1
|
Sumran G, Sharma M, Aggarwal R. Insight into the therapeutic potential of pyrazole-thiazole hybrids: A comprehensive review. Arch Pharm (Weinheim) 2024:e2400576. [PMID: 39367561 DOI: 10.1002/ardp.202400576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
Several pyrazole-thiazole hybrids featuring two potentially bioactive pharmacophores with or without linker have been synthesized using the molecular hybridization approach as target structures by medicinal chemists to modulate multiple drug targets simultaneously. The presented review aims to provide an overview of the diversified and wide array of pharmacological activities of these hybrids bestowing anticancer, antifungal, antibacterial, analgesic, anti-inflammatory, antioxidant, antitubercular, antiviral, antiparasitic, and miscellaneous activities. The structure-activity relationships and potential mechanism of action are also reviewed to shed light on the development of more effective and biotargeted candidates. This review focuses on the latest research advances in the biological profile of pyrazole-thiazole hybrids reported from 2015 to the present, providing medicinal researchers with a comprehensive platform to rationally design and develop more promising pyrazole-thiazole hybrids.
Collapse
Affiliation(s)
- Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, Haryana, India
| | - Manisha Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- CSIR-National Institute of Science Communication and Policy Research, New Delhi, India
| |
Collapse
|
2
|
Hussein A, Gomha SM, El-Ghany NAA, Zaki MEA, Farag B, Al-Hussain SA, Sayed AR, Zaki YH, Mohamed NA. Green Biocatalyst for Ultrasound-Assisted Thiazole Derivatives: Synthesis, Antibacterial Evaluation, and Docking Analysis. ACS OMEGA 2024; 9:13666-13679. [PMID: 38559991 PMCID: PMC10976384 DOI: 10.1021/acsomega.3c07785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
The catalytic activity of chitosan (Cs) and grafted Cs led to the preparation of terephthalohydrazide Cs Schiff's base hydrogel (TCsSB), which was then investigated as an eco-friendly biocatalyst for synthesizing novel thiazole derivatives. TCsSB exhibited greater surface area and higher thermal stability compared to Cs, making it a promising eco-friendly biocatalyst. We synthesized two novel series of thiazoles via the reaction of 2-(2-oxo-1,2-diphenylethylidene) hydrazine-1-carbothioamide with various hydrazonoyl chlorides and 2-bromo-1-arylethan-1-ones, employing ultrasonic irradiation and using TCsSB as a catalyst. A comparative study between Cs and TCsSB revealed higher yields than TCsSB. The methodology offered advantages such as mild reaction conditions, quick reaction times, and high yields. TCsSB could be reused multiple times without a significant loss of potency. The chemical structures of the newly synthesized compounds were verified through IR, 1H NMR, 13C NMR, and MS analyses. Six synthesized compounds were assessed for their in vitro antibacterial effectiveness by establishing the minimum inhibitory concentration against four distinct bacterial strains. The docking analyses revealed favorable binding scores against several amino acids within the selected protein (PDB Code-1MBT) for these compounds, with compound 4c exhibiting particularly noteworthy binding properties. Additionally, the in silico ADME parameter estimation for all compounds indicated favorable pharmacological properties for these compounds.
Collapse
Affiliation(s)
- Ahmed
M. Hussein
- Chemistry
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 62511, Egypt
- Chemistry
Department, College of Science and Humanities—Al Quwaiiyah, Shaqra University, Shaqra 11911, Saudi Arabia
| | - Sobhi M. Gomha
- Department
of Chemistry, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
| | | | - Magdi E. A. Zaki
- Department
of Chemistry, Faculty of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Basant Farag
- Department
of Chemistry, Faculty of Science, Zagazig
University, Zagazig 44519, Egypt
| | - Sami A. Al-Hussain
- Department
of Chemistry, Faculty of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdelwahed R. Sayed
- Chemistry
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 62511, Egypt
| | - Yasser H. Zaki
- Chemistry
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 62511, Egypt
| | - Nadia A. Mohamed
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
- Department
of Chemistry, College of Science, Qassim
University, Buraidah 51452, Saudi Arabia
| |
Collapse
|
3
|
Al-Qadsy I, Saeed WS, Al-Owais AA, Semlali A, Alrabie A, Al-Faqeeh LAS, ALSaeedy M, Al-Adhreai A, Al-Odayni AB, Farooqui M. Antimicrobial Activity of Novel Ni(II) and Zn(II) Complexes with (E)-2-((5-Bromothiazol-2-yl)imino)methyl)phenol Ligand: Synthesis, Characterization and Molecular Docking Studies. Antibiotics (Basel) 2023; 12:1634. [PMID: 37998835 PMCID: PMC10669075 DOI: 10.3390/antibiotics12111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
In order to address the challenges associated with antibiotic resistance by bacteria, two new complexes, Ni(II) and Zn(II), have been synthesized using the conventional method based on Schiff base ligand (E)-2-((5-bromothiazol-2-yl) imino) methyl) phenol. The Schiff base ligand (HL) was synthesized using salicylaldehyde and 5-(4-bromophenyl)thiazol-2-amine in both traditional and efficient, ecologically friendly, microwave-assisted procedures. The ligand and its complexes were evaluated by elemental analyses, FTIR spectroscopy, UV-Vis spectroscopy, nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA) and magnetic susceptibility. The ligand and its complexes were tested for antibacterial activity against three Gram-positive bacteria (Staphylococcus aureus ATCC 25923, Methicillin-resistant Staphylococcus aureus ATCC 43300 and Enterococcus faecalis ATCC 29212) and three Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Klebsiella pneumoniae ATCC 700603). The findings demonstrate the potent activity of the ligand and its complexes against selective bacteria but the Ni(II) complex with MIC values ranging from 1.95 to 7.81 µg/mL outperformed all other compounds, including the widely used antibiotic Streptomycin. Furthermore, the docking study provided evidence supporting the validity of the antimicrobial results, since the Ni complex showed superior binding affinity against to E. coli NAD synthetase, which had a docking score (-7.61 kcal/mol).
Collapse
Affiliation(s)
- Inas Al-Qadsy
- Chemistry Department, Maulana Azad College of Arts, Science and Commerce, Aurangabad 431001, India
| | - Waseem Sharaf Saeed
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia; (W.S.S.)
| | - Ahmad Abdulaziz Al-Owais
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecin Dentaire, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Ali Alrabie
- Chemistry Department, Maulana Azad College of Arts, Science and Commerce, Aurangabad 431001, India
| | | | - Mohammed ALSaeedy
- Chemistry Department, Maulana Azad College of Arts, Science and Commerce, Aurangabad 431001, India
| | - Arwa Al-Adhreai
- Chemistry Department, Maulana Azad College of Arts, Science and Commerce, Aurangabad 431001, India
| | - Abdel-Basit Al-Odayni
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia; (W.S.S.)
| | - Mazahar Farooqui
- Chemistry Department, Maulana Azad College of Arts, Science and Commerce, Aurangabad 431001, India
| |
Collapse
|
4
|
Patan A, Aanandhi M V, P G. Molecular dynamics simulation approach of hybrid chalcone-thiazole complex derivatives for DNA gyrase B inhibition: lead generation. RSC Adv 2023; 13:24291-24308. [PMID: 37583661 PMCID: PMC10424056 DOI: 10.1039/d3ra00732d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Compounds bearing thiazole and chalcone groups have been reported to be excellent leads for antibacterial, antitubercular and anticancer activities. In view of this, we performed quantitative structure-activity relationship studies using QSARINS for dataset preparation and for developing validated QSAR models that can predict novel series of thiazole-chalcone hybrids and further evaluate them for bioactivities. The molecular descriptors AATS8i, AVP-1, MoRSEE17 and GATSe7 were found to be active in predicting the structure-activity relationship. Molecular docking and dynamics simulation studies of the developed leads have shown insights into structural analysis. Furthermore, computational studies using AutoDock and Desmond predicted the key binding interactions responsible for the activity and the SwissADME tool computed the in silico drug likeliness properties. The lead compound 178 generated through this study creates a route for the optimization and development of novel drugs against tuberculosis infections. RMSD, RMSF, RoG, H-bond and SASA analysis confirmed the stable binding of compound 178 with the 6J90 structure. In addition, MM-PBSA and MM-GBSA also confirm the docking results. We propose the designed compound 178 as the best theoretical lead, which may further be experimentally studied for selective inhibition.
