1
|
Liu F, Ye S, Zhao L, Niu Q. The role of IGF/IGF-1R signaling in the regulation of cancer stem cells. Clin Transl Oncol 2024; 26:2924-2934. [PMID: 38865036 DOI: 10.1007/s12094-024-03561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Cancer stem cells (CSCs) are a group of tumor cells with high tumorigenic ability and self-renewal potential similar to those of normal stem cells. CSCs are the key "seeds" for tumor development, metastasis, and recurrence. A better insight into the key mechanisms underlying CSC survival improves the efficiency of cancer therapy via specific targeting of CSCs. Insulin-like growth factor (IGF)/IGF-1 receptor (IGF-1R) signaling plays an important role in the maintenance of cancer stemness. However, the effect of IGF/IGF-1R signaling on stemness and CSCs and the underlying mechanisms are still controversial. Based on the similarity between CSCs and normal stem cells, this review discusses emerging data on the functions of IGF/IGF-1R signaling in normal stem cells and CSCs and dissects the underlying mechanisms by which IGF/IGF-1R signaling is involved in CSCs. On the other hand, this review highlighted the role of IGF/IGF-1R signaling blockade in multiple CSCs as a potential strategy to improve CSC-based therapy.
Collapse
Affiliation(s)
- Fengchao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Susu Ye
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu Zhao
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qinghui Niu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
3
|
Lai A, Sun J, Dai Z, Guo L, Tao D, Li H, Chen B, Zhou R. Unraveling IGFBP3-mediated m6A modification in fracture healing. Pathol Res Pract 2024; 255:155220. [PMID: 38432050 DOI: 10.1016/j.prp.2024.155220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND This study investigates the role of IGFBP3-mediated m6A modification in regulating the miR-23a-3p/SMAD5 axis and its impact on fracture healing, aiming to provide insights into potential therapeutic targets. METHODS Utilizing fracture-related datasets, we identified m6A modification-related mRNA and predicted miR-23a-3p as a regulator of SMAD5. We established a mouse fracture healing model and conducted experiments, including Micro-CT, RT-qPCR, Alizarin Red staining, and Alkaline phosphatase (ALP) staining, to assess gene expression and osteogenic differentiation. RESULTS IGFBP3 emerged as a crucial player in fracture healing, stabilizing miR-23a-3p through m6A modification, leading to SMAD5 downregulation. This, in turn, inhibited osteogenic differentiation and delayed fracture healing. Inhibition of IGFBP3 partially reversed through SMAD5 inhibition, restoring osteogenic differentiation and fracture healing in vivo. CONCLUSION The IGFBP3/miR-23a-3p/SMAD5 axis plays a pivotal role in fracture healing, highlighting the relevance of m6A modification. IGFBP3's role in stabilizing miR-23a-3p expression through m6A modification offers a potential therapeutic target for enhancing fracture healing outcomes.
Collapse
Affiliation(s)
- Aining Lai
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China
| | - Junjian Sun
- Section Ⅴ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 31300, PR China
| | - Zhiyuan Dai
- Thoracic surgey, the 72nd Army Hospital of PLA, Huzhou 313000, PR China
| | - Long Guo
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China
| | - Degang Tao
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China
| | - Haitang Li
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China
| | - Bin Chen
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China.
| | - Rong Zhou
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China.
| |
Collapse
|
4
|
Jin M, Yi X, Zhu X, Hu W, Wang S, Chen Q, Yang W, Li Y, Li S, Peng Q, Pan M, Gao Y, Xu S, Zhang Y, Zhou S. Schisandrin B promotes hepatic differentiation from human umbilical cord mesenchymal stem cells. iScience 2024; 27:108912. [PMID: 38323006 PMCID: PMC10844828 DOI: 10.1016/j.isci.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Human umbilical cord mesenchymal stem cells (UC-MSCs)-derived hepatocyte-like cells (HLCs) have shown great promise in the treatment of liver diseases. However, most current induction protocols yield hepatocyte-like cells with limited function as compared with primary hepatocytes. Schisandrin B (Sch B) is one of the main components of Schisandra chinensis, which can prevent fibrosis progression and promote liver cell regeneration. Herein, we investigated the effects of Sch B on hepatic differentiation of UC-MSCs. We found that treatment with 10 μM Sch B from the second stage of the differentiation process increased hepatic marker levels and hepatic function. Additionally, RNA-seq analysis revealed that Sch B promoted hepatic differentiation via activating the JAK2/STAT3 pathway. When transplanted HLCs into mice with CCL4-induced liver fibrosis, Sch B-treated HLCs exhibited significant therapeutic effects. This study provides an optimized hepatic differentiation protocol for UC-MSCs based on Sch B, yielding functioning cells for liver disease treatment.
Collapse
Affiliation(s)
- Meixian Jin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Xiaojuan Zhu
- Department of Anesthesiology, First People’s Hospital of Kashi, Kashi 844000, China
| | - Wei Hu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Simin Wang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Qi Chen
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Wanren Yang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Mingxin Pan
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Ying Zhang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shuqin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
- Anesthesiology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| |
Collapse
|
5
|
Choi JW, Lim S, Jung SE, Jeong S, Moon H, Song BW, Kim IK, Lee S, Hwang KC, Kim SW. Enhanced Osteocyte Differentiation: Cathepsin D and L Secretion by Human Adipose-Derived Mesenchymal Stem Cells. Cells 2023; 12:2852. [PMID: 38132172 PMCID: PMC10742070 DOI: 10.3390/cells12242852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) have the potential to differentiate into bone, cartilage, fat, and neural cells and promote tissue regeneration and healing. It is known that they can have variable responses to hypoxic conditions. In the present study, we aimed to explore diverse changes in the cells and secretome of ASCs under a hypoxic environment over time and to present the possibility of ASCs as therapeutic agents from a different perspective. The expression differences of proteins between normoxic and hypoxic conditions (6, 12, or 24 h) were specifically investigated in human ASCs using 2-DE combined with MALDI-TOF MS analysis, and secreted proteins in ASC-derived conditioned media (ASC-derived CM) were examined by an adipokine array. In addition, genetic and/or proteomic interactions were assessed using a DAVID and miRNet functional annotation bioinformatics analysis. We found that 64 and 5 proteins were differentially expressed in hypoxic ASCs and in hypoxic ASC-derived CM, respectively. Moreover, 7 proteins among the 64 markedly changed spots in hypoxic ASCs were associated with bone-related diseases. We found that two proteins, cathepsin D (CTSD) and cathepsin L (CTSL), identified through an adipokine array independently exhibited significant efficacy in promoting osteocyte differentiation in bone-marrow-derived mesenchymal stem cells (BM-MSCs). This finding introduces a promising avenue for utilizing hypoxia-preconditioned ASC-derived CM as a potential therapeutic approach for bone-related diseases.
