1
|
Wan Y, Liu J, Mai Y, Hong Y, Jia Z, Tian G, Liu Y, Liang H, Liu J. Current advances and future trends of hormesis in disease. NPJ AGING 2024; 10:26. [PMID: 38750132 PMCID: PMC11096327 DOI: 10.1038/s41514-024-00155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
Hormesis, an adaptive response, occurs when exposure to low doses of a stressor potentially induces a stimulatory effect, while higher doses may inhibit it. This phenomenon is widely observed across various organisms and stressors, significantly advancing our understanding and inspiring further exploration of the beneficial effects of toxins at doses both below and beyond traditional thresholds. This has profound implications for promoting biological regulation at the cellular level and enhancing adaptability throughout the biosphere. Therefore, conducting bibliometric analysis in this field is crucial for accurately analyzing and summarizing its current research status. The results of the bibliometric analysis reveal a steady increase in the number of publications in this field over the years. The United States emerges as the leading country in both publication and citation numbers, with the journal Dose-Response publishing the highest number of papers in this area. Calabrese E.J. is a prominent person with significant contributions and influence among authors. Through keyword co-occurrence and trend analysis, current hotspots in this field are identified, primarily focusing on the relationship between hormesis, oxidative stress, and aging. Analysis of highly cited references predicts that future research trends may center around the relationship between hormesis and stress at different doses, as well as exploring the mechanisms and applications of hormesis. In conclusion, this review aims to visually represent hormesis-related research through bibliometric methods, uncovering emerging patterns and areas of focus within the field. It provides a summary of the current research status and forecasts trends in hormesis-related research.
Collapse
Affiliation(s)
- Yantong Wan
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinxi Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyin Mai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zixuan Jia
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Guijie Tian
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunzhuo Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Huaping Liang
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China.
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Li H, Huang X, Zhan A. Context-dependent antioxidant defense system (ADS)-based stress memory in response to recurrent environmental challenges in congeneric invasive species. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:315-330. [PMID: 38827126 PMCID: PMC11136907 DOI: 10.1007/s42995-024-00228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/01/2024] [Indexed: 06/04/2024]
Abstract
Marine ecosystems are facing escalating environmental fluctuations owing to climate change and human activities, imposing pressures on marine species. To withstand recurring environmental challenges, marine organisms, especially benthic species lacking behavioral choices to select optimal habitats, have to utilize well-established strategies such as the antioxidant defense system (ADS) to ensure their survival. Therefore, understanding of the mechanisms governing the ADS-based response is essential for gaining insights into adaptive strategies for managing environmental challenges. Here we conducted a comparative analysis of the physiological and transcriptional responses based on the ADS during two rounds of 'hypersalinity-recovery' challenges in two model congeneric invasive ascidians, Ciona robusta and C. savignyi. Our results demonstrated that C. savignyi exhibited higher tolerance and resistance to salinity stresses at the physiological level, while C. robusta demonstrated heightened responses at the transcriptional level. We observed distinct transcriptional responses, particularly in the utilization of two superoxide dismutase (SOD) isoforms. Both Ciona species developed physiological stress memory with elevated total SOD (T-SOD) and glutathione (GSH) responses, while only C. robusta demonstrated transcriptional stress memory. The regulatory distinctions within the Nrf2-Keap1 signalling pathway likely explain the formation disparity of transcriptional stress memory between both Ciona species. These findings support the 'context-dependent stress memory hypothesis', emphasizing the emergence of species-specific stress memory at diverse regulatory levels in response to recurrent environmental challenges. Our results enhance our understanding of the mechanisms of environmental challenge management in marine species, particularly those related to the ADS. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00228-y.
