su
- Department of Neurosurgery, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, Hunan, China
| | - Yue Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
17
|
Borziak K, Finkelstein J. Gene Expression Markers of Prognostic Importance for Prostate Cancer Risk in Patients with Benign Prostate Hyperplasia. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:73-76. [PMID: 36086411 DOI: 10.1109/embc48229.2022.9871422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Comparative analyses utilizing publicly available big data have the potential to generate novel hypotheses and knowledge. However, this approach is underutilized in the realm of cancer research, particularly for prostate cancer. While the general progression of prostate cancer is now well understood, how individual cell types transition from healthy, to pre-cancerous, to cancerous cell types, remains to be further elucidated. To address this, we re-analyzed two publicly available single-cell RNA-seq datasets of prostate cancer and benign prostate hyperplasia cell types. The differential expression analysis of 15,505 epithelial cell profiles across 18,638 genes revealed 791 genes that were up regulated in prostate cancer epithelial cells. Here we report six markers that show significant upregulation in prostate cancer cells relative to BPH epithelial cells: HPN (5.62X), RAC3 (3.51X), CD24 (2.18X), HOXC6 (1.77X), AGR2 (1.71X), and IGFBP2 (1.28X). In particular, the significant differential expression of AGR2 further supports its clinical relevance in supplementing prostate-specific antigen screening for detecting prostate cancer. These findings have the potential to further advance our knowledge of genes governing the development of cancer in prostate epithelial cells. Clinical Relevance- Our results establish the importance of 6 prostate cancer markers (HPN, RAC3, CD24, HOXC6, AGR2, and IGFBP3) in distinguishing between prostate cancer epithelial cells and benign prostate hyperplasia epithelial cells.
Collapse
|
18
|
A Combination of Natural Products, BenPros (Green Tea Extract, Soybean Extract and Camellia Japonica Oil), Ameliorates Benign Prostatic Hyperplasia. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common diseases in elderly men and causes lower urinary tract symptoms due to excessive proliferation of prostate stromal and epithelial cells. The present study investigated the improving effect of BenPros, an edible natural product mixture (green tea extract, soybean extract and camellia japonica oil), against the development of BPH in vitro and in vivo. BenPros treatment showed inhibitory ability on testosterone-induced androgen receptor, prostate-specific antigen (PSA), and 5α-reductase protein expression in LNCap-LN3 cells and anti-inflammatory effects on LPS-induced increases in interleukin-6 and tumor necrosis factor-α in RAW264.7 cells. In a testosterone propionate (TP)-induced BPH rat model, BenPros decreased the up-regulated serum 5α-dihydrotestosterone and PSA levels. Moreover, BenPros also significantly reduced PSA protein expression in prostate tissue. Furthermore, TP-induced increased expression of cyclooxygenase 2 and B-cell lymphoma 2 (Bcl-2) were reduced by BenPros, resulting in an increase in the Bcl-2/BCL2-related X ratio. These regulatory abilities of BenPros on BPH inducing markers also reduced prostate size and epithelial thickness based on histological analysis. These results indicate that BenPros has a protective ability against BPH in vitro and in vivo, and it may be a promising candidate as a functional food in regulating BPH.
Collapse
|
19
|
Kim HJ, Kim BH, Jin BR, Park SJ, An HJ. Purple Corn Extract Improves Benign Prostatic Hyperplasia by Regulating Prostate Cell Proliferation and Apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5561-5569. [PMID: 35466676 DOI: 10.1021/acs.jafc.1c07955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Purple corn (Zea mays L.), utilized as a natural pigment in food production and processing, has been used to treat obesity, cystitis, and urinary tract infections. However, no reports of its use for benign prostatic hyperplasia (BPH) exist. Purple corn extract (PCE) contains anthocyanins, particularly cyanidin-3-O-glucoside, which have various pharmacological characteristics. Therefore, this study sought to elucidate the ameliorative effect of PCE on BPH in dihydrotestosterone (DHT)-stimulated WPMY-1 cells and testosterone propionate (TP)-induced rats. Expression levels of the upregulated androgen receptor (AR) and its related genes in DHT-stimulated WPMY-1 cells were reduced by PCE, and proapoptotic gene expression increased by modulating the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling cascade. PCE reduced the weight of the enlarged prostate by inhibiting the androgen/AR signaling-related markers. Histological variations in the prostate epithelium caused by TP injection were restored by PCE. Thus, PCE alleviates BPH by modulating prostate cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Hyo-Jung Kim
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Republic of Korea
| | - Byung-Hak Kim
- Medience Co. Ltd., Chuncheon, Gangwon-do 24232, Republic of Korea
| | - Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Republic of Korea
| | - Sang Jae Park
- Medience Co. Ltd., Chuncheon, Gangwon-do 24232, Republic of Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Republic of Korea
| |
Collapse
|
20
|
The relationship between the gut microbiota, benign prostatic hyperplasia, and erectile dysfunction. Int J Impot Res 2022:10.1038/s41443-022-00569-1. [PMID: 35418604 DOI: 10.1038/s41443-022-00569-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Microbiota is defined as the group of commensal microorganisms that inhabit a specific human body site. The composition of each individual's gastrointestinal microbiota is influenced by several factors such as age, diet, lifestyle, and drug intake, but an increasing number of studies have shown that the differences between a healthy microbiota and a dysbiotic one can be related to different diseases such as benign prostatic hyperplasia (BPH) and erectile dysfunction (ED). The aim of this review is to give an overview of the role of the gut microbiota on BPH and ED. Gut microbiota modifications can influence prostate health indirectly by the activation of the immune system and the production of proinflammatory cytokines such as IL-17, IL-23, TNF-alpha, and IFN-gamma, which are able to promote an inflammatory state. Gut dysbiosis may lead to the onset of ED by the alteration of hormone levels and metabolic profiles, the modulation of stress/anxiety-mediated sexual dysfunction, the development of altered metabolic conditions such as obesity and diabetes mellitus, and the development of hypertension. In conclusion, much evidence suggests that the intestinal microbiota has an influence on various pathologies including BPH and ED.