Collapse
Affiliation(s)
- Afroz Patan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, VISTAS Chennai Tamil Nadu India
| | - Vijey Aanandhi M
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, VISTAS Chennai Tamil Nadu India
| | - Gopinath P
- Department of Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM University Hyderabad Telangana India
| |
Collapse
|
5
|
Pereira R, Silva AMS, Ribeiro D, Silva VLM, Fernandes E. Bis-chalcones: A review of synthetic methodologies and anti-inflammatory effects. Eur J Med Chem 2023; 252:115280. [PMID: 36966653 DOI: 10.1016/j.ejmech.2023.115280] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Chalcones are bioactive molecules of natural and synthetic sources, whose physicochemical properties, reactivity, and biological activities are well-known among the scientific community. However, there are many molecules strictly related to chalcones with significantly less recognition like bis-chalcones. Several studies indicated that bis-chalcones have advantages over chalcones in specific bioactivities like anti-inflammatory activity. This review article describes the chemical structure and chemical properties of bis-chalcones, as well as the methods reported in the literature for the synthesis of these compounds highlighting the most recent developments. Finally, the anti-inflammatory activity of bis-chalcones is described, emphasizing the active structures found in literature and their mechanisms of action.
Collapse
Affiliation(s)
- Rui Pereira
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniela Ribeiro
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; Faculty of Agrarian Sciences and Environment, University of the Azores, 9700-042, Angra Do Heroísmo, Açores, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Eduarda Fernandes
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
6
|
Ammar YA, Micky JA, Aboul-Magd DS, Abd El-Hafez SMA, Hessein SA, Ali AM, Ragab A. Development and radiosterilization of new hydrazono-quinoline hybrids as DNA gyrase and topoisomerase IV inhibitors: Antimicrobial and hemolytic activities against uropathogenic isolates with molecular docking study. Chem Biol Drug Des 2023; 101:245-270. [PMID: 36305722 DOI: 10.1111/cbdd.14154] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 01/14/2023]
Abstract
This study aimed to synthesize new potent quinoline derivatives based on hydrazone moieties and evaluate their antimicrobial activity. The newly synthesized hydrazono-quinoline derivatives 2, 5a, 9, and 10b showed the highest antimicrobial activity with MIC values ≤1.0 μg/ml against bacteria and ≤8.0 μg/ml against the fungi. Further, these derivatives exhibited bactericidal and fungicidal effects with MBC/MIC and MFC/MIC ratio ≤4. Surprisingly, the most active compounds displayed good inhibition to biofilm formation with MBEC values ranging between (40.0 ± 10.0 - 230.0 ± 31.0) and (67.0 ± 24.0 - 347.0 ± 15.0) μg/ml against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. The hemolytic assays confirmed that the hydrazono-quinoline derivatives are non-toxic with low % lysis values ranging from 4.62% to 14.4% at a 1.0 mg/ml concentration. Besides, compound 5a exhibited the lowest hemolytic activity value of ~4.62%. Furthermore, the study suggests that the hydrazono-quinoline analogs exert their antibacterial activity as dual inhibitors for DNA gyrase and DNA topoisomerase IV enzymes with IC50 values ranging between (4.56 ± 0.3 - 21.67 ± 0.45) and (6.77 ± 0.4 - 20.41 ± 0.32) μM, respectively. Additionally, the recent work advocated that compound 5a showed the reference SAL at the ɣ-radiation dose of 10.0 kGy in the sterilization process without affecting its chemical structure. Finally, the in silico drug-likeness, toxicity properties, and molecular docking simulation were performed. Besides, the result exhibited good oral-bioavailability, lower toxicity prediction, and lower binding energy with good binding mode rather than the positive control.
Collapse
Affiliation(s)
- Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Jehan A Micky
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Sondos M A Abd El-Hafez
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Sadia A Hessein
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Abeer M Ali
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
7
|
Gomha SM, Riyadh SM, Abdellattif MH, Abolibda TZ, Abdel-aziz HM, Nayl AA, Elgohary AM, Elfiky AA. Synthesis and In Silico Study of Some New bis-[1,3,4]thiadiazolimines and bis-Thiazolimines as Potential Inhibitors for SARS-CoV-2 Main Protease. Curr Issues Mol Biol 2022; 44:4540-4556. [PMID: 36286026 PMCID: PMC9600414 DOI: 10.3390/cimb44100311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022] Open
Abstract
A novel series of bis-[1,3,4]thiadiazolimines, and bis-thiazolimines, with alkyl linker, were synthesized through general routes from cyclization of 1,1'-(hexane-1,6-diyl)bis(3-phenylthiourea) and hydrazonoyl halides or α-haloketones, respectively. Docking studies were applied to test the binding affinity of the synthesized products against the Mpro of SARS-CoV-2. The best compound, 5h, has average binding energy (-7.50 ± 0.58 kcal/mol) better than that of the positive controls O6K and N3 (-7.36 ± 0.34 and -6.36 ± 0.31 kcal/mol). Additionally, the docking poses (H-bonds and hydrophobic contacts) of the tested compounds against the Mpro using the PLIP web server were analyzed.
Collapse
Affiliation(s)
- Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Sayed M. Riyadh
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tariq Z. Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Hassan M. Abdel-aziz
- Department of Chemistry, Faculty of Science, Bani Suef University, Bani Suef 62521, Egypt
| | - AbdElAziz. A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
| | - Alaa M. Elgohary
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Abdo A. Elfiky
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
8
|
Synthesis, Molecular Docking Study, and Cytotoxicity Evaluation of Some Novel 1,3,4-Thiadiazole as Well as 1,3-Thiazole Derivatives Bearing a Pyridine Moiety. Molecules 2022; 27:molecules27196368. [PMID: 36234908 PMCID: PMC9572991 DOI: 10.3390/molecules27196368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Pyridine, 1,3,4-thiadiazole, and 1,3-thiazole derivatives have various biological activities, such as antimicrobial, analgesic, anticonvulsant, and antitubercular, as well as other anticipated biological properties, including anticancer activity. The starting 1-(3-cyano-4,6-dimethyl-2-oxopyridin-1(2H)-yl)-3-phenylthiourea (2) was prepared and reacted with various hydrazonoyl halides 3a–h, α-haloketones 5a–d, 3-chloropentane-2,4-dione 7a and ethyl 2-chloro-3-oxobutanoate 7b, which afforded the 3-aryl-5-substituted 1,3,4-thiadiazoles 4a–h, 3-phenyl-4-arylthiazoles 6a–d and the 4-methyl-3- phenyl-5-substituted thiazoles 8a,b, respectively. The structures of the synthesized products were confirmed by spectral data. All of the compounds also showed remarkable anticancer activity against the cell line of human colon carcinoma (HTC-116) as well as hepatocellular carcinoma (HepG-2) compared with the Harmine as a reference under in vitro condition. 1,3,4-Thiadiazole 4h was found to be most promising and an excellent performer against both cancer cell lines (IC50 = 2.03 ± 0.72 and 2.17 ± 0.83 µM, respectively), better than the reference drug (IC50 = 2.40 ± 0.12 and 2.54 ± 0.82 µM, respectively). In order to check the binding modes of the above thiadiazole derivatives, molecular docking studies were performed that established a binding site with EGFR TK.
Collapse
|
9
|
Al-Jumaili MHA, Hamad AA, Hashem HE, Hussein AD, Muhaidi MJ, Ahmed MA, ALBANAA AHA, Siddique F, Bakr EA. Comprehensive Review on the Bis–heterocyclic Compounds and their Anticancer Efficacy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Abu-Melha S, Edrees MM, Kheder NA, Saad AM, Riyadh SM, Abdel-Aziz MM, Abdelmoaz MA, Gomha SM. Synthesis and Anti-Tubercular (Tb) Evaluation of Bis[4-Ethylidineamino[1,2,4]Triazole-3-Thiol] Tethered by 1,4-Dihydropyridine. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Gomha SM, Muhammad ZA, Al-Hussain SA, Zaki MEA, Abdel-aziz HM. Synthesis, Characterization, and Antimicrobial Evaluation of Some New 1,4-Dihydropyridine Hybrid with 1,3,4-Thiadiazole. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1804410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara, Saudi Arabia
| | - Zeinab A. Muhammad
- National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | | |
Collapse
|
12
|
Mahmoud HK, Sayed AR, Abdel-Aziz MM, Gomha SM. Synthesis of New Thiazole Clubbed Imidazo[2,1-b]thiazole Hybrid as Antimycobacterial Agents. Med Chem 2022; 18:1100-1108. [DOI: 10.2174/1573406418666220413095854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/10/2021] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
Abstract
Aims:
The study aims to synthesize bioactive hybrid pharmacophores (thiazole ring and imidazo[2,1-b]thiazole system) by incorporating them to one biological assessment molecular system.