Collapse
Affiliation(s)
- Hanxi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
3
|
Augustyniak M, Ajay AK, Kędziorski A, Tarnawska M, Rost-Roszkowska M, Flasz B, Babczyńska A, Mazur B, Rozpędek K, Alian RS, Skowronek M, Świerczek E, Wiśniewska K, Ziętara P. Survival, growth and digestive functions after exposure to nanodiamonds - Transgenerational effects beyond contact time in house cricket strains. CHEMOSPHERE 2024; 349:140809. [PMID: 38036229 DOI: 10.1016/j.chemosphere.2023.140809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
The long-term exposure effects of nanodiamonds (NDs), spanning an organism's entire lifespan and continuing for subsequent generation, remain understudied. Most research has focused on evaluating their biological impacts on cell lines and selected organisms, typically over short exposure durations lasting hours or days. The study aimed to assess growth, mortality, and digestive functions in wild (H) and long-lived (D) strains of Acheta domesticus (Insecta: Orthoptera) after two-generational exposure to NDs in concentrations of 0.2 or 2 mg kg-1 of food, followed by their elimination in the third generation. NDs induced subtle stimulating effect that depended on the strain and generation. In the first generation, more such responses occurred in the H than in the D strain. In the first generation of H strain insects, contact with NDs increased survival, stimulated the growth of young larvae, and the activity of most digestive enzymes in mature adults. The same doses and exposure time did not cause similar effects in the D strain. In the first generation of D strain insects, survival and growth were unaffected by NDs, whereas, in the second generation, significant stimulation of those parameters was visible. Selection towards longevity appears to support higher resistance of the insects to exposure to additional stressor, at least in the first generation. The cessation of ND exposure in the third generation caused potentially harmful changes, which included, e.g., decreased survival probability in H strain insects, slowed growth of both strains, as well as changes in heterochromatin density and distribution in nuclei of the gut cells in both strains. Such a reaction may suggest the involvement of epigenetic inheritance mechanisms, which may become inadequate after the stress factor is removed.
Collapse
Affiliation(s)
- Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Amrendra K Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Beata Mazur
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Reyhaneh Seyed Alian
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Skowronek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Klaudia Wiśniewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
4
|
Rademakers T, Sthijns MMJPE, Paulino da Silva Filho O, Joris V, Oosterveer J, Lam TW, van Doornmalen E, van Helden S, LaPointe VLS. Identification of Compounds Protecting Pancreatic Islets against Oxidative Stress using a 3D Pseudoislet Screening Platform. Adv Biol (Weinh) 2023; 7:e2300264. [PMID: 37566766 DOI: 10.1002/adbi.202300264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Oxidative stress leads to a lower success rate of clinical islet transplantation. Here, FDA-approved compounds are screened for their potential to decrease oxidative stress and to protect or enhance pancreatic islet viability and function. Studies are performed on in vitro "pseudoislet" spheroids, which are pre-incubated with 1280 different compounds and subjected to oxidative stress. Cell viability and oxidative stress levels are determined using a high-throughput fluorescence microscopy pipeline. Initial screening on cell viability results in 59 candidates. The top ten candidates are subsequently screened for their potential to decrease induced oxidative stress, and eight compounds efficient reduction of induced oxidative stress in both alpha and beta cells by 25-50%. After further characterization, the compound sulfisoxazole is found to be the most capable of reducing oxidative stress, also at short pre-incubation times, which is validated in primary human islets, where low oxidative stress levels and islet function are maintained. This study shows an effective screening strategy with 3D cell aggregates based on cell viability and oxidative stress, which leads to the discovery of several compounds with antioxidant capacity. The top candidate, sulfisoxazole is effective after a 30 min pre-incubation, maintains baseline islet function, and may help alleviate oxidative stress in pancreatic islets.