Collapse
Affiliation(s)
- Jung-Won Choi
- Medical Science Research Institute, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (J.-W.C.); (S.E.J.)
| | - Soyeon Lim
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Seung Eun Jung
- Medical Science Research Institute, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (J.-W.C.); (S.E.J.)
| | - Seongtae Jeong
- The Interdisciplinary Graduate Program in Integrative Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| | - Hanbyeol Moon
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul 03722, Republic of Korea;
| | - Byeong-Wook Song
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Il-Kwon Kim
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Seahyoung Lee
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Ki-Chul Hwang
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Sang Woo Kim
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| |
Collapse
|
6
|
Lian L, Sun Z, Zhang J, Gu S, Xia C, Gan K. Preparation, characterization and biocompatibility of calcium peroxide-loaded polycaprolactone microparticles. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:296-305. [PMID: 37476941 PMCID: PMC10409898 DOI: 10.3724/zdxbyxb-2022-0696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVES To explore the physicochemical characteristics and biocompatibility of calcium peroxide (CPO)-loaded polycaprolactone (PCL) microparticle. METHODS The CPO/PCL particles were prepared. The morphology and elemental distribution of CPO, PCL and CPO/PCL particles were observed with scanning electron microscopy and energy dispersive spectroscopy, respectively. Rat adipose mesenchymal stem cells were isolated and treated with different concentrations (0.10%, 0.25%, 0.50%, 1.00%) of CPO or CPO/PCL particles. The mesenchymal stem cells were cultured in normal media or osteogenic differentiation media under the hypoxia/normoxia conditions, and the amount of released O2 and H2O2 after CPO/PCL treatment were detected. The gene expressions of alkaline phosphatase (ALP), Runt-associated transcription factor 2 (RUNX2), osteopontin (OPN) and osteocalcin (OCN) were detected by realtime RT-PCR. SD rats were subcutaneously injected with 1.00% CPO/PCL particles and the pathological changes and infiltration of immune cells were observed with HE staining and immunohistochemistry at day 7 and day 14 after injection. RESULTS Scanning electron microscope showed that CPO particles had a polygonal structure, PCL particles were in a small spherical plastic particle state, and CPO/PCL particles had a block-like crystal structure. Energy dispersive spectroscopy revealed that PCL particles showed no calcium mapping, while CPO/PCL particles showed obvious and uniform calcium mapping. The concentrations of O2 and H2O2 released by CPO/PCL particles were lower than those of CPO group, and the oxygen release time was longer. The expressions of Alp, Runx2, Ocn and Opn increased with the higher content of CPO/PCL particles under hypoxia in osteogenic differentiation culture and normal culture, and the induction was more obvious under osteogenic differentiation conditions (all P<0.05). HE staining results showed that the muscle tissue fibers around the injection site were scattered and disorderly distributed, with varying sizes and thicknesses at day 7 after particle injection. Significant vascular congestion, widened gaps, mild interstitial congestion, local edema, inflammatory cell infiltration, and large area vacuolization were observed in some tissues of rats. At day 14 after microparticle injection, the muscle tissue around the injection site and the tissue fibers at the microparticle implantation site were arranged neatly, and the gap size was not thickened, the vascular congestion, local inflammatory cell infiltration, and vacuolization were significantly improved compared with those at day 7. The immunohistochemical staining results showed that the expressions of CD3 and CD68 positive cells significantly increased in the surrounding muscle tissue, and were densely distributed in a large area at day 7 after particle injection. At day 14 of microparticle injection, the numbers of CD3 and CD68 positive cells in peripheral muscle tissue and tissue at the site of particle implantation were lower than those at day 7 (all P<0.01). CONCLUSIONS CPO/PCL particles have good oxygen release activity, low damage to tissue, and excellent biocompatibility.
Collapse
Affiliation(s)
- Leidong Lian
- Medical School of Ningbo University, Ningbo 315000, Zhejiang Province, China.
| | - Zechen Sun
- Department of Orthopedics, Yuyao Fourth People's Hospital, Ningbo 315400, Zhejiang Province, China
| | - Jinhao Zhang
- Medical School of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Shirong Gu
- Department of Orthopedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315046, Zhejiang Province, China
| | - Chenjie Xia
- Department of Orthopedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315046, Zhejiang Province, China
| | - Kaifeng Gan
- Department of Orthopedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315046, Zhejiang Province, China.
| |
Collapse
|
7
|
Zhou JQ, Wan HY, Wang ZX, Jiang N. Stimulating factors for regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells. World J Stem Cells 2023; 15:369-384. [PMID: 37342227 PMCID: PMC10277964 DOI: 10.4252/wjsc.v15.i5.369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/21/2023] [Accepted: 03/29/2023] [Indexed: 05/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs), distributed in many tissues in the human body, are multipotent cells capable of differentiating in specific directions. It is usually considered that the differentiation process of MSCs depends on specialized external stimulating factors, including cell signaling pathways, cytokines, and other physical stimuli. Recent findings have revealed other underrated roles in the differentiation process of MSCs, such as material morphology and exosomes. Although relevant achievements have substantially advanced the applicability of MSCs, some of these regulatory mechanisms still need to be better understood. Moreover, limitations such as long-term survival in vivo hinder the clinical application of MSCs therapy. This review article summarizes current knowledge regarding the differentiation patterns of MSCs under specific stimulating factors.
Collapse
Affiliation(s)
- Jia-Qi Zhou
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Hao-Yang Wan
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Zi-Xuan Wang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
8
|
Feng Z, Jin M, Liang J, Kang J, Yang H, Guo S, Sun X. Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: A review from a mitochondrial perspective. Acta Biomater 2023; 164:1-14. [PMID: 36972808 DOI: 10.1016/j.actbio.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Bone damage may be triggered by a variety of factors, and the damaged area often requires a bone graft. Bone tissue engineering can serve as an alternative strategy for repairing large bone defects. Mesenchymal stem cells (MSCs), the progenitor cells of connective tissue, have become an important tool for tissue engineering due to their ability to differentiate into a variety of cell types. The precise regulation of the growth and differentiation of the stem cells used for bone regeneration significantly affects the efficiency of this type of tissue engineering. During the process of osteogenic induction, the dynamics and function of localized mitochondria are altered. These changes may also alter the microenvironment of the therapeutic stem cells and result in mitochondria transfer. Mitochondrial regulation not only affects the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell. To date, bone tissue engineering research has mainly focused on the influence of biomaterials on phenotype and nuclear genotype, with few studies investigating the role of mitochondria. In this review, we provide a comprehensive summary of researches into the role of mitochondria in MSCs differentiation and critical analysis regarding smart biomaterials that are able to "programme" mitochondria modulation was proposed. STATEMENT OF SIGNIFICANCE: : • This review proposed the precise regulation of the growth and differentiation of the stem cells used to seed bone regeneration. • This review addressed the dynamics and function of localized mitochondria during the process of osteogenic induction and the effect of mitochondria on the microenvironment of stem cells. • This review summarized biomaterials which affect the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell through the regulation of mitochondria.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Junning Kang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China.