Collapse
|
21
|
Kortam MA, Alawady AS, Hamid Sadik NA, Fathy N. Fenofibrate mitigates testosterone induced benign prostatic hyperplasia via regulation of Akt/FOXO3a pathway and modulation of apoptosis and proliferation in rats. Arch Biochem Biophys 2022; 723:109237. [DOI: 10.1016/j.abb.2022.109237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022]
|
22
|
Kang XC, Chen T, Zhou JL, Shen PY, Dai SH, Gao CQ, Zhang JY, Xiong XY, Liu DB. Phytosterols in hull-less pumpkin seed oil, rich in ∆ 7-phytosterols, ameliorate benign prostatic hyperplasia by lowing 5α-reductase and regulating balance between cell proliferation and apoptosis in rats. Food Nutr Res 2022; 65:7537. [PMID: 34984064 PMCID: PMC8693601 DOI: 10.29219/fnr.v65.7537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/28/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
Background Pumpkin seed oil is widely used to treat benign prostatic hyperplasia (BPH), a common disease in elder men. However, its active components and mechanism have remained to be elucidated. Objective The objective of the present study was to investigate the active components of pumpkin seed oil and its mechanism against BPH. Design Total phytosterol (TPS) was isolated from hull-less pumpkin (Cucurbita pepo L. var. Styriaca) seed oil and analyzed by gas chromatography/mass spectrometry (GC/MS). Three phytosterols were purified by preparative HPLC (high performance liquid chromatography) and confirmed by NMR (nuclear magnetic resonance). TPS (3.3 mg/kg body weight, 1 mL/day/rat) was administered intragastrically to the testosterone propionate-induced BPH rats for 4 weeks. The structure changes of prostate tissues were assessed by hematoxylin & eosin (H&E) staining. The expression of androgen receptor (AR) and steroid receptor coactivator 1 (SRC-1) was analyzed by immunohistochemistry, while that of 5α-reductase (5AR), apoptosis, or proliferation-related growth factors/proteins was detected by real-time quantitative polymerase chain reaction or western blotting. Results The ∆7-phytosterols in TPS reached up to 87.64%. Among them, 24β-ethylcholesta-7,22,25-trienol, 24β-ethylcholesta-7,25(27)-dien-3-ol, and ∆7-avenasterol were confirmed by NMR. TPS treatment significantly ameliorated the pathological prostate enlargement and restored histopathological alterations of prostate in BPH rats. It effectively suppressed the expressions of 5AR, AR, and coactivator SRC-1. TPS inhibited the expression of proliferation-related growth factor epidermal growth factor, whereas it increased the expressions of apoptosis-related growth factor/gene transforming growth factor-β1. The proliferation-inhibiting effect was achieved by decreasing the ERK (extracellular signal-regulated kinase) phosphorylation, while apoptosis was induced by Caspase 3 activation through JNK (c-Jun N-terminal kinase) and p38 phosphorylation. Conclusion TPS from hull-less pumpkin seed oil, with ∆7-phytosterols as its main ingredients, is a potential nutraceutical for BPH prevention.
Collapse
Affiliation(s)
- Xin-Cong Kang
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, P. R. China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, P. R. China.,State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, P. R. China.,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, P. R. China.,These authors contributed equally to this work
| | - Tian Chen
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, P. R. China.,These authors contributed equally to this work
| | - Jia-Li Zhou
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Peng-Yuan Shen
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Si-Hui Dai
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Chang-Qing Gao
- Department of Laboratory Animals, Xiang Ya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Jia-Yin Zhang
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, P. R. China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, P. R. China.,State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, P. R. China
| | - Xing-Yao Xiong
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, P. R. China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, P. R. China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Dong-Bo Liu
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, P. R. China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, P. R. China.,State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, P. R. China.,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, P. R. China
| |
Collapse
|
23
|
Marghani BH, Fehaid A, Ateya AI, Ezz MA, Saleh RM. Photothermal therapeutic potency of plasmonic silver nanoparticles for apoptosis and anti-angiogenesis in testosterone induced benign prostate hyperplasia in rats. Life Sci 2021; 291:120240. [PMID: 34942164 DOI: 10.1016/j.lfs.2021.120240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/11/2022]
Abstract
AIMS In this study, we used a near-infrared laser (NIR) to increase the potency of silver nanoparticles (AgNPs) to develop a novel, less invasive, and simple photothermal therapy technique for benign prostate hyperplasia (BPH). MATERIALS AND METHODS The shape, particle size, and zeta-potential of polyvinylpyrrolidone coated-AgNPs (PVP-AgNPs) were determined using transmission electron microscopy (TEM), Zeta-potential, and Particle size analyzer (ELSZ). To induce BPH, thirty-six male Sprague-Dawley (SD) rats were given intramuscular (i.m) injections of testosterone propionate (TP) at 5 mg/kg body weight (b.w)/day suspended in 0.1 ml of olive oil for 14 days. Photothermal therapy with AgNPs-NIR for 14 days was carried out. Prostate size, prostate index (PI), dihydrotestosterone (DHT), prostate-specific antigen (PSA), gross, hepatic, and renal toxicity, as well as antioxidant activity, apoptosis, and angiogenesis markers in prostatic tissues were measured. Histological examinations of prostates and biocompatibility of NIR-AgNPs on vital organs were also performed. KEY FINDINGS The aggregated spherical AgNPs with a mean size of 50-90 nm and a Zeta potential of -53.22 mV displayed high effectiveness in the NIR (532 nm-1 W) region by decreasing prostate size, PI, DHT, and PSA in BPH rats with no signs of gross, hepatic, or renal damage. As compared to alternative therapies, hyperthermia therapy increased antioxidant activities, induced apoptosis, inhibited angiogenesis, reduced histological alterations in the prostates of BPH rats, and improved biocompatibility of the vital organs. SIGNIFICANCE The current study demonstrated the effectiveness of plasmonic AgNPs photothermal therapy in the treatment of BPH.
Collapse
Affiliation(s)
- Basma H Marghani
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Alaa Fehaid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Ateya
- Department of Husbandry & Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Aboul Ezz
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rasha M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
24
|
Shah A, Shah AA, K N, Lobo R. Mechanistic targets for BPH and prostate cancer-a review. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:261-270. [PMID: 32960781 DOI: 10.1515/reveh-2020-0051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/02/2020] [Indexed: 05/26/2023]
Abstract
All men, almost, suffer from prostatic disorders in average life expectancy. In the year of 1950s, the first autopsy of prostate gland discovered the link between Benign prostatic hyperplasia (BPH) and Prostate Cancer (PCa). After that, many histology, biochemistry, epidemiology studies explained the association and associated risk factor for the same. From the various scientific evidence, it is proved that both diseases share some common transcription factors and signalling pathways. Still, BPH cannot be considered as the first step of PCa progression. To define, the relationship between both of the diseases, a well-defined large epidemiological study is needed. Along with androgen signalling, imbalanced apoptosis, oxidative stress, and microbial infection also crucial factors that significantly affect the pathogenesis of BPH. Various signalling pathways are involved in the progression of BPH. Androgen signalling is the driving force for the progress of PCa. In PCa androgen signalling is upregulated as compared to a healthy prostate. Some dominant Androgen-regulated genes and their functions have been discussed in this work.