Background:
Literature survey revealed that various imidazo[2,1-b]thiazoles, thiazoles and hydrazones have powerful anti-mycobacterial activity.
Objective:
This study demonstrates the effectiveness of molecular hybridization and the scope for imidazo[2,1-b]thiazole-hydrazone-thiazoles to develop as promising anti-mycobacterial agents.
Method:
Several imidazo[2,1-b]thiazole–hydrazine-thiazoles 5a-g, 7a,b, 9a,b, 11a,b, 13, and 15a,b were generated using a molecular hybridization strategy and assessed against Mycobacterium tuberculosis (ATCC 25618) for their in vitro antituberculous activity.
Result:
Derivative 7b (MIC = 0.98 μg/mL) has shown the most promising anti-mycobacterial activity among the series tested. Brief structure-activity relationship studies found that the thiazole of chlorophenyl or pyridine or coumarin had a significant relation with the anti-mycobacterial activity.
Conclusion:
Promising anti-mycobacterial activity of compound 7b compared with reference drug suggests that this compound may contribute as a lead compound in search of new potential anti-mycobacterial agents.
Collapse
Affiliation(s)
- Huda K. Mahmoud
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| | - Abdelwahed R. Sayed
- Department of Chemistry, Faculty of Science, KFU, Hofuf, Saudi Arabia
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-suef, Egypt
| | - Marwa M. Abdel-Aziz
- Regional Center for Mycology and Biotechnology at Al-Azhar University, Egypt
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| |
Collapse
|
13
|
Çakmak Ş, Koşar Kırca B, Veyisoğlu A, Yakan H, Ersanlı CC, Kütük H. Experimental and theoretical investigations on a furan-2-carboxamide-bearing thiazole: synthesis, molecular characterization by IR/NMR/XRD, electronic characterization by DFT, Hirshfeld surface analysis and biological activity. ACTA CRYSTALLOGRAPHICA SECTION C STRUCTURAL CHEMISTRY 2022; 78:201-211. [DOI: 10.1107/s2053229622002066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/21/2022] [Indexed: 11/10/2022]
Abstract
A thiazole-based heterocyclic amide, namely, N-(thiazol-2-yl)furan-2-carboxamide, C8H6N2O2S, was synthesized and investigated for its antimicrobial activity. The structure was characterized by elemental analysis and IR, 1H NMR, and 13C NMR spectroscopy. The molecular and electronic structures were investigated experimentally by single-crystal X-ray diffraction (XRD) and theoretically by density functional theory (DFT) modelling. The compound crystallized in the monoclinic space group P21/n and the asymmetric unit contains two symmetrically independent molecules. Several noncovalent interactions were recorded by XRD and analysed with Hirshfeld surface analysis (HSA) calculations. Natural bond orbital, molecular electrostatic potential, second-order nonlinear optical and thermodynamic property analyses were also carried out using the DFT/B3LYP method. The title compound was evaluated for antimicrobial activity against eight microorganisms consisting of Gram-negative bacteria, Gram-positive bacteria and fungi. The compound showed good antimicrobial activity against the eight tested microorganisms. This suggests that the compound merits further study for potential pharmacological and medical applications.
Collapse
|
14
|
Tang BD, Zhang JY, Ma HX, Wang N, An X, Li GM, Zhou Z. SYNTHESIS, CRYSTAL STRUCTURE, AND DFT STUDY OF 1-(PYRROLIDIN-1- YL-METHYL)-4-(THIOPHEN-2-YL-METHYL)- [1,2,4]TRIAZOLO[4,3-a]QUINAZOLIN-5(4H)-ONE. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Krawczyk P, Kula S, Seklecka K, Łączkowski KZ. Synthesis, electrochemical, optical and biological properties of new carbazole derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120497. [PMID: 34695676 DOI: 10.1016/j.saa.2021.120497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Carbazole skeleton is the key structural motif of many biologically active compounds including synthetic and natural products. Based on the (E)-2-(2-(4-9H-carbazol-9-yl)benzylidene) hydrazinyl)thiazole as skeleton, three novel carbazole dyes were synthesized. The scientific analysis includes the effect of changing the strength of the activating substituents and their exchange for the deactivating substituent on the chemical and biological properties. The presented research showed a significant influence of the CH3, OCH3 and CH2COOC2H5 groups on the spectral properties of the tested derivatives. Their significant influence is also visible in electrochemical, nonlinear-optic and biological properties. The study also included the analysis of the use of the presented derivatives as potential fluorescent probes for in vivo and in vitro tests. Quantum-chemical calculations complement the conducted experiments.
Collapse
Affiliation(s)
- Przemysław Krawczyk
- Nicolaus Copernicus University, Collegium Medicum, Faculty of Pharmacy, Department of Physical Chemistry, Kurpińskiego 5, 85-950 Bydgoszcz, Poland.
| | - Sławomir Kula
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9 St., 40-007 Katowice, Poland
| | - Klaudia Seklecka
- Nicolaus Copernicus University, Collegium Medicum, Faculty of Pharmacy, Department of Chemical Technology and Pharmaceuticals, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Krzysztof Z Łączkowski
- Nicolaus Copernicus University, Collegium Medicum, Faculty of Pharmacy, Department of Chemical Technology and Pharmaceuticals, Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
16
|
Synthesis and biological evaluation of a new chalconate Co (II/III) complex with cytotoxic activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Pei T, Zhang X, Yang Z, Ke Z, Shi Q, Mao Q, Gong S, Zeng H, Xu F, Xu D. Synthesis and anticancer activity of [1,2,4] triazole [4,3-b] [1,2,4,5] tetrazine derivatives. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2033743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tianyun Pei
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of Pharmacy, Changzhou University, Changzhou, P.R. China
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Xuanhe Zhang
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Zhenzhen Yang
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Zhonglu Ke
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Qingsong Shi
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Qingqing Mao
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Shunze Gong
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Hanwei Zeng
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Feng Xu
- Biopharmaceutical Research and Development Centre, Taizhou Vocational & Technical College, Taizhou, P.R. China
| | - Defeng Xu
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of Pharmacy, Changzhou University, Changzhou, P.R. China
| |
Collapse
|
18
|
Mahmoud HK, Abdelhady HA, Elaasser MM, Hassain DZH, Gomha SM. Microwave-Assisted One-Pot Three Component Synthesis of Some Thiazolyl(Hydrazonoethyl)Thiazoles as Potential Anti-Breast Cancer Agents. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1998146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Huda K. Mahmoud
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| | - Hyam A. Abdelhady
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| | - Mahmoud M. Elaasser
- Regional center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Doaa Z. H. Hassain
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Al-Madinah, Al-Munawwarah, Saudi Arabia
| |
Collapse
|
19
|
Kassab RM, Gomha SM, Al-Hussain SA, Abo Dena AS, Abdel-Aziz MM, Zaki ME, Muhammad ZA. Synthesis and In-silico Simulation of Some New Bis-thiazole Derivatives and Their Preliminary Antimicrobial Profile: Investigation of Hydrazonoyl Chloride Addition to Hydroxy-Functionalized Bis-carbazones. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Jadhav PM, Kantevari S, Tekale AB, Bhosale SV, Pawar RP, Tekale SU. A review on biological and medicinal significance of thiazoles. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1945601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | - Atam B. Tekale
- Department of Chemistry, Shri Shivaji College, Parbhani, India
| | | | - Rajendra P. Pawar
- Department of Chemistry, Shiv Chhatrapati College, Aurangabad, India
| | | |
Collapse
|
21
|
Biernasiuk A, Berecka-Rycerz A, Gumieniczek A, Malm M, Łączkowski KZ, Szymańska J, Malm A. The newly synthesized thiazole derivatives as potential antifungal compounds against Candida albicans. Appl Microbiol Biotechnol 2021; 105:6355-6367. [PMID: 34410437 PMCID: PMC8374424 DOI: 10.1007/s00253-021-11477-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/19/2023]
Abstract
Abstract Recently, the occurrence of candidiasis has increased dramatically, especially in immunocompromised patients. Additionally, their treatment is often ineffective due to the resistance of yeasts to antimycotics. Therefore, there is a need to search for new antifungals. A series of nine newly synthesized thiazole derivatives containing the cyclopropane system, showing promising activity against Candida spp., has been further investigated. We decided to verify their antifungal activity towards clinical Candida albicans isolated from the oral cavity of patients with hematological malignancies and investigate the mode of action on fungal cell, the effect of combination with the selected antimycotics, toxicity to erythrocytes, and lipophilicity. These studies were performed by the broth microdilution method, test with sorbitol and ergosterol, checkerboard technique, erythrocyte lysis assay, and reversed phase thin-layer chromatography, respectively. All derivatives showed very strong activity (similar and even higher than nystatin) against all C. albicans isolates with minimal inhibitory concentration (MIC) = 0.008–7.81 µg/mL Their mechanism of action may be related to action within the fungal cell wall structure and/or within the cell membrane. The interactions between the derivatives and the selected antimycotics (nystatin, chlorhexidine, and thymol) showed additive effect only in the case of combination some of them and thymol. The erythrocyte lysis assay confirmed the low cytotoxicity of these compounds as compared to nystatin. The high lipophilicity of the derivatives was related with their high antifungal activity. The present studies confirm that the studied thiazole derivatives containing the cyclopropane system appear to be a very promising group of compounds in treatment of infections caused by C. albicans. However, this requires further studies in vivo. Key points • The newly thiazoles showed high antifungal activity and some of them — additive effect in combination with thymol. • Their mode of action may be related with the influence on the structure of the fungal cell wall and/or the cell membrane. • The low cytotoxicity against erythrocytes and high lipophilicity of these derivatives are their additional good properties. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11477-7.