Collapse
Affiliation(s)
- Timo Rademakers
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Mireille M J P E Sthijns
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
- Food Innovation and Health, Department of Human Biology, Maastricht University, Venlo, 5911 BV, the Netherlands
| | - Omar Paulino da Silva Filho
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Virginie Joris
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Jolien Oosterveer
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Tsang Wai Lam
- Pivot Park Screening Centre (PPSC), Oss, 5349 AB, the Netherlands
| | | | | | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| |
Collapse
|
5
|
Dailianis S, Vlastos D, Zoppou C, Moschopoulou A, Antonopoulou M. Different isoforms of parabens into marine environment: Biological effects on the bacterium Aliivibrio fischeri and the marine mussel Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165902. [PMID: 37524175 DOI: 10.1016/j.scitotenv.2023.165902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Different isoforms of alkyl esters of p-Hydroxybenzoic acid, also known as parabens, are of great concern due to their widespread presence into the aquatic environment, their high concentrations in wastewater discharges, as well as their ability to induce adverse effects on aquatic organisms. Considering the imperative need for assessing their fate and risk to aquatic environment, the present study investigated the biological effects of two isoforms of parabens, methyl- (MeP) and propyl- (PrP), on the bacterium Aliivibrio fischeri (using the Bioluminescence Inhibition/Microtox® bioassay) and the mussel Mytilus galloprovincialis (in terms of mussel mortality, cellular, oxidative and genotoxic stress indices). The assessment of MeP and PrP behavior into aquatic media (artificial sea water/ASW and 2 % NaCl), primarily performed by UHPLC-UV-MS analysis, showed only a slight hydrolysis of PrP to 4-Hydrobenzoic acid (4-HBA). Furthermore, exposure of both species to different concentrations of each paraben revealed differences among their toxic potential, as well as their ability to cause cellular, oxidative and genotoxic effects on hemocytes of challenged mussels. Interestingly, the Microtox® bioassay showed that PrP mediated toxicity in A. fischeri were more pronounced than MeP, as revealed by the estimated toxic endpoints (in terms of concentration that promote 50 % of bioluminescence inhibition, EC50). Similarly, in challenged mussels, a significant disturbance of mussel hemocytes' lysosomal membrane integrity, as well as enhanced levels of superoxides, nitric oxides, lipid peroxidation byproducts, and micronuclei formation were observed. These findings are of great interest, since MeP and PrP differential toxic potential, as well their ability to induce pre-pathological alterations in marine species, like mussels, give new evidence for their risk to aquatic biota.
Collapse
Affiliation(s)
- Stefanos Dailianis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Rio, Patras, Greece.
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Rio, Patras, Greece
| | - Chloe Zoppou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Rio, Patras, Greece
| | - Argyri Moschopoulou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Rio, Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30100 Agrinio, Greece
| |
Collapse
|
6
|
Ahn GR, Park HJ, Koh YG, Kim KR, Kim YJ, Lee JO, Seok J, Yoo KH, Lee KB, Kim BJ. The effect of low-intensity cold atmospheric plasma jet on photoaging-induced hyperpigmentation in mouse model. J Cosmet Dermatol 2023; 22:2799-2809. [PMID: 37205626 DOI: 10.1111/jocd.15778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cold atmospheric plasma (CAP) produces reactive oxygen/nitrogen species (RONS) in the target and can induce cytoprotective effects by activating hormesis-related pathways when its intensity is in the low range. OBJECTIVES The aim of this study is to evaluate the effect of low-intensified CAP (LICAP) on skin with photoaging-induced hyperpigmentation in an animal model. METHODS Changes in cell viability and RONS production following LICAP treatment were measured. For the in vivo study, 30 hairless mice underwent antecedent photoaging induction followed by the allocated therapy (i.e., LICAP, topical ascorbic acid (AA), or both). During the first 4 weeks of the treatment period (8 weeks), ultraviolet (UV)-B irradiation was concurrently administered. Visual inspection and measurement of the melanin index (MI) were performed to assess the change in skin pigmentation at Weeks 0, 2, 4, 6, and 8. RESULTS RONS production increased linearly until the saturation point. Cell viability was not significantly affected by LICAP treatment. At Week 8, MI was significantly decreased in every treatment group compared with the values at Week 0 and Week 4. The treatment effect of the concurrent therapy group was superior to that of the LICAP and AA groups. CONCLUSION LICAP appears to be a novel modality for photoprotection and pigment reduction in photodamaged skin. LICAP treatment and topical AA application seem to exert a synergistic effect.