Collapse
Affiliation(s)
- Abhishek Shah
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Aarti Abhishek Shah
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nandakumar K
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Richard Lobo
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
25
|
D’Amico R, Genovese T, Cordaro M, Siracusa R, Gugliandolo E, Peritore AF, Interdonato L, Crupi R, Cuzzocrea S, Di Paola R, Fusco R, Impellizzeri D. Palmitoylethanolamide/Baicalein Regulates the Androgen Receptor Signaling and NF-κB/Nrf2 Pathways in Benign Prostatic Hyperplasia. Antioxidants (Basel) 2021; 10:antiox10071014. [PMID: 34202665 PMCID: PMC8300753 DOI: 10.3390/antiox10071014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is the most common benign tumor in males. Androgen/androgen receptor (AR) signaling plays a key role in the development of BPH; its alterations cause an imbalance between prostate cell growth and apoptosis. Furthermore, chronic inflammation and oxidative stress, which are common conditions in BPH, contribute to disrupting the homeostasis between cell proliferation and cell death. With this background in mind, we investigated the effect of ultramicronized palmitoylethanolamide (um-PEA), baicalein (Baic) and co-ultramicronized um-PEA/Baic in a fixed ratio of 10:1 in an experimental model of BPH. BPH was induced in rats by daily administration of testosterone propionate (3 mg/kg) for 14 days. Baic (1 mg/kg), um-PEA (9 mg/kg) and um-PEA/Baic (10 mg/kg) were administered orally every day for 14 days. This protocol led to alterations in prostate morphology and increased levels of dihydrotestosterone (DHT) and of androgen receptor and 5α-reductase expression. Moreover, testosterone injections induced a significant increase in markers of inflammation, apoptosis and oxidative stress. Our results show that um-PEA/Baic is capable of decreasing prostate weight and DHT production in BPH-induced rats, as well as being able to modulate apoptotic and inflammatory pathways and oxidative stress. These effects were most likely related to the synergy between the anti-inflammatory properties of um-PEA and the antioxidant effects of Baic. These results support the view that um-PEA/Baic should be further studied as a potent candidate for the management of BPH.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy;
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
- Correspondence: (S.C.); (R.D.P.); Tel.: +39-090-676-5208 (S.C. & R.D.P.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
- Correspondence: (S.C.); (R.D.P.); Tel.: +39-090-676-5208 (S.C. & R.D.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| |
Collapse
|
26
|
Kim HJ, Jin BR, An HJ. Psoralea corylifolia L. extract ameliorates benign prostatic hyperplasia by regulating prostate cell proliferation and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113844. [PMID: 33485982 DOI: 10.1016/j.jep.2021.113844] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia L. seed (PCL), commonly known as "Poguzhi" or "BuguZhi", has been widely used to treat kidney yang deficiency in traditional Chinese medicine (TCM) where tonifying the yang deficiency is a representative understanding for treatment of hormonal deficiency disorders such as enuresis, oliguria, and prostatic diseases. Although PCL has been commonly used to treat problems of the urinary system, its efficacy against benign prostatic hyperplasia (BPH) has not yet been reported. AIM OF THE STUDY In the present study, we aimed to assess the in vitro and in vivo efficacy of PCL against BPH, a condition which negatively impacts quality of life in men. MATERIALS AND METHODS Normal human prostate cell lines, RWPE-1 and WPMY-1 cells, were stimulated with 10 nM dihydrotestosterone (DHT) to establish an in vitro BPH model. Subsequently, cells were treated with 100 or 200 μg/ml PCL, which inhibited cell proliferation without cytotoxicity, to evaluate the anti-BPH effect of PCL. Eight-week-old male Wistar rats were castrated, except for those in the control group (Con), and BPH was induced by subcutaneous injection of 10 mg/kg testosterone propionate (TP). Concurrent with daily TP injections, 5 mg/kg of finasteride (Fina) and 50 or 100 mg/kg PCL were orally administrated daily for four weeks, excluding the weekends. RESULTS In DHT-stimulated RWPE-1 and WPMY-1 cells, expression of androgen receptor (AR) androgen signaling-related markers such as 5α-reductase 2 (5AR2), AR, and prostate-specific antigen (PSA) was upregulated, whereas 100 or 200 μg/ml of PCL treatment downregulated these markers. Furthermore, PCL significantly reduced the mRNA expression of anti-apoptotic genes and increased the mRNA expression of pro-apoptotic gene. In vivo, administration of PCL reduced prostate size and weight in TP-induced BPH rats. Moreover, histological alterations in epithelium thickness were significantly restored by the administration of PCL. Immunohistochemical analysis revealed increased expression of AR and proliferating cell nuclear antigen (PCNA) in TP-induced BPH prostates; these changes were suppressed by administration of 50 or 100 mg/kg PCL. CONCLUSIONS We demonstrated the effect of PCL against BPH, mediated by the regulation of prostate cell proliferation and apoptosis, in DHT-stimulated normal human prostate cell lines and TP-induced BPH rats. These findings suggest that PCL could be a potential therapeutic agent against BPH.
Collapse
Affiliation(s)
- Hyo-Jung Kim
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| | - Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| |
Collapse
|
27
|
Phua TJ. The Etiology and Pathophysiology Genesis of Benign Prostatic Hyperplasia and Prostate Cancer: A New Perspective. MEDICINES 2021; 8:medicines8060030. [PMID: 34208086 PMCID: PMC8230771 DOI: 10.3390/medicines8060030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Background: The etiology of benign prostatic hyperplasia and prostate cancer are unknown, with ageing being the greatness risk factor. Methods: This new perspective evaluates the available interdisciplinary evidence regarding prostate ageing in terms of the cell biology of regulation and homeostasis, which could explain the timeline of evolutionary cancer biology as degenerative, inflammatory and neoplasm progressions in these multifactorial and heterogeneous prostatic diseases. Results: This prostate ageing degeneration hypothesis encompasses the testosterone-vascular-inflamm-ageing triad, along with the cell biology regulation of amyloidosis and autophagy within an evolutionary tumorigenesis microenvironment. Conclusions: An understanding of these biological processes of prostate ageing can provide potential strategies for early prevention and could contribute to maintaining quality of life for the ageing individual along with substantial medical cost savings.