Collapse
Affiliation(s)
- Anna Biernasiuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland.
| | - Anna Berecka-Rycerz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Anna Gumieniczek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Maria Malm
- Department of Medicinal Informatics and Statistics with E-Learning Lab, Faculty of Health Sciences, Medical University of Lublin, Jaczewskiego 4, Lublin, 20-090, Poland
| | - Krzysztof Z Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089, Bydgoszcz, Poland
| | - Jolanta Szymańska
- Department of Integrated Paediatric Dentistry, Chair of Integrated Dentistry, Faculty of Medical Dentistry, Medical University of Lublin, Lubartowska 58, 20-94, Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| |
Collapse
|
22
|
Biernasiuk A, Banasiewicz A, Masłyk M, Martyna A, Janeczko M, Baranowska-Łączkowska A, Malm A, Łączkowski KZ. Synthesis and Physicochemical Characterization of Novel Dicyclopropyl-Thiazole Compounds as Nontoxic and Promising Antifungals. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3500. [PMID: 34201678 PMCID: PMC8269541 DOI: 10.3390/ma14133500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
There is a need to search for new antifungals, especially for the treatment of the invasive Candida infections, caused mainly by C. albicans. These infections are steadily increasing at an alarming rate, mostly among immunocompromised patients. The newly synthesized compounds (3a-3k) were characterized by physicochemical parameters and investigated for antimicrobial activity using the microdilution broth method to estimate minimal inhibitory concentration (MIC). Additionally, their antibiofilm activity and mode of action together with the effect on the membrane permeability in C. albicans were investigated. Biofilm biomass and its metabolic activity were quantitatively measured using crystal violet (CV) staining and tetrazolium salt (XTT) reduction assay. The cytotoxic effect on normal human lung fibroblasts and haemolytic effect were also evaluated. The results showed differential activity of the compounds against yeasts (MIC = 0.24-500 µg/mL) and bacteria (MIC = 125-1000 µg/mL). Most compounds possessed strong antifungal activity (MIC = 0.24-7.81 µg/mL). The compounds 3b, 3c and 3e, showed no inhibitory (at 1/2 × MIC) and eradication (at 8 × MIC) effect on C. albicans biofilm. Only slight decrease in the biofilm metabolic activity was observed for compound 3b. Moreover, the studied compounds increased the permeability of the membrane/cell wall of C. albicans and their mode of action may be related to action within the fungal cell wall structure and/or within the cell membrane. It is worth noting that the compounds had no cytotoxicity effect on pulmonary fibroblasts and erythrocytes at concentrations showing anticandidal activity. The present studies in vitro confirm that these derivatives appear to be a very promising group of antifungals for further preclinical studies.
Collapse
Affiliation(s)
- Anna Biernasiuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Anna Banasiewicz
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (A.B.); (K.Z.Ł.)
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland; (M.M.); (A.M.); (M.J.)
| | - Aleksandra Martyna
- Department of Molecular Biology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland; (M.M.); (A.M.); (M.J.)
| | - Monika Janeczko
- Department of Molecular Biology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland; (M.M.); (A.M.); (M.J.)
| | | | - Anna Malm
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (A.B.); (K.Z.Ł.)
| |
Collapse
|
23
|
Mishra R, Kumar N, Mishra I, Sachan N. A Review on Anticancer Activities of Thiophene and Its Analogs. Mini Rev Med Chem 2021; 20:1944-1965. [PMID: 32669077 DOI: 10.2174/1389557520666200715104555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/05/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022]
Abstract
Cancer is the world's second-largest cause of mortality and one of the biggest global health concerns. The prevalence and mortality rates of cancer remain high despite significant progress in cancer therapy. The search for more effective, as well as less toxic treatment methods for cancer, is at the focus of current studies. Thiophene and its derivatives have surged as an influential scaffold, which, because of their appreciable diversity in biological activities, has drawn the concerned interest of the researchers in the field of medicinal chemistry. By the affluent introduction of its derivatives, which have antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, the adaptability of the thiophene moiety has been displayed. The nature and positioning of the substitutions significantly impacted thiophene moiety activity. This decent array in the living response account about this moiety has picked plentiful researcher's consideration to inquire about it to its peculiar potential across certain activities. In the field of cancer therapy against different cancer cells, the structure-activity relationship for each of the derivatives showed an excellent understanding of thiophene moiety. Information from the various articles revealed the key role of thiophene moiety and its derivatives to develop the vital lead compound. The essential anticancer mechanisms identified include inhibition of the topoisomerase, inhibition of tyrosine kinase, tubulin interaction and apoptosis induction through the activation of reactive oxygen species. This review is an endeavor to promote the anticancer potential of the derivatives, whether having thiophene or condensed thiophene as a core moiety or as a substituent that can lead in the future to synthesize varieties of chemotherapeutic entities in the field of cancer treatment.
Collapse
Affiliation(s)
- Raghav Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Nitin Kumar
- School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, 122103, India
| | - Isha Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Neetu Sachan
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, 244102, India
| |
Collapse
|
24
|
Effect of the Chloro-Substitution on Electrochemical and Optical Properties of New Carbazole Dyes. MATERIALS 2021; 14:ma14113091. [PMID: 34200060 PMCID: PMC8200205 DOI: 10.3390/ma14113091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022]
Abstract
Carbazole derivatives are the structural key of many biologically active substances, including naturally occurring and synthetic ones. Three novel (E)-2-(2-(4-9H-carbazol-9-yl)benzylidene)hydrazinyl)triazole dyes were synthesized with different numbers of chlorine substituents attached at different locations. The presented research has shown the influence of the number and position of attachment of chlorine substituents on electrochemical, optical, nonlinear, and biological properties. The study also included the analysis of the use of the presented derivatives as potential fluorescent probes for in vivo and in vitro tests. Quantum-chemical calculations complement the conducted experiments.
Collapse
|
25
|
Cross-Linked Chitosan/Multi-Walled Carbon Nanotubes Composite as Ecofriendly Biocatalyst for Synthesis of Some Novel Benzil Bis-Thiazoles. Polymers (Basel) 2021; 13:polym13111728. [PMID: 34070526 PMCID: PMC8198799 DOI: 10.3390/polym13111728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
Aminohydrazide cross-linked chitosan (CLCS) and its MWCNTs (CLCS/MWCNTs) were formulated and utilized as a potent ecofriendly basic heterogeneous biocatalyst under ultrasonic irradiation for synthesis of two novel series of benzil bis-aryldiazenylthiazoles and benzil bis-arylhydrazonothiazolones from the reaction of benzil bis-thiosemicarbazone with 2-oxo-N′-arylpropanehydrazonoyl chlorides and ethyl 2-chloro-2-(2-phenylhydrazono) acetates, respectively. The chemical structures of the newly synthesized derivatives were elucidated by spectral data and alternative methods, where available. Additionally, their yield % was estimated using a traditional catalyst as TEA and green recyclable catalysts as CLCS and CLCS/MWCNTs composite in a comparative study. We observed that, under the same reaction conditions, the yield % of the desired products increased by changing TEA to CLCS then to CLCS/MWCNT from 72–78% to 79–83% to 84–87%, respectively. The thermal stability of the investigated samples could be arranged as CLCS/MWCNTs composite > CLCS > chitosan, where the weight losses of chitosan, CLCS and CLCS/MWCNTs composite at 500 °C were 65.46%, 57.95% and 53.29%, respectively.