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
9
|
Gyimah E, Zhu X, Zhang Z, Guo M, Xu H, Mensah JK, Dong X, Zhang Z, Gyimah GNW. Oxidative Stress and Apoptosis in Bisphenol AF-Induced Neurotoxicity in Zebrafish Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2273-2284. [PMID: 35723417 DOI: 10.1002/etc.5412] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/23/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol AF (BPAF) is a structural counterpart of bisphenol A that is utilized in the food and beverage industry. The present study investigated the potential mechanisms in BPAF-induced neurotoxicity in zebrafish embryos. The BPAF concentrations (0.03, 0.1, 0.3, and 1.0 µM) had no obvious effect on hatching, mortality, and body length of zebrafish larvae, while curved tail and pericardial edema were observed in the 1.0 μM group at 72 and 96 h postfertilization (hpf). Locomotor activity of the larvae (at 120 hpf) significantly decreased from dark to light but increased from light to dark transitions in BPAF groups (0.1, 0.3, and 1.0 μM). Acridine orange showed that BPAF significantly increased green fluorescence protein intensity (22.6%) in the 1.0 μM group. Consistently, the induced apoptosis significantly up-regulated caspase 3 at 0.3 μM (1.95-fold) and 1.0 μM (2.26-fold) and bax at 0.3 μM (1.60-fold) and 1.0 μM (1.78-fold), whereas bcl-2 expression was significantly decreased at 0.3 μM (0.72-fold) and 1.0 μM (0.53-fold). In addition, increased reactive oxygen species concentrations at 0.3 μM (27%) and 1.0 μM (61.4%) resulted in suppressed superoxide dismutase and catalase activities. Moreover, quantitative polymerase chain reaction results showed that BPAF (0.3 and 1.0 μM) significantly altered normal dopaminergic signaling where dat was up-regulated, while drd2a and th1 were down-regulated, in a concentration-dependent manner. Aberrations in dopamine-related genes were congruous with the dysregulations in neurodevelopment genes (sox11b, pax6a, syn2a, and rob2). Our findings suggest that BPAF-evoked oxidative stress and apoptosis could translate into phenotypical behavioral and neurodevelopmental abnormalities. These highlights could provide theoretical reference for risk assessment and act as an early indicator to BPAF exposure. Environ Toxicol Chem 2022;41:2273-2284. © 2022 SETAC.
Collapse
Affiliation(s)
- Eric Gyimah
- School of Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, China
| | - Xian Zhu
- School of Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, China
| | - Ziqi Zhang
- School of Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, China
| | - Mengyuan Guo
- School of Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, China
| | - Hai Xu
- School of Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, China
| | - John Kenneth Mensah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Xing Dong
- School of Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, China
| | - Zhen Zhang
- School of Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, China
| | | |
Collapse
|
10
|
Saumell-Esnaola M, Delgado D, García del Caño G, Beitia M, Sallés J, González-Burguera I, Sánchez P, López de Jesús M, Barrondo S, Sánchez M. Isolation of Platelet-Derived Exosomes from Human Platelet-Rich Plasma: Biochemical and Morphological Characterization. Int J Mol Sci 2022; 23:ijms23052861. [PMID: 35270001 PMCID: PMC8911307 DOI: 10.3390/ijms23052861] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Platelet-Rich Plasma (PRP) is enriched in molecular messengers with restorative effects on altered tissue environments. Upon activation, platelets release a plethora of growth factors and cytokines, either in free form or encapsulated in exosomes, which have been proven to promote tissue repair and regeneration. Translational research on the potential of exosomes as a safe nanosystem for therapeutic cargo delivery requires standardizing exosome isolation methods along with their molecular and morphological characterization. With this aim, we isolated and characterized the exosomes released by human PRP platelets. Western blot analysis revealed that CaCl2-activated platelets (PLT-Exos-Ca2+) released more exosomes than non-activated ones (PLT-Exos). Moreover, PLT-Exos-Ca2+ exhibited a molecular signature that meets the most up-to-date biochemical criteria for platelet-derived exosomes and possessed morphological features typical of exosomes as assessed by transmission electron microscopy. Array analysis of 105 analytes including growth factors and cytokines showed that PLT-Exos-Ca2+ exhibited lower levels of most analytes compared to PLT-Exos, but relatively higher levels of those consistently validated as components of the protein cargo of platelet exosomes. In summary, the present study provides new insights into the molecular composition of human platelet-derived exosomes and validates a method for isolating highly pure platelet exosomes as a basis for future preclinical studies in regenerative medicine and drug delivery.
Collapse
Affiliation(s)
- Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
| | - Gontzal García del Caño
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Maider Beitia
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Correspondence: (J.S.); (M.S.); Tel.: +34-945-013114 (J.S.); +34-945-252077 (M.S.)
| | - Imanol González-Burguera
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
| | - Maider López de Jesús
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
| | - Mikel Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain
- Correspondence: (J.S.); (M.S.); Tel.: +34-945-013114 (J.S.); +34-945-252077 (M.S.)
| |
Collapse
|
11
|
Cui D, Kong N, Ding L, Guo Y, Yang W, Yan F. Ultrathin 2D Titanium Carbide MXene (Ti 3 C 2 T x ) Nanoflakes Activate WNT/HIF-1α-Mediated Metabolism Reprogramming for Periodontal Regeneration. Adv Healthc Mater 2021; 10:e2101215. [PMID: 34586717 PMCID: PMC11468541 DOI: 10.1002/adhm.202101215] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/08/2021] [Indexed: 12/17/2022]
Abstract
Periodontal defect regeneration in severe periodontitis relies on the differentiation and proliferation of periodontal ligament cells (PDLCs). Recently, an emerging 2D nanomaterial, MXene (Ti3 C2 Tx ), has gained more and more attention due to the extensive antibacterial and anticancer activity, while its potential biomedical application on tissue regeneration remains unclear. Through a combination of experimental and multiscale simulation schemes, Ti3 C2 Tx has exhibited satisfactory biocompatibility and induced distinguish osteogenic differentiation of human PDLCs (hPDLCs), with upregulated osteogenesis-related genes. Ti3 C2 Tx manages to activate the Wnt/β-catenin signaling pathway by enhancing the Wnt-Frizzled complex binding, thus stabilizing HIF-1α and altering metabolic reprogramming into glycolysis. In vivo, hPDLCs pretreated by Ti3 C2 Tx display excellent performance in new bone formation and osteoclast inhibition with enhanced RUNX2, HIF-1α, and β-catenin in an experimental rat model of periodontal fenestration defects, indicating that this material has high efficiency of periodontal regeneration promotion. It is demonstrated in this work that Ti3 C2 Tx has highly efficient therapeutic effects in osteogenic differentiation and periodontal defect repairment.
Collapse
Affiliation(s)
- Di Cui
- Nanjing Stomatological HospitalMedical School of Nanjing UniversityNanjingJiangsu210008China
| | - Na Kong
- School of Life and Environmental ScienceDeakin UniversityWaurn PondsVictoria3216Australia
| | - Liang Ding
- Nanjing Stomatological HospitalMedical School of Nanjing UniversityNanjingJiangsu210008China
| | - Yachong Guo
- Kuang Yaming Honors SchoolNanjing UniversityNanjing210023China
- Institute Theory of PolymersLeibniz‐Institut für Polymerforschung DresdenDresden01069Germany
| | - Wenrong Yang
- School of Life and Environmental ScienceDeakin UniversityWaurn PondsVictoria3216Australia
| | - Fuhua Yan
- Nanjing Stomatological HospitalMedical School of Nanjing UniversityNanjingJiangsu210008China
| |
Collapse
|
12
|
Teh SW, Koh AEH, Tong JB, Wu X, Samrot AV, Rampal S, Mok PL, Subbiah SK. Hypoxia in Bone and Oxygen Releasing Biomaterials in Fracture Treatments Using Mesenchymal Stem Cell Therapy: A Review. Front Cell Dev Biol 2021; 9:634131. [PMID: 34490233 PMCID: PMC8417697 DOI: 10.3389/fcell.2021.634131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Bone fractures have a high degree of severity. This is usually a result of the physical trauma of diseases that affect bone tissues, such as osteoporosis. Due to its highly vascular nature, the bone is in a constant state of remodeling. Although those of younger ages possess bones with high regenerative potential, the impact of a disrupted vasculature can severely affect the recovery process and cause osteonecrosis. This is commonly seen in the neck of femur, scaphoid, and talus bone. In recent years, mesenchymal stem cell (MSC) therapy has been used to aid in the regeneration of afflicted bone. However, the cut-off in blood supply due to bone fractures can lead to hypoxia-induced changes in engrafted MSCs. Researchers have designed several oxygen-generating biomaterials and yielded varying degrees of success in enhancing tissue salvage and preserving cellular metabolism under ischemia. These can be utilized to further improve stem cell therapy for bone repair. In this review, we touch on the pathophysiology of these bone fractures and review the application of oxygen-generating biomaterials to further enhance MSC-mediated repair of fractures in the three aforementioned parts of the bone.