Collapse
Affiliation(s)
- Teow J Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW 2305, Australia
| |
Collapse
|
28
|
Zang L, Zhang Y, Zhao J, Yuan Y, Wen Y, Lian J, Chen S, Chen Y, Liu W, Niu Z, Wang X, Peng C, Zhang W, Meng Z, Lu J. A metabolomics study of Qianliexin capsule treatment of benign prostatic hyperplasia induced by testosterone propionate in the rat model. Anal Biochem 2021; 628:114258. [PMID: 34081927 DOI: 10.1016/j.ab.2021.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/30/2021] [Accepted: 05/15/2021] [Indexed: 11/16/2022]
Abstract
A metabolomics investigation of the treatment effect of Qianliexin (QLX) capsules was conducted on rats with benign prostatic hyperplasia (BPH) induced by testosterone propionate. Establishment of the BPH model was confirmed using the prostatic index. Hematoxylin and eosin (HE) staining for TGF-β, EGFR, collagen, IL-1 β, TNF-α was performed and changes in urine volume were measured. Urine and serum samples were collected from three groups, including a control group, a BPH model group and a QLX-treated group and subjected to metabolomics profiling based on ultrahigh-performance liquid chromatography-mass spectrometry. Pharmacodynamics analysis showed that the QLX group had significantly lower histopathological damage, fibrosis damage, and inflammation and higher urine output compared with the model group. Twenty-two potential biomarkers were identified in urine samples and 23 metabolites were identified in plasma samples. Alterations in metabolic patterns were evident in all sample types. The treatment effects of QLX appear to involve various metabolic pathways including lipid metabolism, fatty acid metabolism and purine generation and significantly reduced the pathological symptoms and related biochemical indicators of BPH and improved the level of potential marker metabolites. This comprehensive study suggested that differential markers provided insights into the metabolic pathways involved in BPH and the treatment effects of QLX.
Collapse
Affiliation(s)
- Linghe Zang
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Yuwei Zhang
- Institute of Traditional Chinese Medicine, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, Shandong Province, China
| | - Jing Zhao
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Yunxia Yuan
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Yi Wen
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Jiaxin Lian
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Shuailong Chen
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Yiran Chen
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Weiyi Liu
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Ze Niu
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Xinyue Wang
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Chunlin Peng
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Wenxin Zhang
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Zhaoqing Meng
- Institute of Traditional Chinese Medicine, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, Shandong Province, China.
| | - Jincai Lu
- Institute of Life Science and Bio-pharmaceuticals, Pharmaceutical College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China.
| |
Collapse
|
29
|
Fang T, Xue ZS, Li JX, Liu JK, Wu D, Li MQ, Song YT, Yun SF, Yan J. Rauwolfia vomitoria extract suppresses benign prostatic hyperplasia by reducing expression of androgen receptor and 5α-reductase in a rat model. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 19:258-264. [PMID: 33341427 DOI: 10.1016/j.joim.2020.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Herbal medicine is an important therapeutic option for benign prostatic hyperplasia (BPH), a common disease in older men that can seriously affect their quality of life. Currently, it is crucial to develop agents with strong efficacy and few side effects. Herein we investigated the effects of the extract of Rauwolfia vomitoria, a shrub grown in West Africa, on BPH. METHODS Rats with testosterone-induced BPH were treated with R. vomitoria. Prostates were histologically analyzed by Hematoxylin and eosin staining. Proliferation index and the expression levels of androgen receptor and its associated proteins were quantified through immunohistochemistry and immunoblotting. Androgen receptor target genes were examined by quantitative real-time polymerase chain reaction. The sperm count and body weight of rats were also measured. RESULTS The oral administration of R. vomitoria extract significantly reduced the prostate weight and prostate weight index in BPH rats, supported by the decreased thickness of the prostate epithelial layer and increased lumen size. Similar effects were observed in the BPH rats treated with the reference drug, finasteride. R. vomitoria extract significantly reduced the testosterone-induced proliferation markers, including proliferating cell nuclear antigen and cyclin D1, in the prostate glands of BPH rats; it also reduced levels of androgen receptor, its associated protein steroid 5α-reductase 1 and its downstream target genes (FK506-binding protein 5 and matrix metalloproteinase 2). Notably, compared with the finasteride group, R. vomitoria extract did not significantly reduce sperm count. CONCLUSION R. vomitoria suppresses testosterone-induced BPH development. Due to its milder side effects, R. vomitoria could be a promising therapeutic agent for BPH.
Collapse
Affiliation(s)
- Tian Fang
- Department of Comparative Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, Jiangsu Province, China; Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Ze-Sheng Xue
- Model Animal Research Center of Nanjing University, Nanjing 210061, Jiangsu Province, China
| | - Jia-Xuan Li
- Model Animal Research Center of Nanjing University, Nanjing 210061, Jiangsu Province, China
| | - Jia-Kuan Liu
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China; Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, Jiangsu Province, China
| | - Di Wu
- Department of Information, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, Jiangsu Province, China
| | - Mei-Qian Li
- Model Animal Research Center of Nanjing University, Nanjing 210061, Jiangsu Province, China
| | - Yu-Ting Song
- Model Animal Research Center of Nanjing University, Nanjing 210061, Jiangsu Province, China
| | - Shi-Feng Yun
- Department of Comparative Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, Jiangsu Province, China.
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China; Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, Jiangsu Province, China.
| |
Collapse
|
30
|
Rho J, Seo CS, Park HS, Jeong HY, Moon OS, Seo YW, Son HY, Won YS, Kwun HJ. Asteris Radix et Rhizoma suppresses testosterone-induced benign prostatic hyperplasia in rats by regulating apoptosis and inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112779. [PMID: 32209388 DOI: 10.1016/j.jep.2020.112779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asteris Radix et Rhizoma (AR) refers to the roots and rhizomes of Aster tataricus L., which is widely distributed throughout East Asia. AR has been consumed as a traditional medicine in Korea, Japan and China for the treatment of urologic symptoms. To date, however, the therapeutic effect of AR on benign prostatic hyperplasia (BPH) has not been investigated. AIM OF THE STUDY The present study evaluated the therapeutic effects of AR on a testosterone-induced BPH rats. MATERIALS AND METHODS We induced BPH to rats by subcutaneous injections (s.c) of testosterone propionate (TP) daily for four weeks. Rats were also administered daily oral gavage of AR (150 mg/kg) or vehicle. After four weeks of induction, all animals were euthanized humanely and their prostate glands were removed, weighed and processed for further analysis, including histopathological examination, real-time PCR, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and Western blot analysis. RESULTS Administration of AR to TP-induced BPH rats considerably reduced prostate weight and concentrations of serum testosterone and prostate dihydrotestosterone (DHT). Epithelial thickness and expression of proliferating cell nuclear antigen (PCNA) were markedly suppressed by AR-treatment in the rats. Furthermore, the expression of the B-cell lymphoma 2 (Bcl-2) were reduced and expression of the Bcl-2-associated X protein (Bax) increased, resulting in significant reduction in Bcl-2/Bax ratio. In addition, AR decreased the level of pro-inflammatory cytokines, including interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were reduced by AR treatment in a TP-induced BPH rat model. CONCLUSIONS AR alleviates BPH by promoting apoptosis and suppressing inflammation, indicating that AR may be used clinically to treat BPH accompanied by inflammation.