Collapse
|
26
|
Kasetti AB, Singhvi I, Nagasuri R, Bhandare RR, Shaik AB. Thiazole-Chalcone Hybrids as Prospective Antitubercular and Antiproliferative Agents: Design, Synthesis, Biological, Molecular Docking Studies and In Silico ADME Evaluation. Molecules 2021; 26:2847. [PMID: 34064806 PMCID: PMC8151732 DOI: 10.3390/molecules26102847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022] Open
Abstract
Compounds bearing thiazole and chalcone pharmacophores have been reported to possess excellent antitubercular and anticancer activities. In view of this, we designed, synthesized and characterized a novel series of thiazole-chalcone hybrids (1-20) and further evaluated them for antitubercular and antiproliferative activities by employing standard protocols. Among the twenty compounds, chalcones 12 and 7, containing 2,4-difluorophenyl and 2,4-dichlorophenyl groups, showed potential antitubercular activity higher than the standard pyrazinamide (MIC = 25.34 µM) with MICs of 2.43 and 4.41 µM, respectively. Chalcone 20 containing heteroaryl 2-thiazolyl moiety exhibited promising antiproliferative activity against the prostate cancer cell line (DU-145), higher than the standard methotrexate (IC50 = 11 ± 1 µM) with an IC50 value of 6.86 ± 1 µM. Furthermore, cytotoxicity studies of these compounds against normal human liver cell lines (L02) revealed that the target molecules were comparatively less selective against L02. Additional computational studies using AutoDock predicted the key binding interactions responsible for the activity and the SwissADME tool computed the in silico drug likeliness properties. The lead compounds generated through this study, create a way for the optimization and development of novel drugs against tuberculosis infections and prostate cancer.
Collapse
Affiliation(s)
- Ashok Babu Kasetti
- Research Scholar, Faculty of Pharmacy, Pacific Academy of Higher Education and Research University, Pacific University, Udaipur 313003, India
- Dr. Samuel George Institute of Pharmaceutical Sciences, Markapuram, Andhra Pradesh 523316, India
| | - Indrajeet Singhvi
- Faculty of Pharmacy, Pacific Academy of Higher Education and Research University, Pacific University, Udaipur 313003, India;
| | - Ravindra Nagasuri
- A.M. Reddy Memorial College of Pharmacy, Narasaraopeta, Andhra Pradesh 523316, India;
| | - Richie R. Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Afzal B. Shaik
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Vadlamudi, Guntur, Andhra Pradesh 522213, India
| |
Collapse
|
27
|
Li QS, Shen BN, Zhang Z, Luo S, Ruan BF. Discovery of Anticancer Agents from 2-Pyrazoline-Based Compounds. Curr Med Chem 2021; 28:940-962. [PMID: 32141413 DOI: 10.2174/0929867327666200306120151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/22/2022]
Abstract
As nitrogen-containing five-membered heterocyclic structural units, the substituted pyrazole derivatives have a broad spectrum of pharmacological activities, especially 4,5-dihydro-1H-pyrazoles that also commonly known as 2-pyrazolines. Since 2010, considerable studies have been found that the 2-pyrazoline derivatives possess potent anticancer activities. In the present review, it covers the pyrazoline derivatives reported by literature from 2010 till date (2010-2019). This review aims to establish the relationship between the anticancer activities variation and different substituents introduced into a 2-pyrazoline core, which could provide important pharmacophore clues for the discovery of new anticancer agents containing 2-pyrazoline scaffold.
Collapse
Affiliation(s)
- Qing-Shan Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230601, China
| | - Bang-Nian Shen
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230601, China
| | - Zhen Zhang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230601, China
| | - Shuying Luo
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Ban-Feng Ruan
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230601, China
| |
Collapse
|
28
|
Masaret GS. Convenient synthesis and anticancer evaluation of novel pyrazolyl‐thiophene, thieno[3,2‐
b
]pyridine, pyrazolo[3,4‐
d
]thieno[3,2‐
b
]pyridine and pyrano[2,3‐
d
]thieno[3,2‐
b
]pyridine derivatives. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ghada S. Masaret
- Chemistry Department College of Applied Sciences, Umm Al‐Qura University Makkah Saudi Arabia
| |
Collapse
|
29
|
Gomha SM, Abdelhady HA, Hassain DZH, Abdelmonsef AH, El-Naggar M, Elaasser MM, Mahmoud HK. Thiazole-Based Thiosemicarbazones: Synthesis, Cytotoxicity Evaluation and Molecular Docking Study. Drug Des Devel Ther 2021; 15:659-677. [PMID: 33633443 PMCID: PMC7900779 DOI: 10.2147/dddt.s291579] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/20/2021] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Hybrid drug design has developed as a prime method for the development of novel anticancer therapies that can theoretically solve much of the pharmacokinetic disadvantages of traditional anticancer drugs. Thus a number of studies have indicated that thiazole-thiophene hybrids and their bis derivatives have important anticancer activity. Mammalian Rab7b protein is a member of the Rab GTPase protein family that controls the trafficking from endosomes to the TGN. Alteration in the Rab7b expression is implicated in differentiation of malignant cells, causing cancer. METHODS 1-(4-Methyl-2-(2-(1-(thiophen-2-yl) ethylidene) hydrazinyl) thiazol-5-yl) ethanone was used as building block for synthesis of novel series of 5-(1-(2-(thiazol-2-yl) hydrazono) ethyl) thiazole derivatives. The bioactivities of the synthesized compounds were evaluated with respect to their antitumor activities against MCF-7 tumor cells using MTT assay. Computer-aided docking protocol was performed to study the possible molecular interactions between the newly synthetic thiazole compounds and the active binding site of the target protein Rab7b. Moreover, the in silico prediction of adsorption, distribution, metabolism, excretion (ADME) and toxicity (T) properties of synthesized compounds were carried out using admetSAR tool. RESULTS The results obtained showed that derivatives 9 and 11b have promising activity (IC50 = 14.6 ± 0.8 and 28.3 ± 1.5 µM, respectively) compared to Cisplatin (IC50 = 13.6 ± 0.9 µM). The molecular docking analysis reveals that the synthesized compounds are predicted to be fit into the binding site of the target Rab7b. In summary, the synthetic thiazole compounds 1-17 could be used as potent inhibitors as anticancer drugs. CONCLUSION Promising anticancer activity of compounds 9 and 11 compared with cisplatin reference drug suggests that these ligands may contribute as lead compounds in search of new anticancer agents to combat chemo-resistance.
Collapse
Affiliation(s)
- Sobhi M Gomha
- Chemistry Department, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara, 42351, Saudi Arabia
- Chemistry Department, Faculty of Science, University of Cairo, Giza, Egypt
| | - Hyam A Abdelhady
- Chemistry Department, Faculty of Science, University of Cairo, Giza, Egypt
| | - Doaa Z H Hassain
- Chemistry Department, Faculty of Science, University of Cairo, Giza, Egypt
| | | | - Mohamed El-Naggar
- Chemistry Department, Faculty of Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, 11371, Egypt
| | - Huda K Mahmoud
- Chemistry Department, Faculty of Science, University of Cairo, Giza, Egypt
| |
Collapse
|
30
|
An Overview of the Synthesis and Antimicrobial, Antiprotozoal, and Antitumor Activity of Thiazole and Bisthiazole Derivatives. Molecules 2021; 26:molecules26030624. [PMID: 33504100 PMCID: PMC7865802 DOI: 10.3390/molecules26030624] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Thiazole, a five-membered heteroaromatic ring, is an important scaffold of a large number of synthetic compounds. Its diverse pharmacological activity is reflected in many clinically approved thiazole-containing molecules, with an extensive range of biological activities, such as antibacterial, antifungal, antiviral, antihelmintic, antitumor, and anti-inflammatory effects. Due to its significance in the field of medicinal chemistry, numerous biologically active thiazole and bisthiazole derivatives have been reported in the scientific literature. The current review provides an overview of different methods for the synthesis of thiazole and bisthiazole derivatives and describes various compounds bearing a thiazole and bisthiazole moiety possessing antibacterial, antifungal, antiprotozoal, and antitumor activity, encouraging further research on the discovery of thiazole-containing drugs.