Collapse
Affiliation(s)
- Seoh Wei Teh
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Avin Ee-Hwan Koh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jia Bei Tong
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Xiaoyun Wu
- Department of Technology, Research Center for Hua-Da Precision Medicine of Inner Mongolia Autonomous Region, Hohhot, China
| | - Antony V Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | - Sanjiv Rampal
- Department of Orthopedics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Pooi Ling Mok
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Center for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Bharath University, Chennai, India
| |
Collapse
|
13
|
Mechanisms of oxidative stress in methylmercury-induced neurodevelopmental toxicity. Neurotoxicology 2021; 85:33-46. [PMID: 33964343 DOI: 10.1016/j.neuro.2021.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022]
Abstract
Methylmercury (MeHg) is a long-lasting organic environmental pollutant that poses a great threat to human health. Ingestion of seafood containing MeHg is the most important way by which it comes into contact with human body, where the central nervous system (CNS) is the primary target of MeHg toxicity. During periods of pre-plus postnatal, in particular, the brain of offspring is vulnerable to specific developmental insults that result in abnormal neurobehavioral development, even without symptoms in mothers. While many studies on neurotoxic effects of MeHg on the developing brain have been conducted, the mechanisms of oxidative stress in MeHg-induced neurodevelopmental toxicity is less clear. Hitherto, no single process can explain the many effects observed in MeHg-induced neurodevelopmental toxicity. This review summarizes the possible mechanisms of oxidative stress in MeHg-induced neurodevelopmental toxicity, highlighting modulation of Nrf2/Keap1/Notch1, PI3K/AKT, and PKC/MAPK molecular pathways as well as some preventive drugs, and thus contributes to the discovery of endogenous and exogenous molecules that can counteract MeHg-induced neurodevelopmental toxicity.
Collapse
|
14
|
Lee J, Lee S, Kim SM, Shin H. Size-controlled human adipose-derived stem cell spheroids hybridized with single-segmented nanofibers and their effect on viability and stem cell differentiation. Biomater Res 2021; 25:14. [PMID: 33902733 PMCID: PMC8074457 DOI: 10.1186/s40824-021-00215-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Fabrication of three-dimensional stem cell spheroids have been studied to improve stem cell function, but the hypoxic core and limited penetration of nutrients and signaling cues to the interior of the spheroid were challenges. The incorporation of polymers such as silica and gelatin in spheroids resulted in relatively relaxed assembly of composite spheroids, and enhancing transport of nutrient and biological gas. However, because of the low surface area between cells and since the polymers were heterogeneously distributed throughout the spheroid, these polymers cannot increase the cell to extracellular matrix interactions needed to support differentiation. METHODS We developed the stem cell spheroids that incorporate poly(ι-lactic acid) single-segmented fibers synthesized by electrospinning and physical and chemical fragmentation. The proper mixing ratio was 2000 cells/μg fibers (average length of the fibers was 50 μm - 100 μm). The SFs were coated with polydopamine to increase cell binding affinity and to synthesize various-sized spheroids. The function of spheroids was investigated by in vitro analysis depending on their sizes. For statistical analysis, Graphpad Prism 5 software (San Diego, CA, USA) was used to perform one-way analysis of variance ANOVA with Tukey's honest significant difference test and a Student's t-test (for two variables) (P < 0.05). RESULTS Spheroids of different sizes were created by modulating the amount of cells and fibers (0.063 mm2-0.322 mm2). The fibers in the spheroid were homogenously distributed and increased cell viability, while cell-only spheroids showed a loss of DNA contents, internal degradation, and many apoptotic signals. Furthermore, we investigated stemness and various functions of various-sized fiber-incorporated spheroids. In conclusion, the spheroid with the largest size showed the greatest release of angiogenic factors (released VEGF: 0.111 ± 0.004 pg/ng DNA), while the smallest size showed greater effects of osteogenic differentiation (mineralized calcium: 18.099 ± 0.271 ng/ng DNA). CONCLUSION The spheroids incorporating polydopamine coated single-segmented fibers showed enhanced viability regardless of sizes and increased their functionality by regulating the size of spheroids which may be used for various tissue reconstruction and therapeutic applications.
Collapse
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- BK21 FOUR, Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sung Min Kim
- BK21 FOUR, Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of Physical Education and Active Aging Industry, Hanyang University, Seoul, 04763, Republic of Korea.
- Center for Artificial Intelligence Muscle, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
15
|
Tomecka E, Lech W, Zychowicz M, Sarnowska A, Murzyn M, Oldak T, Domanska-Janik K, Buzanska L, Rozwadowska N. Assessment of the Neuroprotective and Stemness Properties of Human Wharton's Jelly-Derived Mesenchymal Stem Cells under Variable (5% vs. 21%) Aerobic Conditions. Cells 2021; 10:717. [PMID: 33804841 PMCID: PMC8063843 DOI: 10.3390/cells10040717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
To optimise the culture conditions for human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) intended for clinical use, we investigated ten different properties of these cells cultured under 21% (atmospheric) and 5% (physiological normoxia) oxygen concentrations. The obtained results indicate that 5% O2 has beneficial effects on the proliferation rate, clonogenicity, and slowdown of senescence of hWJ-MSCs; however, the oxygen level did not have an influence on the cell morphology, immunophenotype, or neuroprotective effect of the hWJ-MSCs. Nonetheless, the potential to differentiate into adipocytes, osteocytes, and chondrocytes was comparable under both oxygen conditions. However, spontaneous differentiation of hWJ-MSCs into neuronal lineages was observed and enhanced under atmospheric oxygen conditions. The cells relied more on mitochondrial respiration than glycolysis, regardless of the oxygen conditions. Based on these results, we can conclude that hWJ-MSCs could be effectively cultured and prepared under both oxygen conditions for cell-based therapy. However, the 5% oxygen level seemed to create a more balanced and appropriate environment for hWJ-MSCs.