Collapse
Affiliation(s)
- Jinhyung Rho
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea.
| | - Chang-Seob Seo
- Research Infrastructure Team, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.
| | - Hee-Seon Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea.
| | - Hye-Yun Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea.
| | - Og-Sung Moon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea.
| | - Young-Won Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea.
| | - Hwa-Young Son
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea.
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea.
| | - Hyo-Jung Kwun
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
31
|
Abstract
The development of peptide-based drugs, which are usually synthetic analogues of endogenous peptides, is currently one of the most topical directions in drug development. Among them, antitumor peptide-based drugs are of great interest. Anticancer peptides can be classified into three main groups based on their mechanism of action: inhibitory, necrosis-inducing and pro-apoptotic peptides. As an antitumor therapy, peptides are considered to have at least the same efficacy as chemotherapy or surgical treatment, but offer advantages in terms of safety and tolerability, given that chemotherapy is usually characterized by severe adverse effects, and surgery carries additional risks for patients. Short peptides have a number of benefits over other molecules. First, compared with full-length proteins and antibodies, short peptides are less immunogenic, more stable ex-vivo (prolonged storage at room temperature), and have better tumor or organ permeability. Moreover, the production of such short peptide-based drugs is more cost effective. Second, in comparison with small organic molecules, peptides have higher efficacy and specificity. Finally, due to the fact that the main products of peptide metabolism are amino acids, these drugs are usually characterized by lower toxicity. Short peptides have a highly selective mechanism of action, thereby demonstrating low toxicity. Furthermore, with the addition of different stabilizing structural modifications, as well as novel drug delivery systems, the peptide-based drugs are proving to be promising therapeutics for cancer mono- or polytherapy. However, challenges remain including that endogenous and synthetic peptide molecules can be oncogenic. Therefore, it is important to investigate whether peptides contribute to tumor growth. In order to answer such questions, numerous preclinical and clinical studies of peptide-based therapeutics are currently being conducted.
Collapse
|
32
|
Koohi Hosseinabadi O, Behnam MA, Khoradmehr A, Emami F, Sobhani Z, Dehghanian AR, Dehghani Firoozabadi A, Rahmanifar F, Vafaei H, Tamadon AD, Tanideh N, Tamadon A. Benign prostatic hyperplasia treatment using plasmonic nanoparticles irradiated by laser in a rat model. Biomed Pharmacother 2020; 127:110118. [PMID: 32244195 DOI: 10.1016/j.biopha.2020.110118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE In the current study we have stimulated the efficacy of plasmonic nanoparticles (NPs) by laser hyperthermia to achieve a less invasive method for tumor photothermal therapy of benign prostatic hyperplasia (BPH). METHODS The levels of apoptosis on induced BPH in rats were assessed after treatment and revealed and recorded by various assayed. Moreover, the expression of caspases was considered to demonstrate the apoptotic pathways due to laser induced plasmonic NPs. RESULTS In the Laser + NPs group prostate size of induced BPH decreased. Laser + NPs also decreased prostate specific antigen in comparison with the BPH groups. Furthermore, Laser + NPs attenuated BPH histopathologic indices in the rats. Laser + NPs induced apoptosis in prostatic epithelial cells via caspase-1 pathway. CONCLUSIONS Altogether, the approach and findings from this study can be applied to introduce the laser irritated NPs method as a novel and less invasive therapy for patients suffering from BPH.
Collapse
Affiliation(s)
- Omid Koohi Hosseinabadi
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Ali Behnam
- Nano-Opto-Electronic Research Center, Electrical and Electronics Engineering Department, Shiraz University of Technology, Shiraz, Iran.
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Farzin Emami
- Nano-Opto-Electronic Research Center, Electrical and Electronics Engineering Department, Shiraz University of Technology, Shiraz, Iran.
| | - Zahra Sobhani
- Quality Control of Drug Products Department, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Ali Dehghani Firoozabadi
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Farhad Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Homeira Vafaei
- Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aryan-Dokht Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
33
|
El-Ashmawy NE, Khedr EG, El-Bahrawy HA, Helmy NN. Modulatory Effect of Silymarin on Apoptosis in Testosterone -Induced Benign Prostatic Hyperplasia in Rats. Pathol Oncol Res 2020; 26:1947-1956. [PMID: 31902118 DOI: 10.1007/s12253-019-00764-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022]
Abstract
Benign prostatic hyperplasia (BPH) is considered a normal part of the aging process in men, and is characterized by an imbalance between cell proliferation and apoptosis. Our study aimed to investigate the potential protective role of silymarin (SIL) against testosterone-induced BPH in rats and to elucidate the molecular mechanisms underlying SIL pro-apoptotic and anti-proliferative effects. Forty adult male Wistar rats were divided equally into four groups: control group, BPH group (3 mg/kg testosterone propionate, s.c. for 14 days, SIL group (50 mg/kg SIL, orally, once daily concomitantly with 3 mg/kg testosterone propionate s.c.) and inhibitor group (50 mg/kg SIL orally concomitantly with 3 mg/kg testosterone, s.c. and 0.5 mg/rat Z-VAD-FMK, i.p.). Silymarin induced caspase-dependent apoptosis in BPH as SIL significantly reduced prostatic Bcl-2 protein and increased Bax protein concentration. Also, SIL down-regulated survivin (Inhibitor of apoptosis protein (IAPs) gene expression in rat prostate assisting mainly caspase-dependent pathway. Silymarin significantly decreased cytochrome-c cytosolic concentration and increased caspase 3 activity compared to BPH group. Silymarin significantly increased the content of p27/kip1 (Cyclin dependent kinase inhibitor (CDKIs) promoting cell cycle arrest. The histological features of BPH such as hypertrophy, papillary projections formation, improved in SIL group. Silymarin showed a significant anti-proliferative and pro-apoptotic role in BPH and accordingly it could be effectively and safely used as a treatment tool in cases of BPH or prostatic disorders.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, El-Gharbia, 31527, Egypt
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, El-Gharbia, 31527, Egypt
| | - Hoda A El-Bahrawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, El-Gharbia, 31527, Egypt
| | - Nada N Helmy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, El-Gharbia, 31527, Egypt.