Collapse
|
31
|
Hanachi R, Ben Said R, Allal H, Rahali S, Alkhalifah MAM, Alresheedi F, Tangour B, Hochlaf M. Structural, QSAR, machine learning and molecular docking studies of 5-thiophen-2-yl pyrazole derivatives as potent and selective cannabinoid-1 receptor antagonists. NEW J CHEM 2021. [DOI: 10.1039/d1nj02261j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We performed a structural study followed by theoretical analysis of the chemical descriptors and biological activity of a series of 5-thiophen-2-yl pyrazole derivatives as potent and selective cannabinoid-1 (CB1) receptor antagonists.
Collapse
Affiliation(s)
- Riadh Hanachi
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Ridha Ben Said
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Department of Chemistry, College of Science and Arts, Qassim University, ArRass, Saudi Arabia
| | - Hamza Allal
- Department of Technology, Faculty of Technology, 20 August 1955 University of Skikda, P.O. Box 26, El Hadaik Road, 21000 Skikda, Algeria
- Research Unit of Environmental Chemistry and Molecular Structural (CHEMS), University of Constantine-1, 25000, Constantine, Algeria
| | - Seyfeddine Rahali
- Department of Chemistry, College of Science and Arts, Qassim University, ArRass, Saudi Arabia
- Research Unit of Modelization on Fundamental Sciences and Didactics. Universitéde Tunis El Manar, Tunis 2092, Tunisia
| | | | - Faisal Alresheedi
- Department of Physics, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Bahoueddine Tangour
- Research Unit of Modelization on Fundamental Sciences and Didactics. Universitéde Tunis El Manar, Tunis 2092, Tunisia
| | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes, 77454, Champs sur Marne, France
| |
Collapse
|
32
|
Raghu MS, Pradeep Kumar CB, Prashanth MK, Yogesh Kumar K, Prathibha BS, Kanthimathi G, Alissa SA, Alghulikah HA, Osman SM. Novel 1,3,5-triazine-based pyrazole derivatives as potential antitumor agents and EFGR kinase inhibitors: synthesis, cytotoxicity, DNA binding, molecular docking and DFT studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj02419a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of new 1,3,5-triazine-based pyrazole derivatives as effective anticancer agents.
Collapse
Affiliation(s)
- M. S. Raghu
- Department of Chemistry, New Horizon College of Engineering
- Bengaluru 560 103
- India
| | | | - M. K. Prashanth
- Department of Chemistry, B N M Institute of Technology
- Bengaluru 560 070
- India
| | - K. Yogesh Kumar
- Department of Chemistry, School of Engineering and Technology, Jain University
- Ramanagara
- India
| | - B. S. Prathibha
- Department of Chemistry, B N M Institute of Technology
- Bengaluru 560 070
- India
| | - G. Kanthimathi
- Department of Chemistry, Ramco Institute of Technology
- Rajapalayam
- India
| | - Siham Abdulrahman Alissa
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University
- Riyadh 11671
- Saudi Arabia
| | - Hanan Abdulrahman Alghulikah
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University
- Riyadh 11671
- Saudi Arabia
| | - Sameh M. Osman
- Department of Chemistry, College of Science, King Saud University
- Riyadh
- Saudi Arabia
| |
Collapse
|
33
|
Wan Y, Long J, Gao H, Tang Z. 2-Aminothiazole: A privileged scaffold for the discovery of anti-cancer agents. Eur J Med Chem 2020; 210:112953. [PMID: 33148490 DOI: 10.1016/j.ejmech.2020.112953] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022]
Abstract
Cancer has been the second heath killer being next only to cardiovascular diseases in human society. Although many efforts have been taken for cancer therapy and many achievements have been yielded in the diagnosis and treatment of cancer, the current first-line anti-cancer agents are insufficient owing to the emergence of multi-drug resistance and side effects. Therefore, it is urgent to develop new anti-cancer agents with high activity and low toxicity. 2-Aminothiazole is a class of important scaffold which widely distributes in many natural and synthetic compounds with many pharmacological effects including the potential anti-cancer activity. In this review, we summarized the recent progress of 2-aminothiazole as a privileged scaffold for the discovery of anti-cancer agents based on biological targets, such as tubulin protein, histone acetylase/histone deacetylase (HAT/HDAC), phosphatidylinositol 3-kinases (PI3Ks), Src/Abl kinase, BRAF kinase, epidermal growth factor receptor (EGFR) kinase and sphingosine kinase (SphK), and also investigated the structure-activity relationships (SARs) of most compounds. It is believed that this review could be helpful for medicinal chemists in the discovery of more anti-cancer agents bearing 2-aminothiazole scaffold with excellent activity and high therapeutic index.
Collapse
Affiliation(s)
- Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China.
| | - Jiabing Long
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Han Gao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| |
Collapse
|
34
|
Rashdan HRM, Abdelmonsef AH, Shehadi IA, Gomha SM, Soliman AMM, Mahmoud HK. Synthesis, Molecular Docking Screening and Anti-Proliferative Potency Evaluation of Some New Imidazo[2,1- b]Thiazole Linked Thiadiazole Conjugates. Molecules 2020; 25:molecules25214997. [PMID: 33126630 PMCID: PMC7663531 DOI: 10.3390/molecules25214997] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Imidazo[2,1-b]thiazole scaffolds were reported to possess various pharmaceutical activities. RESULTS The novel compound named methyl-2-(1-(3-methyl-6-(p-tolyl)imidazo[2,1-b]thiazol-2-yl)ethylidene)hydrazine-1-carbodithioate 3 acted as a predecessor molecule for the synthesis of new thiadiazole derivatives incorporating imidazo[2,1-b]thiazole moiety. The reaction of 3 with the appropriate hydrazonoyl halide derivatives 4a-j and 7-9 had produced the respective 1,3,4-thiadiazole derivatives 6a-j and 10-12. The chemical composition of all the newly synthesized derivatives were confirmed by their microanalytical and spectral data (FT-IR, mass spectrometry, 1H-NMR and 13C-NMR). All the produced novel compounds were screened for their anti-proliferative efficacy on hepatic cancer cell lines (HepG2). In addition, a computational molecular docking study was carried out to determine the ability of the synthesized thiadiazole molecules to interact with active site of the target Glypican-3 protein (GPC-3). Moreover, the physiochemical properties of the synthesized compounds were derived to determine the viability of the compounds as drug candidates for hepatic cancer. CONCLUSION All the tested compounds had exhibited good anti-proliferative efficacy against hepatic cancer cell lines. In addition, the molecular docking results showed strong binding interactions of the synthesized compounds with the target GPC-3 protein with lower energy scores. Thus, such novel compounds may act as promising candidates as drugs against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Huda R. M. Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
- Correspondence:
| | | | - Ihsan A. Shehadi
- Chemistry Department, Faculty of Science, University of Sharjah, Sharjah 27272, UAE;
| | - Sobhi M. Gomha
- Chemistry department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.M.G.); (H.K.M.)
- Department of Chemistry, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara 42351, Saudi Arabia
| | | | - Huda K. Mahmoud
- Chemistry department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.M.G.); (H.K.M.)
| |
Collapse
|
35
|
Abdel-Aziem A, Baaiu BS, Elbazzar AW, Elabbar F. A facile synthesis of some novel thiazoles, arylazothiazoles, and pyrazole linked to thiazolyl coumarin as antibacterial agents. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1782431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Anhar Abdel-Aziem
- Chemistry Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Basma Saad Baaiu
- Chemistry Department, Faculty of Science, Benghazi University, Benghazi, Libya
| | - Awad Wanis Elbazzar
- Chemistry Department, Faculty of Science, Benghazi University, Benghazi, Libya
| | - Fakhri Elabbar
- Chemistry Department, Faculty of Science, Benghazi University, Benghazi, Libya
| |
Collapse
|
36
|
Archna, Pathania S, Chawla PA. Thiophene-based derivatives as anticancer agents: An overview on decade's work. Bioorg Chem 2020; 101:104026. [PMID: 32599369 DOI: 10.1016/j.bioorg.2020.104026] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022]
Abstract
Heterocyclic compounds hold a pivotal place in medicinal chemistry due to their wide range of biological activities and thus, are exhaustively explored in the field of drug design and development. Continuous efforts are being carried out for the development of medicinal agents especially, for dreadful diseases like cancer. Thiophene, a sulfur containing heterocyclic scaffold, has emerged as one of the relatively well-explored scaffold for the development of library of molecules having potential anticancer profile. Thiophene analogs have been reported to bind with a wide range of cancer-specific protein targets, depending on the nature and position of substitutions. Accordingly, thiophene analogs have been reported to cause their biological action through inhibition of different signaling pathways involved in cancer. Functionally, different anticancer targets require different structural features, so researchers have tried to synthesize new thiophene derivatives with varied substitutions. In the present review, authors have presented the information available on thiophene-based molecules as anticancer agents with special focus on synthetic methodologies, biological profile and structure activity relationship (SAR) studies. Various patents granted for thiophene containing molecules as anticancer have also been included.