Collapse
Affiliation(s)
- Ewelina Tomecka
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Wioletta Lech
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Marzena Zychowicz
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Anna Sarnowska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Magdalena Murzyn
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Tomasz Oldak
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Krystyna Domanska-Janik
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Natalia Rozwadowska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
| |
Collapse
|
16
|
Arai Y, Park H, Park S, Kim D, Baek I, Jeong L, Kim BJ, Park K, Lee D, Lee SH. Bile acid-based dual-functional prodrug nanoparticles for bone regeneration through hydrogen peroxide scavenging and osteogenic differentiation of mesenchymal stem cells. J Control Release 2020; 328:596-607. [PMID: 32946872 DOI: 10.1016/j.jconrel.2020.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/20/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
A high level of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) upregulates pro-inflammatory cytokines and inhibits the osteogenic differentiation of mesenchymal stem cells (MSCs), which are key factors in bone regeneration. Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, has antioxidant and anti-inflammatory activities and also plays beneficial roles in bone regeneration by stimulating the osteogenic differentiation of MSCs while suppressing their adipogenic differentiation. Despite its remarkable capacity for bone regeneration, multiple injections of UDCA induce adverse side effects such as mechanical stress and contamination in bone defects. To fully exploit the beneficial roles of UDCA, a concept polymeric prodrug was developed based on the hypothesis that removal of overproduced H2O2 will potentiate the osteogenic functions of UDCA. In this work, we report bone regenerative nanoparticles (NPs) formulated from a polymeric prodrug of UDCA (PUDCA) with UDCA incorporated in its backbone through H2O2-responsive peroxalate linkages. The PUDCA NPs displayed potent antioxidant and anti-inflammatory activities in MSCs and induced osteogenic rather than adipogenic differentiation of the MSCs. In rat models of bone defect, the PUDCA NPs exhibited significantly better bone regeneration capacity and anti-inflammatory effects than equivalent amounts of UDCA. We anticipate that PUDCA NPs have tremendous translational potential as bone regenerative agents.
Collapse
Affiliation(s)
- Yoshie Arai
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea
| | - Hyoeun Park
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea
| | - Sunghyun Park
- Department of Biomedical Science, CHA University, CHA Biocomplex, 13488 Gyeonggi-do, South Korea
| | - Dohyun Kim
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea
| | - Inho Baek
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea
| | - Lipjeong Jeong
- Department of BIN Convergence Technology, Jeonbuk National University, 54896 Jeonbuk, South Korea
| | - Byoung Ju Kim
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), 02792 Seoul, South Korea
| | - Dongwon Lee
- Department of BIN Convergence Technology, Jeonbuk National University, 54896 Jeonbuk, South Korea.
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea.
| |
Collapse
|
17
|
Chen W, Zhuo Y, Duan D, Lu M. Effects of Hypoxia on Differentiation of Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2020; 15:332-339. [PMID: 31441734 DOI: 10.2174/1574888x14666190823144928] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Mesenchymal Stem Cells (MSCs) are distributed in many parts of the human body, including
the bone marrow, placenta, umbilical cord, fat, and nasal mucosa. One of the unique features of
MSCs is their multidirectional differentiation potential, including the ability to undergo osteogenesis,
adipogenesis, and chondrogenesis, and to produce neurons, endothelial cells, Schwann cells, medullary
nucleus cells, cardiomyocytes, and alveolar epithelial cells. MSCs have thus become a hot research
topic in recent years. Numerous studies have investigated the differentiation of MSCs into various
types of cells in vitro and their application to numerous fields. However, most studies have cultured
MSCs under atmospheric oxygen tension with an oxygen concentration of 21%, which does not reflect
a normal physiological state, given that the oxygen concentration generally used in vitro is four to ten
times that to which MSCs would be exposed in the body. We therefore review the growing number of
studies exploring the effect of hypoxic preconditioning on the differentiation of MSCs.
Collapse
Affiliation(s)
- Wei Chen
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Yi Zhuo
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Da Duan
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| |
Collapse
|
18
|
Hwang OK, Noh YW, Hong JT, Lee JW. Hypoxia Pretreatment Promotes Chondrocyte Differentiation of Human Adipose-Derived Stem Cells via Vascular Endothelial Growth Factor. Tissue Eng Regen Med 2020; 17:335-350. [PMID: 32451775 DOI: 10.1007/s13770-020-00265-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human adipose tissue-derived stem cells (ADSCs) are attractive multipotent stem cell sources with therapeutic potential in various fields requiring repair and regeneration, such as acute and chronically damaged tissues. ADSC is suitable for cell-based therapy, but its use has been hampered due to poor survival after administration. Potential therapeutic use of ADSC requires mass production of cells through in vitro expansion. Many studies have consistently observed the tendency of senescence by mesenchymal stem cell (MSC) proliferation upon expansion. Hypoxia has been reported to improve stem cell proliferation and survival. METHODS We investigated the effects of hypoxia pretreatment on ADCS proliferation, migration capacity, differentiation potential and cytokine production. We also analyzed the effects of vascular endothelial growth factor (VEGF) on osteogenic and chondrogenic differentiation of ADSCs by hypoxia pretreatment. RESULTS Hypoxia pretreatment increased the proliferation of ADSCs by increasing VEGF levels. Interestingly, hypoxia pretreatment significantly increased chondrogenic differentiation but decreased osteogenic differentiation compared to normoxia. The osteogenic differentiation of ADSC was decreased by the addition of VEGF but increased by the depletion of VEGF. We have shown that hypoxia pretreatment increases the chondrogenic differentiation of ADSCs while reducing osteogenic differentiation in a VEGF-dependent manner. CONCLUSION These results show that hypoxia pretreatment can provide useful information for studies that require selective inhibition of osteogenic differentiation, such as cartilage regeneration.
Collapse
Affiliation(s)
- Ok Kyung Hwang
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk, 28160, Republic of Korea.,College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, 28160, Republic of Korea
| | - Young Woock Noh
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk, 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, 28160, Republic of Korea.
| | - Je-Wook Lee
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
19
|
Succinate Supplement Elicited "Pseudohypoxia" Condition to Promote Proliferation, Migration, and Osteogenesis of Periodontal Ligament Cells. Stem Cells Int 2020; 2020:2016809. [PMID: 32215014 PMCID: PMC7085835 DOI: 10.1155/2020/2016809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/01/2020] [Accepted: 02/25/2020] [Indexed: 01/03/2023] Open
Abstract
Most mesenchymal stem cells reside in a niche of low oxygen tension. Iron-chelating agents such as CoCl2 and deferoxamine have been utilized to mimic hypoxia and promote cell growth. The purpose of the present study was to explore whether a supplement of succinate, a natural metabolite of the tricarboxylic acid (TCA) cycle, can mimic hypoxia condition to promote human periodontal ligament cells (hPDLCs). Culturing hPDLCs in hypoxia condition promoted cell proliferation, migration, and osteogenic differentiation; moreover, hypoxia shifted cell metabolism from oxidative phosphorylation to glycolysis with accumulation of succinate in the cytosol and its release into culture supernatants. The succinate supplement enhanced hPDLC proliferation, migration, and osteogenesis with decreased succinate dehydrogenase (SDH) expression and activity, as well as increased hexokinase 2 (HK2) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), suggesting metabolic reprogramming from oxidative phosphorylation to glycolysis in a normal oxygen condition. The succinate supplement in cell cultures promoted intracellular succinate accumulation while stabilizing hypoxia inducible factor-1α (HIF-1α), leading to a state of pseudohypoxia. Moreover, we demonstrate that hypoxia-induced proliferation was G-protein-coupled receptor 91- (GPR91-) dependent, while exogenous succinate-elicited proliferation involved the GPR91-dependent and GPR91-independent pathway. In conclusion, the succinate supplement altered cell metabolism in hPDLCs, induced a pseudohypoxia condition, and enhanced proliferation, migration, and osteogenesis of mesenchymal stem cells in vitro.