| |
Collapse
|
34
|
Liu J, Fang T, Li M, Song Y, Li J, Xue Z, Li J, Bu D, Liu W, Zeng Q, Zhang Y, Yun S, Huang R, Yan J. Pao Pereira Extract Attenuates Testosterone-Induced Benign Prostatic Hyperplasia in Rats by inhibiting 5α-Reductase. Sci Rep 2019; 9:19703. [PMID: 31873149 PMCID: PMC6928012 DOI: 10.1038/s41598-019-56145-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 12/04/2019] [Indexed: 01/08/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common diseases in the urinary system of elderly men. Pao extract is an herbal preparation of the bark of the Amazon rainforest tree Pao Pereira (Geissospermum vellosii), which was reported to inhibit prostate cancer cell proliferation. Herein we investigated the therapeutic potential of Pao extract against BPH development in a testosterone-induced BPH rat model. The administration of testosterone induced the prostate enlargement, compared with the sham operated group with vehicle treatment. The BPH/Pao group showed reduced prostate weight comparable with BPH/finasteride group. Notably, Pao treatment did not significantly reduce body weights and sperm number of rats, compared with the control group. Furthermore, Pao extract treatment reduced the proliferative index in prostate glands and testosterone-induced expression levels of AR, as well as androgen-associated proteins such as SRD5A1 and PSA. Moreover, Pao extract and its active component, flavopereirine, induced cytotoxicity on human prostate epithelial RWPE-1 cells in a dose- and time- dependent manner with G2/M arrest. Consistently, Pao extract and flavopereirine suppressed the expression levels of SRD5A1, AR and PSA, respectively. Together, these data demonstrated that Pao extract suppresses testosterone-induced BPH development through inhibiting AR activity and expression, and suggested that Pao extract may be a promising and relative safe agent for BPH.
Collapse
Affiliation(s)
- Jiakuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Tian Fang
- Department of Comparative Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Meiqian Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Yuting Song
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Junzun Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Zesheng Xue
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Jiaxuan Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Dandan Bu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Wei Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Qinghe Zeng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yidan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China.,Department of Bioscience and Bioengineering, School of Chemistry and Life Science, Jinling College of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Shifeng Yun
- Department of Comparative Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jun Yan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China.
| |
Collapse
|
35
|
Kangquan Recipe Regulates the Expression of BAMBI Protein via the TGF- β/Smad Signaling Pathway to Inhibit Benign Prostatic Hyperplasia in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6281819. [PMID: 31186664 PMCID: PMC6521302 DOI: 10.1155/2019/6281819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Background Kangquan Recipe (KQR) is a traditional Chinese medicine compound made by our research group for the treatment of benign prostatic hyperplasia (BPH). Whether KQR can treat BPH as a single drug or play a role in the treatment of BPH in combination therapy needs further study. Aim of the Study To investigate the effect of KQR on the expression of TGF-β/Smad signaling pathway-related factors in rats with BPH. In-depth analysis revealed the relevant signal transduction mechanism by which KQR acts to treat BPH. Materials and Methods Forty-eight male Sprague-Dawley rats were randomly divided into six groups of 8 rats each. In addition to the control group, 40 rats were castrated and then injected with testosterone propionate to form a prostatic hyperplasia model. After 30 days, three groups received different concentrations of KQR (14 g/kg, 7 g/kg, and 3.5 g/kg), and the finasteride group received 0.5 mg/kg finasteride. The BPH group and the control group received the same volume of saline. All groups were treated for a total of 30 days. Rat body weight, prostate volume, wet weight, index, histology, and the mRNA and protein levels of TGF-β, TGF-βR1, TGF-βR2, p-Smad2, p-Smad3, BAMBI, E-cadherin, and N-cadherin in the prostate tissue were measured after the end of treatment. Results Compared with the control group, the BPH group had increased prostate wet weight, volume, and index, and the histology showed significant BPH. Compared with the BPH group, the three KQR groups and the finasteride group all had varying levels of reduction in the prostate wet weight, volume, and index of the prostate and varying degrees of improvement in the histological manifestations of BPH. KQR downregulates the mRNA and/or protein expression of TGF-β, TGF-βR1, TGF-βR2, p-Smad2, p-Smad3, and N-cadherin protein in prostate tissue and increases the mRNA and protein expression of BAMBI and E-cadherin protein. Conclusions In the model of BPH induced by testosterone propionate after castration, KQR can inhibit the conduction of the TGF-β/Smad signaling pathway by upregulating the expression of BAMBI protein and reversing EMT in rat prostate tissue.
Collapse
|
36
|
Rho J, Seo CS, Park HS, Wijerathne CU, Jeong HY, Moon OS, Seo YW, Son HY, Won YS, Kwun HJ. Ulmus macrocarpa Hance improves benign prostatic hyperplasia by regulating prostatic cell apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2019; 233:115-122. [PMID: 30508623 DOI: 10.1016/j.jep.2018.11.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulmus macrocarpa Hance (UMH), of the family Ulmaceae, is a deciduous tree, widely distributed throughout Korea. UMH has been used as a traditional oriental medicine in Korea for the treatment of urological disorders, including bladder outlet obstruction (BOO), lower urinary tract syndrome (LUTS), diuresis, and hematuria. To date, its possible protective effects against benign prostatic hyperplasia (BPH) have not been analyzed. AIM OF THE STUDY This study investigated the effects of UMH on the development of BPH using a rat model of testosterone propionate (TP)-induced BPH. MATERIALS AND METHODS BPH was induced by daily subcutaneous injections of testosterone propionate (TP) for four weeks. UMH was administrated daily by oral gavage at a dose of 150 mg/kg during the four weeks of TP injections. Animals were sacrificed, and their prostates were weighed and subjected to histopathological examination, TUNEL assay, and western blot analysis. RESULTS Treatment of BPH-model rats with UMH significantly reduced prostate weight, serum testosterone concentration and dihydrotestosterone (DHT) concentration in prostate tissue. TP-induced prostatic hyperplasia and the expression of proliferating cell nuclear antigen (PCNA) were significantly attenuated in UMH-treated rats. In addition, UMH administration markedly induced the activation of caspases-3, - 8, and - 9 in prostate tissues of BPH rats, accompanied by upregulation of expression of Fas, Fas-associated protein with death domain (FADD), and Fas ligand (FasL) and a reduction in the ratio of B-cell lymphoma 2 (Bcl-2) to Bcl-2-associated X protein (Bax). CONCLUSIONS UMH effectively inhibited the proliferation and promoted the apoptosis of prostate cells, suggesting it may be useful for the treatment of BPH.
Collapse
Affiliation(s)
- Jinhyung Rho
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea.
| | - Chang-Seob Seo
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, South Korea.
| | - Hee-Seon Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea.
| | - Charith Ub Wijerathne
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea.
| | - Hye-Yun Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea.
| | - Og-Sung Moon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea.
| | - Young-Won Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea.
| | - Hwa-Young Son
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea.