Collapse
Affiliation(s)
- Archna
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Shelly Pathania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India.
| |
Collapse
|
37
|
Dorababu A. Pharmacology Profile of Recently Developed Multi‐Functional Azoles; SAR‐Based Predictive Structural Modification. ChemistrySelect 2020. [DOI: 10.1002/slct.202000294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Atukuri Dorababu
- Department of Studies in ChemistrySRMPP Govt. First Grade College Huvinahadagali 583219, Karnataka India
| |
Collapse
|
38
|
Raslan MA, Sayed SM. Synthesis of some new thiazolo[3,2‐
a
]pyridine,
bi‐thiazole‐thiazole
,
bi‐thiazole‐pyrazole
and
bi‐thiazole‐thiophene
derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- M. A. Raslan
- Chemistry Department, Faculty of ScienceAswan University Aswan Egypt
| | - S. M. Sayed
- Chemistry Department, Faculty of ScienceAswan University Aswan Egypt
| |
Collapse
|
39
|
Singh A, Singh G, Bedi PMS. Thiophene derivatives: A potent multitargeted pharmacological scaffold. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3990] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical SciencesGuru Nanak Dev University Amritsar Punjab India
| | - Gurvinder Singh
- Department of Pharmaceutical ChemistryKhalsa College of Pharmacy Amritsar Punjab India
| | | |
Collapse
|
40
|
Sayed AR, Gomha SM, Taher EA, Muhammad ZA, El-Seedi HR, Gaber HM, Ahmed MM. One-Pot Synthesis of Novel Thiazoles as Potential Anti-Cancer Agents. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1363-1375. [PMID: 32308369 PMCID: PMC7138620 DOI: 10.2147/dddt.s221263] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/12/2020] [Indexed: 01/07/2023]
Abstract
Background Thiazole and thiosemicarbazone derivatives are known to have potential anticancer activity with a mechanism of action related to inhibition of matrix metallo-proteinases, kinases and anti-apoptotic BCL2 family proteins. Materials and Methods A novel three series of 5-(1-(2-(thiazol-2-yl)hydrazono)ethyl)thiazole derivatives were prepared in a one-pot three-component reaction using 2-(2-benzylidene hydrazinyl)-4-methylthiazole as a starting precursor. MS, IR, 1H-NMR and 13C-NMR were used to elucidate the structures of the synthesized compounds. Most of the synthesized products were evaluated for their in vitro anticancer screening against HCT-116, HT-29 and HepG2 using the MTT colorimetric assay. Results The results indicated that compounds 4c, 4d and 8c showed growth inhibition activity against HCT-116 with IC50 values of 3.80 ± 0.80, 3.65 ± 0.90 and 3.16 ± 0.90 μM, respectively, compared to harmine (IC50 = 2.40 ± 0.12 μM) and cisplatin (IC50 = 5.18 ± 0.94 μM) reference drugs. Also, compounds 8c, 4d and 4c showed promising IC50 values of 3.47 ± 0.79, 4.13 ± 0.51 and 7.24 ± 0.62 μM, respectively, against the more resistant human colorectal cancer (HT-29) cell line compared with harmine (IC50 = 4.59 ± 0.67 μM) and cisplatin (IC50 = 11.68 ± 1.54 μM). On the other hand, compounds 4d, 4c, 8c and 11c were the most active (IC50 values of 2.31± 0.43, 2.94 ± 0.62, 4.57 ± 0.85 and 9.86 ± 0.78 μM, respectively) against the hepatocellular carcinoma (HepG2) cell line compared with harmine (IC50 = 2.54 ± 0.82 μM) and cisplatin (IC50 = 41 ± 0.63 μM). The study also suggested that the mechanism of the anticancer action exerted by the most active compounds (4c, 4d and 8c) inside HCT-116 cells was apoptosis through the Bcl-2 family. Conclusion Thiazole scaffolds 4c, 4d and 8c showed anticancer activities in the micromolar range and are appropriate as a candidate for cancer treatment.
Collapse
Affiliation(s)
- Abdelwahed R Sayed
- Department of Chemistry, Faculty of Science, KFU, Hofuf, Saudi Arabia.,Department of Chemistry, Faculty of Science, Beni-suef University, Beni-suef, Egypt
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.,Department of Chemistry, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara 42351, Saudi Arabia
| | - Eman A Taher
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt.,Chemistry Department, Faculty of Science, El-Menoufia University, Shebin El-Kom 32512, Egypt
| | - Zeinab A Muhammad
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| | - Hesham R El-Seedi
- Chemistry Department, Faculty of Science, El-Menoufia University, Shebin El-Kom 32512, Egypt.,Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Uppsala SE-75123, Sweden
| | - Hatem M Gaber
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| | - Mahgoub M Ahmed
- Molecular Drug Evaluation Department, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| |
Collapse
|
41
|
El-Enany WAMA, Gomha SM, Hussein W, Sallam HA, Ali RS, El-Ziaty AK. Synthesis and Biological Evaluation of Some Novel Bis-Thiadiazoles as Antimicrobial and Antitumor Agents. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2019.1709874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
- Department of Chemistry, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara, Saudi Arabia
| | - Wesam Hussein
- Department of Chemistry, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara, Saudi Arabia
| | - Hanan A. Sallam
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Rania S. Ali
- Department of Basic Science, Faculty of Industrial Education, Helwane University, Cairo, Egypt
| | - Ahmed K. El-Ziaty
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
42
|
Gomha SM, Muhammad ZA, Ezz El-Arab E, Elmetwally AM, El-Sayed AA, Matar IK. Design, Synthesis, Molecular Docking Study and Anti-Hepatocellular Carcinoma Evaluation of New Bis-Triazolothiadiazines. Mini Rev Med Chem 2020; 20:788-800. [PMID: 31613728 DOI: 10.2174/1389557519666191015130037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/12/2018] [Accepted: 07/10/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The reaction of bis(4-amino-4H-1,2,4-triazole-3-thiol) with hydrazonoyl halides and α-halo-ketones gave a new series of bis-1,2,4-triazolo[3,4-b]thiadiazine derivatives. METHODS The structure of the new products was established on the basis of their elemental and spectral data (mass, 1H NMR, 13C NMR and IR) and an alternate method. RESULTS Several of the synthesized products were subjected to in vitro anticancer screening against human hepatocellular carcinoma (HepG-2) and the results showed that compounds 16, 14 and 12 have promising activities (IC50 value of 24.8±9.1, 28.3±0.5, and 31±2.9μM, respectively) compared with Harmine reference drug (IC50 value of 22.4±1.11 μM). CONCLUSION Moreover, molecular docking studies were performed to analyze the binding modes of the discovered hits into the active site of DYRK1A using iGEMDOCK.
Collapse
Affiliation(s)
- Sobhi M Gomha
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara, 42351, Saudi Arabia
| | - Zeinab A Muhammad
- Organic Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| | - Elham Ezz El-Arab
- Organic Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| | - Amira M Elmetwally
- Organic Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| | - Abdelaziz A El-Sayed
- Department of Chemistry, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara, 42351, Saudi Arabia
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | | |
Collapse
|
43
|
Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur J Med Chem 2019; 188:112016. [PMID: 31926469 DOI: 10.1016/j.ejmech.2019.112016] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
In the last few decades, considerable progress has been made in anticancer agents development, and several new anticancer agents of natural and synthetic origin have been produced. Among heterocyclic compounds, thiazole, a 5-membered unique heterocyclic motif containing sulphur and nitrogen atoms, serves as an essential core scaffold in several medicinally important compounds. Thiazole nucleus is a fundamental part of some clinically applied anticancer drugs, such as dasatinib, dabrafenib, ixabepilone, patellamide A, and epothilone. Recently, thiazole-containing compounds have been successfully developed as possible inhibitors of several biological targets, including enzyme-linked receptor(s) located on the cell membrane, (i.e., polymerase inhibitors) and the cell cycle (i.e., microtubular inhibitors). Moreover, these compounds have been proven to exhibit high effectiveness, potent anticancer activity, and less toxicity. This review presents current research on thiazoles and elucidates their biological importance in anticancer drug discovery. The findings may aid researchers in the rational design of more potent and bio-target specific anticancer drug molecules.