Collapse
Affiliation(s)
- Ga Ram Ahn
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Hyung Joon Park
- Department of Interdisciplinary Bio/Micro System Technology, College of Engineering, Korea University, Seoul, Korea
| | - Young Gue Koh
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Ka Ram Kim
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Yu Jin Kim
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Jung Ok Lee
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Joon Seok
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Kwang Ho Yoo
- Department of Dermatology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong-Si, Gyeonggi-do, Korea
| | - Kyu Back Lee
- Department of Interdisciplinary Bio/Micro System Technology, College of Engineering, Korea University, Seoul, Korea
- School of Biomedical Engineering, Korea University, Seoul, Korea
| | - Beom Joon Kim
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| |
Collapse
|
7
|
Bekeschus S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol 2023; 65:102798. [PMID: 37556976 PMCID: PMC10433236 DOI: 10.1016/j.redox.2023.102798] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023] Open
Abstract
Despite continuous therapeutic progress, cancer remains an often fatal disease. In the early 2010s, first evidence in rodent models suggested promising antitumor action of gas plasma technology. Medical gas plasma is a partially ionized gas depositing multiple physico-chemical effectors onto tissues, especially reactive oxygen and nitrogen species (ROS/RNS). Today, an evergrowing body of experimental evidence suggests multifaceted roles of medical gas plasma-derived therapeutic ROS/RNS in targeting cancer alone or in combination with oncological treatment schemes such as ionizing radiation, chemotherapy, and immunotherapy. Intriguingly, gas plasma technology was recently unraveled to have an immunological dimension by inducing immunogenic cell death, which could ultimately promote existing cancer immunotherapies via in situ or autologous tumor vaccine schemes. Together with first clinical evidence reporting beneficial effects in cancer patients following gas plasma therapy, it is time to summarize the main concepts along with the chances and limitations of medical gas plasma onco-therapy from a biological, immunological, clinical, and technological point of view.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
8
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
9
|
Kudryasheva NS. For Special Issue "Molecular Mechanisms of Responses to Low-Intensity Exposures 2.0" of International Journal of Molecular Sciences. Int J Mol Sci 2023; 24:ijms24087665. [PMID: 37108823 PMCID: PMC10143466 DOI: 10.3390/ijms24087665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The intention of this Special Issue is to highlight the peculiarities of low-intensity/low-concentration exposures for organisms and to examine the molecular mechanisms of the organismal responses [...].
Collapse
Affiliation(s)
- Nadezhda S Kudryasheva
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center" SB RAS, Krasnoyarsk 660036, Russia
- Biophysics Department, Siberian Federal University, Krasnoyarsk 660041, Russia
| |
Collapse
|
10
|
Yang M, Jalava P, Hakkarainen H, Roponen M, Leskinen A, Komppula M, Dong GP, Lao XQ, Wu QZ, Xu SL, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Dong GH. Fine and ultrafine airborne PM influence inflammation response of young adults and toxicological responses in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155618. [PMID: 35513150 DOI: 10.1016/j.scitotenv.2022.155618] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Little evidence is available regarding the impact of different sizes of inhaled particulate matter (PM) on inflammatory responses in healthy young adults in connection with toxicological responses. We conducted a five-time repeated measurement panel study on 88 healthy young college students in Guangzhou, China from December 2017 to January 2018. Blood samples were collected from each participant and tested for tumor necrosis factor alpha (TNF-α) levels every week for 5 consecutive weeks. Mass concentrations of ambient PM2.5, PM1, PM0.5 and number concentrations of ambient PM0.1 were measured. RAW 264.7 macrophages were exposed to PM (PM10-2.5, PM2.5-1, PM1-0.2, PM0.2) collected at the same time as the panel study. Cytotoxicity, oxidation and inflammatory parameters, cell cycle and genotoxicity were tested. Particles were characterized for their chemical composition. The trends of associations between PM2.5, PM1, PM0.5 and TNF-α level were consistent in lag 0 and 3 days, and the relative risk decreased as the particle size decreased. All the ambient air pollutants had the similar change trends in lag 1, 4 and 5 days. Similar results in RAW 264.7 macrophages were found; PM10-2.5 induced the greatest TNF-α and macrophage inflammatory protein 2 (MIP-2) productions and oxidative damage. PM1-0.2 and PM0.2 induced more significant dose-dependent increases of cell cycle and genotoxic response. In the component concentrations of PM samples, metal elements were PM10-2.5 > PM2.5-1 > PM0.2 ≥ PM1-0.2; ions and polycyclic aromatic hydrocarbons (PAHs) were PM0.2 > PM1-0.2 > PM2.5-1 > PM10-2.5. Our results suggested that exposure to all particle sizes was significantly associated with inflammation among healthy young adults and toxicological responses in RAW 264.7 macrophages. Different human and toxicological reactions caused by PM samples indicated the importance of investigating various particle sizes.