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea.
| | - Hyo-Jung Kwun
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
37
|
Potential Therapeutic Effects of Underground Parts of Kalanchoe gastonis-bonnieri on Benign Prostatic Hyperplasia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6340757. [PMID: 30719063 PMCID: PMC6334319 DOI: 10.1155/2019/6340757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/09/2018] [Indexed: 12/01/2022]
Abstract
Benign Prostatic Hyperplasia (BPH) affects mainly older men. It is estimated to affect 50% of 51-60-year-old men and 70% of 61-70-year-old men. BPH is a nonmalignant proliferation of epithelial and stromal cells of the prostate gland regions. Despite the use of conventional pharmacological therapy, herbal medicines are used in BPH therapy, and several mechanisms of action have been suggested based on their complex chemical composition. Considering the ethnomedicinal uses of Kalanchoe gastonis-bonnieri (KGB), we evaluated the inhibitory effects on the proliferation of stromal cells from primary benign prostatic hyperplasia (BPH) of four different aqueous extracts from this plant: underground parts from specimens in flower (T1 treatment), leaves from specimens in flower (T2 treatment), and flowers (T3 treatment) and leaves from specimens not in flower (T4 treatment). T1, T2, T3, and T4 treatments at 250 μg/ml for 72 hours inhibited BPH cells by 56.7%, 29.2%, 39.4%, and 13.5%, respectively, showing that the KGB underground parts extract (T1 treatment) was the most active. Our findings show that the extract of the KGB underground parts (150 and 250 μg/ml) stimulates important changes in the BPH cells, modulating crucial processes such as proliferation, viability, and apoptosis. HPLC-DAD-MS/MS analysis provided a tentative identification of glycosylated syringic acid derivatives, glycosylated forms of volatile compounds, and lignans in this extract. Finally, these results suggest that there is a potential therapeutic use for KGB in BPH, which could improve the clinical management of the disease.
Collapse
|
38
|
Jin BR, Kim HJ, Park SK, Kim MS, Lee KH, Yoon IJ, An HJ. Anti-Proliferative Effects of HBX-5 on Progression of Benign Prostatic Hyperplasia. Molecules 2018; 23:molecules23102638. [PMID: 30322186 PMCID: PMC6222778 DOI: 10.3390/molecules23102638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/08/2018] [Accepted: 10/13/2018] [Indexed: 12/25/2022] Open
Abstract
Benign prostatic hyperplasia (BPH), an age-dependent disorder with a prevalence percentage of 60% in the 60s, has been found to involve an androgenic hormone imbalance that causes confusion between cell apoptosis and proliferation. Because general medications for BPH treatment have undesirable side effects, the development of effective alternative medicines has been considered. HBX-5 is a newly developed formula with the aim of improving BPH, and is composed of nine medicinal herbs. BPH was induced in the rats by intramuscular injection of testosterone propionate after castration. Rats were divided into six groups, and the efficacy of HBX-5 on testosterone-induced BPH in rats was estimated. In addition, RWPE-1 and WPMY-1 cells were used to demonstrate the effect of HBX-5 on BPH in vitro model. Compared with the control group, HBX-5 administration group suppressed BPH manifestations, such as excessive development of prostate, and increase of serum dihydrotestosterone and 5α-reductase concentrations. Furthermore, immunohistochemistry analysis revealed that HBX-5 significantly decreased the expression of androgen receptor (AR) and proliferating cell nuclear antigen (PCNA). In addition, results of RWPE-1 and WPMY-1 cells showed that HBX-5 inhibited the over-expression of AR and PSA in DHT-induced prostate hyperplastic microenvironments.
Collapse
Affiliation(s)
- Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Korea.
| | - Hyo-Jung Kim
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Korea.
| | - Sang-Kyun Park
- Department of Meridian & Acupoint, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Korea.
| | - Myoung-Seok Kim
- Central Research Institue of Hawon Pharmaceutical, Jangheung 59338, Korea.
| | - Kwang-Ho Lee
- Central Research Institue of Hawon Pharmaceutical, Jangheung 59338, Korea.
| | - Il-Joo Yoon
- Central Research Institue of Hawon Pharmaceutical, Jangheung 59338, Korea.
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Korea.
| |
Collapse
|
39
|
Zhou J, Lei Y, Chen J, Zhou X. Potential ameliorative effects of epigallocatechin‑3‑gallate against testosterone-induced benign prostatic hyperplasia and fibrosis in rats. Int Immunopharmacol 2018; 64:162-169. [PMID: 30179845 DOI: 10.1016/j.intimp.2018.08.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/15/2018] [Accepted: 08/26/2018] [Indexed: 12/15/2022]
Abstract
Green tea is among the most popular beverages in the world and is an important source of phytoestrogens. Epigallocatechin‑3‑gallate (EGCG) is the major polyphenol in green tea. The aim of this study was to investigate the anti-benign prostatic hyperplasia (BPH) activity and underling mechanisms of EGCG in testosterone-induced BPH rats and in BPH-1 cells. Prostatic levels of oxidative stress and inflammation makers, as well as angiogenesis related growth factors were measured. Additionally, the prostatic levels of sex hormonal mediators (androgen receptor (AR), estrogen receptor (ER)-α and ER-β), hypoxia-inducible factor (HIF)-1α, transforming growth factor-β1 (TGF-β1), type I TGF-β receptor (TGF-βRI), Smad3, phosphorylation-Smad3 (p-Smad3), epithelial-mesenchymal transition (EMT) markers (E-cadherin, collagen-I, fibronectin and α-SMA) and microRNA (miR)-133a/b were analyzed by immunohistochemistry assay, western blot and/or quantitative RT-PCR. It was observed that EGCG attenuated the prostatic oxidative stress and inflammatory microenvironment, ameliorated prostatic hyperplasia and collagen deposition, reduced the levels of angiogenesis related growth factors, inhibited the over-expression of AR, ER-α, HIF-1α, TGF-β1, TGF-βRI and p-Smad3, enhanced the expression of ER-β, increased the levels of miR-133a/b, as well as relieved prostatic EMT in rats. Both HIF-1α inhibitor and EGCG decreased the expression of HIF-1α and TGF-β1, as well as attenuated EMT in BPH-1 cells. It indicated that EGCG could attenuate testosterone-induced BPH and fibrosis.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Pharmacy, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongfang Lei
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinglou Chen
- Department of Pharmacy, Wuhan Fourth Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiuli Zhou
- Department of Nursing, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Yuan Y, Yang J, Zhu W, Liu T, He J, Zhou Q, Zhou X, Zhang X. Qianlongtong Inhibits Proliferation and Induces Apoptosis of Hyperplastic Prostate Cells. Am J Mens Health 2018; 12:1548-1553. [PMID: 29737939 PMCID: PMC6142119 DOI: 10.1177/1557988318772736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Qianlongtong is a compound made from traditional Chinese herbs and it has proven to be very effective to treat patients with benign prostate hypertrophy. However, its mechanism is still unknown. This study is designed to investigate the effect of Qianlongtong on proliferation and apoptosis of hyperplastic prostate cells. Flow cytometry (FCM) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) were used to assess proliferation and apoptosis of hyperplastic prostate cells in the following groups: control group, tamoxifen group, and groups with low, moderate, and high dosage of Qianlongtong. Reverse transcription-polymerase chain reaction analysis was used to investigate the underlying mechanisms for increased apoptosis. Cells treated with Qianlongtong were mainly blocked in the G0/G1 phase. The apoptotic index of each group was significantly higher than that in the control group. The apoptotic index in the high- and moderate-dosage groups was similar to that in the tamoxifen group. The high- and moderate-dosage groups had lower Bcl-2 and higher Bax messenger RNA (mRNA) levels compared with the control group. Qianlongtong inhibits proliferation and promotes the apoptosis of hyperplastic prostate cells.