Collapse
|
20
|
Zubillaga V, Alonso-Varona A, Fernandes SCM, Salaberria AM, Palomares T. Adipose-Derived Mesenchymal Stem Cell Chondrospheroids Cultured in Hypoxia and a 3D Porous Chitosan/Chitin Nanocrystal Scaffold as a Platform for Cartilage Tissue Engineering. Int J Mol Sci 2020; 21:E1004. [PMID: 32028724 PMCID: PMC7037297 DOI: 10.3390/ijms21031004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 01/06/2023] Open
Abstract
Articular cartilage degeneration is one of the most common causes of pain and disability in middle-aged and older people. Tissue engineering (TE) has shown great therapeutic promise for this condition. The design of cartilage regeneration constructs must take into account the specific characteristics of the cartilaginous matrix, as well as the avascular nature of cartilage and its cells' peculiar arrangement in isogenic groups. Keeping these factors in mind, we have designed a 3D porous scaffold based on genipin-crosslinked chitosan/chitin nanocrystals for spheroid chondral differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) induced in hypoxic conditions. First, we demonstrated that, under low oxygen conditions, the chondrospheroids obtained express cartilage-specific markers including collagen type II (COL2A1) and aggrecan, lacking expression of osteogenic differentiation marker collagen type I (COL1A2). These results were associated with an increased expression of hypoxia-inducible factor 1α, which positively directs COL2A1 and aggrecan expression. Finally, we determined the most suitable chondrogenic differentiation pattern when hASC spheroids were seeded in the 3D porous scaffold under hypoxia and obtained a chondral extracellular matrix with a high sulphated glycosaminoglycan content, which is characteristic of articular cartilage. These findings highlight the potential use of such templates in cartilage tissue engineering.
Collapse
Affiliation(s)
- Veronica Zubillaga
- Department of Cell Biology and Histology, Faculty of Medicine and Nursey, University of the Basque Country (UPV/EHU), B Sarriena s/n, 48940 Leioa, Spain;
| | - Ana Alonso-Varona
- Department of Cell Biology and Histology, Faculty of Medicine and Nursey, University of the Basque Country (UPV/EHU), B Sarriena s/n, 48940 Leioa, Spain;
| | - Susana C. M. Fernandes
- Institute of Analytical Sciences and Physico-chemistry for the Environment and Materials, University of Pau and Pays Adour, E2S UPPA, CNRS, 64600 Anglet, France;
| | - Asier M. Salaberria
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, Polytechnic School, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastian, Spain;
| | - Teodoro Palomares
- Department of Surgery, Radiology and Physic Medicine, Faculty of Medicine, University of the Basque Country (UPV/EHU), B Sarriena, s/n, 48940 Leioa, Spain
| |
Collapse
|
21
|
Li CL, Liu B, Wang ZY, Xie F, Qiao W, Cheng J, Kuang JY, Wang Y, Zhang MX, Liu DS. Salvianolic acid B improves myocardial function in diabetic cardiomyopathy by suppressing IGFBP3. J Mol Cell Cardiol 2020; 139:98-112. [PMID: 31982427 DOI: 10.1016/j.yjmcc.2020.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/24/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Salvianolic acid B (Sal B) is the representative component of phenolic acids derived from the dried root and rhizome of Salvia miltiorrhiza Bge. (Labiatae), which has been widely used for the treatment of cardiovascular and cerebrovascular diseases. However, the effect of Sal B on diabetic cardiomyopathy (DCM) is still unclear. METHODS Type 1 diabetes mellitus was induced in C57BL/6 J mice by streptozotocin (STZ) treatment, whereas meanwhile Salvianolic Acid B (Sal B (15 or 30 mg/kg/d) was intraperitoneally injected for 16 weeks. At the end of this period, cardiac function was assessed by echocardiography, and total collagen deposition was evaluated by Masson's trichrome and Picrosirius Red staining. Human umbilical vein endothelial cells exposed to hypoxia were used to investigate the effect of different doses of Sal B on angiogenesis and tube formation in vitro. Transcriptome sequencing was performed to identify potential targets of Sal B. RESULTS Sal B ameliorated left ventricular dysfunction and remodeling, and decreased collagen deposition in the heart of diabetic mice. Administration of Sal B increased the expression of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and VEGFA in a dose-dependent manner and promoted angiogenesis both in vivo and in vitro. Furthermore, Sal B reduced HG-induced insulin-like growth factor-binding protein 3 (IGFBP3) expression, induced the phosphorylation of extracellular signal-regulated protein kinase and protein kinase B (AKT) activities, enhanced cell proliferation, and activated VEGFR2/VEGFA signaling in endothelial cells. The underlying mechanisms involve SalB that enhances IGFBP3 promoter DNA methylation and induce nuclear translocation of IGFBP3 in HUVECs under hypoxia. CONCLUSIONS Sal B promoted angiogenesis and alleviated cardiac fibrosis and cardiac remodeling in DCM by suppressing IGFBP3.
Collapse
Affiliation(s)
- Chang-Ling Li
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhao-Yang Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Xie
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wen Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiang-Ying Kuang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Ying Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ming-Xiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - De-Shan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
22
|
Chen S, Tang Y, Liu Y, Zhang P, Lv L, Zhang X, Jia L, Zhou Y. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif 2019; 52:e12669. [PMID: 31380594 PMCID: PMC6797519 DOI: 10.1111/cpr.12669] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives The present study aimed to investigate whether exosomes derived from miR‐375‐overexpressing human adipose mesenchymal stem cells (hASCs) could enhance bone regeneration. Materials and Methods Exosomes enriched with miR‐375 (Exo [miR‐375]) were generated from hASCs stably overexpressing miR‐375 after lentiviral transfection and identified with transmission electron microscopy, nanosight and western blotting. The construction efficiency of Exo (miR‐375) was evaluated with qRT‐PCR and incubated with human bone marrow mesenchymal stem cells (hBMSCs) to optimize the effective dosage. Then, the osteogenic capability of Exo (miR‐375) was investigated with ALP and ARS assays. Furthermore, dual‐luciferase reporter assay and western blotting were conducted to reveal the underlying mechanism of miR‐375 in osteogenic regulation. Finally, Exo (miR‐375) were embedded with hydrogel and applied to a rat model of calvarial defect, and μ‐CT analysis and histological examination were conducted to evaluate the therapeutic effects of Exo (miR‐375) in bone regeneration. Results miR‐375 could be enriched in exosomes by overexpressing in the parent cells. Administration of Exo (miR‐375) at 50 μg/mL improved the osteogenic differentiation of hBMSCs. With miR‐375 absorbed by hBMSCs, insulin‐like growth factor binding protein 3 (IGFBP3) was inhibited by binding to its 3′UTR, and recombinant IGFBP3 protein reduced the osteogenic effects triggered by Exo (miR‐375). After incorporated with hydrogel, Exo (miR‐375) displayed a slow and controlled release, and further in vivo analysis demonstrated that Exo (miR‐375) enhanced the bone regenerative capacity in a rat model of calvarial defect. Conclusions Taken together, our study demonstrated that exosomes derived from miR‐375‐overexpressing hASCs promoted bone regeneration.