Collapse
|
44
|
Bennani FE, Doudach L, Cherrah Y, Ramli Y, Karrouchi K, Ansar M, Faouzi MEA. Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorg Chem 2019; 97:103470. [PMID: 32120072 DOI: 10.1016/j.bioorg.2019.103470] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023]
Abstract
Pyrazole is a five-membered aromatic heterocyclic ring with two adjacent nitrogen atoms C3H3N2H.The presence of this nucleus in pharmacological agents of various therapeutic categories gifts a broad spectrum of biological activities and pharmaceuticals that contain pyrazole like celecoxib (anti-inflammatory), CDPPB (antipsychotic), Rimonabant (anti-obesity), Difenamizole, (Analgesic), Betazole (H2 receptor agonist), Fezolamide (Antidepressant), etc… The pharmacological potential of the pyrazole fraction is proved in many publication where they synthesized and evaluated pyrazoles against several biological agents. The aim of this article review is to survey recent works linking pyrazole structures to anticancer activities corresponding to 9 different type of cancer.
Collapse
Affiliation(s)
- Fatima Ezzahra Bennani
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP 6203, Rabat, Morocco; Laboratory of Therapeutic Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP 6203, Rabat, Morocco.
| | - Latifa Doudach
- Department of Biomedical Engineering Medical Physiology, Higher School of Technical Education of Rabat, Mohammed V University in Rabat, BP 6203 Rabat, Morocco
| | - Yahia Cherrah
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP 6203, Rabat, Morocco
| | - Youssef Ramli
- Laboratory of Therapeutic Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP 6203, Rabat, Morocco
| | - Khalid Karrouchi
- Laboratory of Therapeutic Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP 6203, Rabat, Morocco
| | - M'hammed Ansar
- Laboratory of Therapeutic Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP 6203, Rabat, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP 6203, Rabat, Morocco
| |
Collapse
|
45
|
Xiong B, Chen S, Zhu P, Huang M, Gao W, Zhu R, Qian J, Peng Y, Zhang Y, Dai H, Ling Y. Design, Synthesis, and Biological Evaluation of Novel Thiazolyl Substituted Bis-pyrazole Oxime Derivatives with Potent Antitumor Activities by Selectively Inducing Apoptosis and ROS in Cancer Cells. Med Chem 2019; 15:743-754. [PMID: 30147012 DOI: 10.2174/1573406414666180827112724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/06/2018] [Accepted: 07/26/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND A large number of pyrazole derivatives have different biological activities such as anticancer, antimicrobial, anti-inflammatory, analgesic and antiepileptic activity. Among them, pyrazole oximes have attracted much attention due to their potential pharmacological activities, particularly anticancer activities. OBJECTIVE Our goal is to synthesize novel thiazolyl substituted bis-pyrazole oxime derivatives with potent antitumor activities by selectively inducing apoptosis and Reactive Oxygen Species (ROS) accumulation in cancer cells. METHODS Eighteen bis-pyrazole oximes were synthesized by conjugating thiazolyl substituted pyrazoles with pyrazoxime. The target compounds were characterized by 1HNMR, 13C NMR, and HRMS, and screened for their antiproliferative activity against four cancer cells in MTT assay. The most potent compound was examined for its inhibitory effect and ROS accumulation in both cancer cells HCT116 and normal intestinal epithelial cells CCD841. Finally, the most potent compound was further evaluated for its apoptotic induction by flow cytometry analysis and immunoblot analysis of apoptosis-related proteins and DNA damage proteins. RESULTS Most compounds displayed potent antiproliferative activity against four cancer cell lines in vitro, displaying potencies superior to 5-FU. In particular, the most potent compound 13l selectively inhibited proliferation of colorectal cancer HCT116 cells but not normal colon CCD841 cells. Furthermore, compound 13l also selectively promoted intracellular ROS accumulation in HCT116 which was involved in 13l inhibition of cancer cell proliferation and induction of cell apoptosis. Finally, compound 13l also dose-dependently induced cancer cell apoptosis by regulating apoptotic and DNA damage related proteins expressions. CONCLUSION Our synthetic bis-pyrazole oxime derivatives possess potent antitumor activities by selectively inducing apoptosis and ROS accumulation in cancer cells, which may hold great promise as therapeutic agents for the treatment of human cancers.
Collapse
Affiliation(s)
- Biao Xiong
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Shi Chen
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Peng Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Meiling Huang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China.,College of Chemistry and Chemical Engineering, Nantong University, Nantong 226001, China
| | - Weijie Gao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Rui Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Yanfu Peng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Hong Dai
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China.,College of Chemistry and Chemical Engineering, Nantong University, Nantong 226001, China
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China.,College of Chemistry and Chemical Engineering, Nantong University, Nantong 226001, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
46
|
Mahmoud HK, Kassab RM, Gomha SM. Synthesis and characterization of some novel bis‐thiazoles. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Huda K. Mahmoud
- Department of Chemistry, Faculty of ScienceCairo University Giza Egypt
| | - Refaie M. Kassab
- Department of Chemistry, Faculty of ScienceCairo University Giza Egypt
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of ScienceCairo University Giza Egypt
- Department of Chemistry, Faculty of ScienceIslamic University in Almadinah Almonawara Almadinah Almonawara 42351 Saudi Arabia
| |
Collapse
|
47
|
Abdelhamid AO, Gomha SM, El‐Enany WAMA. Efficient Synthesis and Antimicrobial Evaluation of New Azolopyrimidines‐Bearing Pyrazole Moiety. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of ScienceUniversity of Cairo Giza Egypt
- Department of Chemistry, Faculty of ScienceIslamic University in Almadinah Almonawara Almadinah Almonawara 42351 Saudi Arabia
| | | |
Collapse
|
48
|
Rozy F, Sharon A. Base Catalyzed Scaffold Shift from Pyranone Carboxamide to Pyrazolyl Acetamide through Intramolecular Ring Transformation. ChemistrySelect 2019. [DOI: 10.1002/slct.201900373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Farhana Rozy
- Department of ChemistryBirla Institute of Technology, Mesra, Ranchi Jharkhand India- 835215
| | - Ashoke Sharon
- Department of ChemistryBirla Institute of Technology, Mesra, Ranchi Jharkhand India- 835215
| |
Collapse
|
49
|
Probing the high potency of pyrazolyl pyrimidinetriones and thioxopyrimidinediones as selective and efficient non-nucleotide inhibitors of recombinant human ectonucleotidases. Bioorg Chem 2019; 88:102893. [PMID: 30986550 DOI: 10.1016/j.bioorg.2019.03.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 11/22/2022]
Abstract
With the aim to discover novel, efficient and selective inhibitors of human alkaline phosphatase and nucleotide pyrophosphatase enzymes, two new series of pyrazolyl pyrimidinetriones (PPTs) (6a-g) and thioxopyrimidinediones (PTPs) (6h-n) were synthesized in good chemical yields using Knoevenagel condensation reaction between pyrazole carbaldehydes (4a-g) and pharmacologically active N-alkylated pyrimidinetrione (5a) and thioxopyrimidinedione (5b). The inhibition potential of the synthesized hybrid compounds was evaluated against human alkaline phosphatase (h-TNAP and h-IAP) and ectonucleotidase (h-NPP1 and h-NPP3) enzymes. Most of the tested analogs were highly potent with a variable degree of inhibition depending on the functionalized hybrid structure. The detailed structure-activity relationship (SAR) of PPT and PTP derivatives suggested that the compound with unsubstituted phenyl ring from PPT series led to selective and potent inhibition (6a; IC50 = 0.33 ± 0.02 µM) of h-TNAP, whereas compound 6c selectively inhibited h-IAP isozyme with IC50 value of 0.86 ± 0.04 µM. Similarly, compounds 6b and 6h were identified as the lead scaffolds against h-NPP1 and h-NPP3, respectively. The probable binding modes for the most potent inhibitors were elucidated through molecular docking analysis. Structure-activity relationships, mechanism of action, cytotoxic effects and druglikeness properties are also discussed.
Collapse
|
50
|
Evren AE, Yurttas L, Ekselli B, Akalin-Ciftci G. Synthesis and biological evaluation of 5-methyl-4-phenyl thiazole derivatives as anticancer agents. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2018.1550642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Asaf E. Evren
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| | - Leyla Yurttas
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| | - Büşra Ekselli
- Faculty of Pharmacy, Department of Biochemistry, Anadolu University, Eskişehir, Turkey
| | - Gülşen Akalin-Ciftci
- Faculty of Pharmacy, Department of Biochemistry, Anadolu University, Eskişehir, Turkey
| |
Collapse
|