Collapse
Affiliation(s)
- Yifeng Yuan
- 1 Department of Andrology, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Yang
- 2 Department of Pathology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenxiong Zhu
- 1 Department of Andrology, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tao Liu
- 1 Department of Andrology, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - JuQiao He
- 1 Department of Andrology, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qing Zhou
- 1 Department of Andrology, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xing Zhou
- 1 Department of Andrology, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xi Zhang
- 2 Department of Pathology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
41
|
Ub Wijerathne C, Park HS, Jeong HY, Song JW, Moon OS, Seo YW, Won YS, Son HY, Lim JH, Yeon SH, Kwun HJ. Quisqualis indica Improves Benign Prostatic Hyperplasia by Regulating Prostate Cell Proliferation and Apoptosis. Biol Pharm Bull 2017; 40:2125-2133. [PMID: 28943529 DOI: 10.1248/bpb.b17-00468] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quisqualis indica (QI) has been used for treating disorders such as stomach pain, constipation, and digestion problem. This study was aimed to evaluate the therapeutic efficacy of QI extract on treating benign prostatic hyperplasia (BPH) in LNCaP human prostate cancer cell line and a testosterone-induced BPH rat model. LNCaP cells were treated with QI plus testosterone propionate (TP), and androgen receptor (AR) and prostate specific antigen (PSA) expression levels were assessed by Western blotting. To induce BPH, the rats were subjected to a daily subcutaneous injection of TP (3 mg/kg) for 4 weeks. The rats in treatment group were orally gavaged with QI (150 mg/kg) together with the TP injection. In-vitro studies showed that TP-induced increases in AR and PSA expression in LNCaP cells were reduced by QI treatment. In BPH-model rats, the prostate weight, testosterone in serum, dihydrotestosterone (DHT) concentration and 5α-reductase type 2 mRNA expression in prostate tissue were significantly reduced following the treatment with QI. TP-induced prostatic hyperplasia and the expression of proliferating cell nuclear antigen (PCNA) and cyclin D1 were significantly attenuated in QI-treated rats. In addition, QI induced apoptosis by up-regulating caspase-3 and -9 activity and decreasing the B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) ratio in prostate tissues of BPH rats. Further investigation showed that TP-induced activation of AKT and glycogen synthase kinase 3β (GSK3β) was reduced by QI administration. Therefore, our findings suggest that QI attenuates the BPH state in rats through anti-proliferative and pro-apoptotic activities and might be useful in the clinical treatment of BPH.
Collapse
Affiliation(s)
- Charith Ub Wijerathne
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University
| | - Hee-Seon Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University
| | - Hye-Yun Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University
| | - Ji-Won Song
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University
| | - Og-Sung Moon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology
| | - Young-Won Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology
| | - Hwa-Young Son
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University
| | - Jong-Hwan Lim
- HUONS Research Center, Hanyang University in ERICA campus
| | - Sung-Hum Yeon
- HUONS Research Center, Hanyang University in ERICA campus
| | - Hyo-Jung Kwun
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University
| |
Collapse
|
42
|
Cordaro M, Impellizzeri D, Siracusa R, Gugliandolo E, Fusco R, Inferrera A, Esposito E, Di Paola R, Cuzzocrea S. Effects of a co-micronized composite containing palmitoylethanolamide and polydatin in an experimental model of benign prostatic hyperplasia. Toxicol Appl Pharmacol 2017; 329:231-240. [DOI: 10.1016/j.taap.2017.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
|
43
|
Wu X, Gu Y, Li L. The anti-hyperplasia, anti-oxidative and anti-inflammatory properties of Qing Ye Dan and swertiamarin in testosterone-induced benign prostatic hyperplasia in rats. Toxicol Lett 2017; 265:9-16. [PMID: 27866977 DOI: 10.1016/j.toxlet.2016.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 01/23/2023]
Abstract
Qing Ye Dan (QYD) is the whole plant of Swertia mileensis and used in Chinese folk medicine for the treatment of prostatitis, benign prostatic hyperplasia (BPH) and so on. This study was to investigate the effects of QYD and its main component swertiamarin on BPH induced by testosterone in rats. The prostatic expressions of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), basic fibroblast growth factor (βFGF) and proliferating cell nuclear antigen (PCNA) were detected by immunohistochemistry assay. Prostatic levels of oxidative stress and inflammatory-related factors were also analyzed. Additionally, the prostatic expressions of androgen receptor (AR), estrogen receptor (ER)-α, ER-β, hypoxia-inducible factor (HIF)-1α, B-cell CLL/lymphoma (Bcl)-2 and Bcl-2-associated X protein (Bax) were measured by western blot. The epithelial-mesenchymal transition (EMT) associated factors were evaluated by quantitative RT-PCR. It showed that QYD and swertiamarin ameliorated the testosterone-induced prostatic hyperplasia and collagen deposition, attenuated the over-expressions of HIF-1α, VEGF, EGF, βFGF, PCNA, AR and ER-α, reduced the ratio of Bcl-2/Bax, enhanced the expression of ER-β, inhibited the oxidative stress and local inflammation, as well as relieved prostatic EMT. It suggested that QYD and swertiamarin had prostatic protective potential against BPH.
Collapse
Affiliation(s)
- Xinying Wu
- Department of Cardiology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Gu
- Department of Cardiology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lun Li
- Department of Cardiology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|