Collapse
Affiliation(s)
- Si Chen
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yiman Tang
- 4th Division, Peking University Hospital of Stomatology, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China
| | - Lingfei Jia
- National Clinical Research Center for Oral Diseases, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China
| |
Collapse
|
23
|
Zhou R, Mao Y, Xiong L, Li L. Integrated Transcriptome Analysis of microRNA and mRNA in Mouse Skin Derived Precursors (SKPs) and SKP Derived Fibroblast (SFBs) by RNA-Seq. Curr Genomics 2019; 20:49-60. [PMID: 31015791 PMCID: PMC6446482 DOI: 10.2174/1389202919666181012145416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/23/2018] [Accepted: 10/06/2018] [Indexed: 02/05/2023] Open
Abstract
Background: Skin-derived precursors (SKPs) display the characteristics of self-renewal and multilineage differentiation. Objective: The study aimed to explore the molecular mechanisms of mouse SKPs differentiation into SKP-derived fibroblasts (SFBs). Methods: We compared the microRNA (miRNA) profile in mouse SKPs and SFBs by RNA sequenc-ing. Real-time quantitative reverse transcription PCR (qRT-PCR) was performed to validate the miRNA expression. The integrated analysis of miRNA and mRNA expression data was performed to explore the potential crosstalk of miRNA-mRNA in SKP differentiation. Results: 207 differentially expressed miRNAs and 835 miRNA target genes in the gene list of integrated mRNA expression profiling were identified. Gene Ontology (GO) enrichment analysis revealed that cell differentiation and cell proliferation process were significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the target genes were significantly most enriched in the cytokine-cytokine receptor interaction, cancer pathways and axon guidance signaling pathway. The most upregulated and downregulated target genes were involved in the Wnt, Notch, cytokine-cytokine receptor interaction, TGF-β, p53 and apoptotic signaling pathway. The miRNA-mRNA regulatory net-works and 507 miRNA-mRNA pairs were constructed. Seven miRNAs (miR-486-3p, miR-504-5p, miR-149-3p, miR-31-5p, miR-484, miR-328-5p and miR-22-5p) and their target genes Wnt4, Dlx2, Se-ma4f, Kit, Kitl, Inpp5d, Igfbp3, Prdm16, Sfn, Irf6 and Clu were identified as miRNA-mRNA crosstalk pairs. Conclusion: These genes and signaling pathways might control SKPs proliferation and SKPs differen-tiation into SFBs during the process of SKPs differentiation, which might promote the application of SKPs in the clinical treatment of skin-related diseases by regulating SKPs proliferation and SKPs differ-entiation.
Collapse
Affiliation(s)
- Rongying Zhou
- 1Department of Dermatology, West China Hospital, Sichuan University, Chengdu610041, China; 2Department of Dermatology, Sichuan Academy of Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu610072, China
| | - Yujie Mao
- 1Department of Dermatology, West China Hospital, Sichuan University, Chengdu610041, China; 2Department of Dermatology, Sichuan Academy of Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu610072, China
| | - Lidan Xiong
- 1Department of Dermatology, West China Hospital, Sichuan University, Chengdu610041, China; 2Department of Dermatology, Sichuan Academy of Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu610072, China
| | - Li Li
- 1Department of Dermatology, West China Hospital, Sichuan University, Chengdu610041, China; 2Department of Dermatology, Sichuan Academy of Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu610072, China
| |
Collapse
|
24
|
Mieczkowska A, Schumacher A, Filipowicz N, Wardowska A, Zieliński M, Madanecki P, Nowicka E, Langa P, Deptuła M, Zieliński J, Kondej K, Renkielska A, Buckley PG, Crossman DK, Crowley MR, Czupryn A, Mucha P, Sachadyn P, Janus Ł, Skowron P, Rodziewicz-Motowidło S, Cichorek M, Pikuła M, Piotrowski A. Immunophenotyping and transcriptional profiling of in vitro cultured human adipose tissue derived stem cells. Sci Rep 2018; 8:11339. [PMID: 30054533 PMCID: PMC6063933 DOI: 10.1038/s41598-018-29477-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/10/2018] [Indexed: 02/07/2023] Open
Abstract
Adipose-derived stem cells (ASCs) have become an important research model in regenerative medicine. However, there are controversies regarding the impact of prolonged cell culture on the ASCs phenotype and their differentiation potential. Hence, we studied 10 clinical ASCs replicates from plastic and oncological surgery patients, in six-passage FBS supplemented cultures. We quantified basic mesenchymal cell surface marker transcripts and the encoded proteins after each passage. In parallel, we investigated the differentiation potential of ASCs into chondrocytes, osteocytes and adipocytes. We further determined the effects of FBS supplementation and subsequent deprivation on the whole transcriptome by comprehensive mRNA and miRNA sequencing. Our results show that ASCs maintain differentiation potential and consistent profile of key mesenchymal markers, with apparent expression of distinct isoforms, in long-term cultures. No significant differences were observed between plastic and oncological surgery cohorts. ASCs in FBS supplemented primary cultures are almost committed to mesenchymal lineages as they express key epithelial-mesenchymal transition genes including early mesenchymal markers. Furthermore, combined mRNA/miRNA expression profiling strongly supports a modulatory role for the miR-30 family in the commitment process to mesenchymal lineages. Finally, we propose improvements to existing qPCR based assays that address alternative isoform expression of mesenchymal markers.
Collapse
Affiliation(s)
| | - Adriana Schumacher
- Department of Embryology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | | | - Anna Wardowska
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Zieliński
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Madanecki
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Nowicka
- Department of Clinical Anatomy, Medical University of Gdansk, Gdansk, Poland
| | - Paulina Langa
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Milena Deptuła
- Department of Embryology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Zieliński
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Karolina Kondej
- Department of Plastic Surgery, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Renkielska
- Department of Plastic Surgery, Medical University of Gdansk, Gdansk, Poland
| | | | - David K Crossman
- Heflin Center for Genomic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael R Crowley
- Heflin Center for Genomic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Artur Czupryn
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Piotr Mucha
- Department of Biochemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdansk University of Technology, Gdansk, Poland
| | | | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Mirosława Cichorek
- Department of Embryology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Michał Pikuła
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland.
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland.
| | | |
Collapse
|
25
|
Dubey NK, Mishra VK, Dubey R, Deng YH, Tsai FC, Deng WP. Revisiting the Advances in Isolation, Characterization and Secretome of Adipose-Derived Stromal/Stem Cells. Int J Mol Sci 2018; 19:ijms19082200. [PMID: 30060511 PMCID: PMC6121360 DOI: 10.3390/ijms19082200] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/08/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) seems to be a promising regenerative therapeutic agent due to the minimally invasive approach of their harvest and multi-lineage differentiation potential. The harvested adipose tissues are further digested to extract stromal vascular fraction (SVF), which is cultured, and the anchorage-dependent cells are isolated in order to characterize their stemness, surface markers, and multi-differentiation potential. The differentiation potential of ASCs is directed through manipulating culture medium composition with an introduction of growth factors to obtain the desired cell type. ASCs have been widely studied for its regenerative therapeutic solution to neurologic, skin, wound, muscle, bone, and other disorders. These therapeutic outcomes of ASCs are achieved possibly via autocrine and paracrine effects of their secretome comprising of cytokines, extracellular proteins and RNAs. Therefore, secretome-derivatives might offer huge advantages over cells through their synthesis and storage for long-term use. When considering the therapeutic significance and future prospects of ASCs, this review summarizes the recent developments made in harvesting, isolation, and characterization. Furthermore, this article also provides a deeper insight into secretome of ASCs mediating regenerative efficacy.
Collapse
Affiliation(s)
- Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Viraj Krishna Mishra
- Applied Biotech Engineering Centre (ABEC), Department of Biotechnology, Ambala College of Engineering and Applied Research, Ambala 133101, India.
| | - Rajni Dubey
- Graduate Institute Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Yue-Hua Deng
- Stem Cell Research Center, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Life Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Feng-Chou Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Win-Ping Deng
- Stem Cell Research Center, Taipei Medical University, Taipei 11031, Taiwan.
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Basic medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| |
Collapse
|
26
|
Clemmons DR. Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. J Mol Endocrinol 2018; 61:T139-T169. [PMID: 29563157 DOI: 10.1530/jme-18-0016] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
The IGF-binding protein family contains six members that share significant structural homology. Their principal function is to regulate the actions of IGF1 and IGF2. These proteins are present in plasma and extracellular fluids and regulate access of both IGF1 and II to the type I IGF receptor. Additionally, they have functions that are independent of their ability to bind IGFs. Each protein is regulated independently of IGF1 and IGF2, and this provides an important mechanism by which other hormones and physiologic variables can regulate IGF actions indirectly. Several members of the family are sensitive to changes in intermediary metabolism. Specifically the presence of obesity/insulin resistance can significantly alter the expression of these proteins. Similarly changes in nutrition or catabolism can alter their synthesis and degradation. Multiple hormones such as glucocorticoids, androgens, estrogen and insulin regulate IGFBP synthesis and bioavailability. In addition to their ability to regulate IGF access to receptors these proteins can bind to distinct cell surface proteins or proteins in extracellular matrix and several cellular functions are influenced by these interactions. IGFBPs can be transported intracellularly and interact with nuclear proteins to alter cellular physiology. In pathophysiologic states, there is significant dysregulation between the changes in IGFBP synthesis and bioavailability and changes in IGF1 and IGF2. These discordant changes can lead to marked alterations in IGF action. Although binding protein physiology and pathophysiology are complex, experimental results have provided an important avenue for understanding how IGF actions are regulated in a variety of physiologic and pathophysiologic conditions.
Collapse
Affiliation(s)
- David R Clemmons
- Department of MedicineUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
27
|
Alhodhodi A, Alkharobi H, Humphries M, Alkhafaji H, El-Gendy R, Feichtinger G, Speirs V, Beattie J. Oestrogen receptor β (ERβ) regulates osteogenic differentiation of human dental pulp cells. J Steroid Biochem Mol Biol 2017; 174:296-302. [PMID: 29031686 DOI: 10.1016/j.jsbmb.2017.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/06/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
Estradiol (E2) has many important actions in the tissues of the oral cavity. Disruption of E2 metabolism or alterations in systemic E2 concentrations have been associated with compromised periodontal health. In many instances such changes occur secondarily to the well characterised effects of E2 on bone physiology -especially maintenance of bone mineral density (BMD). Despite these important epidemiological findings, little is known about the mechanism of action of E2 in oral tissues or the expression and function of oestrogen receptor (ER) isoforms in these tissues. We have isolated human dental pulp cells (hDPCs), which are able to differentiate towards an osteogenic lineage under appropriate culture conditions. We show that hDPCs express ERα, ERβ1, ERβ2 and the cell membrane associated G protein-coupled ER (GPR30). Following osteogenic differentiation of hDPCs, ERβ1 and ERβ2 were up regulated approximately 50-fold while ERα and GPR30 were down regulated, but to a much lesser degree (approximately 2-fold). ERβ was characterised as a 59kDa protein following Western blot analysis with validated antibodies and ERβ was detected in both nuclear and cytoplasmic cell compartments following immunofluorescence (IF) and immunohistochemical (IHC) analysis of cultured cells. Furthermore isoform specific antibodies detected both ERβ1 and ERβ2 in DPC cultures and in situ analysis of ERβ expression in decalcified tooth/pulp sections identified the odontoblast layer of pulp cells juxtaposed to the tooth enamel as strongly reactive for both ERβ isoforms. Finally the use of isoform specific agonists identified ERβ as the main receptor responsible for the pro-osteogenic effect of oestrogenic hormones in this tissue. Our data suggest that oestrogens stimulated osteogenic differentiation in hDPCs and that this action is mediated principally through the ERβ isoform. These findings may have important consequences for the investigation and treatment of oral and periodontal pathologies which are associated with imbalances in oestrogen concentrations and action.
Collapse
Affiliation(s)
- Aishah Alhodhodi
- Department of Oral Biology, Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, UK
| | - Hanaa Alkharobi
- Department of Oral Biology, Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, UK
| | | | - Hasanain Alkhafaji
- Department of Oral Biology, Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, UK
| | - Reem El-Gendy
- Department of Oral Biology, Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, UK; Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Georg Feichtinger
- Department of Oral Biology, Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, UK
| | - Valerie Speirs
- Leeds Institute of Cancer and Pathology, University of Leeds, UK.
| | - James Beattie
- Department of Oral Biology, Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, UK.
| |
Collapse
|
28
|
Regulation of Osteogenic Differentiation of Placental-Derived Mesenchymal Stem Cells by Insulin-Like Growth Factors and Low Oxygen Tension. Stem Cells Int 2017; 2017:4576327. [PMID: 29138637 PMCID: PMC5613461 DOI: 10.1155/2017/4576327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/20/2017] [Indexed: 01/20/2023] Open
Abstract
Placental mesenchymal stem cells (PMSCs) are multipotent cells that can differentiate in vitro to multiple lineages, including bone. Insulin-like growth factors (IGFs, IGF-1 and IGF-2) participate in maintaining growth, survival, and differentiation of many stem cells, including osteoprogenitors. Low oxygen tension (PO2) can maintain stem cell multipotency and impede osteogenic differentiation. In this study, we investigated whether PMSC osteogenic differentiation is influenced by low PO2 and by IGFs. Our results indicated that low PO2 decreased osteogenic markers RUNX2 and OPN; however, re-exposure to higher oxygen tension (room air) restored differentiation. IGFs, especially IGF-1, triggered an earlier expression of RUNX2 and enhanced OPN and mineralization. RUNX2 was phosphorylated in room air and augmented by IGFs. IGF-1 receptor (IGF-1R) was increased in low PO2 and reduced by IGFs, while insulin receptor (IR) was increased in differentiating PMSCs and enhanced by IGF-1. Low PO2 and IGFs maintained higher IR-A which was switched to IR-B in room air. PI3K/AKT was required for osteogenic differentiation, while MEK/ERK was required to repress an RUNX2 and OPN increase in low PO2. Therefore, IGFs, specifically IGF-1, trigger the earlier onset of osteogenic differentiation in room air, whereas, reversibly, low PO2 impedes complete differentiation by maintaining higher multipotency and lower differentiation markers.
Collapse
|