Collapse
Affiliation(s)
- Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland
| | - Henri Hakkarainen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland
| | - Guo-Ping Dong
- Department of Accounting, Guangzhou Huashang College, Guangzhou 51000, China
| | - Xiang-Qian Lao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, 421, 4/F School of Public Health, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong, China
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
11
|
Lin H, Jia Y, Han F, Xia C, Zhao Q, Zhang J, Li E. Toxic effects of waterborne benzylparaben on the growth, antioxidant capacity and lipid metabolism of Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106197. [PMID: 35623196 DOI: 10.1016/j.aquatox.2022.106197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Benzylparaben (BzP) is a potential endocrine disruptor; however, its antioxidant defense, lipotoxicity and underlying mechanism of BzP in aquatic organisms are unknown. This study investigated the impacts of waterborne low-, environmental-related and high-level benzylparaben on the growth, antioxidant capacity, lipid metabolism and lipidomic response of Nile tilapia (Oreochromis niloticus). Juvenile tilapia (0.60 ± 0.11 g) were exposed to 0, 5, 50, 500 and 5000 ng/L benzylparaben for 8 weeks in quadruplicate for each group. Benzylparaben increased the body crude fat content but decreased brain acetylcholinesterase activity in O. niloticus. Benzylparaben caused oxidative stress, leading to hepatic morphology damage and lipid metabolism disorders in fish. Lipidomic analysis identified 13 lipid classes in fish liver. Benzylparaben exposure induced metabolic disorders of glycerol phospholipids, glycerolipids and sphingomyelins in fish liver. These findings indicate that environmentally related benzylparaben levels (5 to 50 ng/L) could induce an antioxidant response, result in triglyceride accumulation, and increase adipocyte formation and fatty acid intake in tilapia. However, high benzylparaben concentrations inhibit lipid deposition, presumably due to the effects of the antioxidant system, and induce tissue inflammation. Therefore, this study provides new insights into the toxic effects and potential mechanism of benzylparaben in fish, especially from the aspect of lipid metabolism.
Collapse
Affiliation(s)
- Hongxing Lin
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Yongyi Jia
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China.
| | - Chuyan Xia
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
12
|
Ahn GR, Park HJ, Koh YG, Shin SH, Kim YJ, Song MG, Lee JO, Hong HK, Lee KB, Kim BJ. Low-intensity cold atmospheric plasma reduces wrinkles on photoaged skin through hormetic induction of extracellular matrix protein expression in dermal fibroblasts. Lasers Surg Med 2022; 54:978-993. [PMID: 35662062 DOI: 10.1002/lsm.23559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Recent evidence indicates that cold atmospheric plasma (CAP) can upregulate the production of extracellular matrix (ECM) proteins in dermal fibroblasts and enhance transdermal drug delivery when applied at a low intensity. OBJECTIVES The aim of this study was to evaluate the effect of low-intensity CAP (LICAP) on photoaging-induced wrinkles in an animal model and the expression profiles of ECM proteins in human dermal fibroblasts. METHODS Each group was subjected to photoaging induction and allocated to therapy (LICAP, topical polylactic acid (PLA), or both). The wrinkles were evaluated via visual inspection, quantitative analysis, and histology. The expression of collagen I/III and fibronectin was assessed using reverse transcription-quantitative polymerase chain reaction, western blot analysis, and immunofluorescence. The amount of aqueous reactive species produced by LICAP using helium and argon gas was also measured. RESULTS Wrinkles significantly decreased in all treatment groups compared to those in the untreated control. The differences remained significant for at least 4 weeks. Dermal collagen density increased following LICAP and PLA application. LICAP demonstrated a hormetic effect on ECM protein expression in human dermal fibroblasts. The production of reactive species increased, showing a biphasic pattern, with an initial linear phase and a slow saturation phase. The initial linearity was sustained for a longer time in the helium plasma (~60 s) than in the argon plasma (~15 s). CONCLUSION LICAP appears to be a novel treatment option for wrinkles on the photodamaged skin. This treatment effect seems to be related to its hormetic effect on dermal ECM production.
Collapse
Affiliation(s)
- Ga Ram Ahn
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hyung Joon Park
- Department of Interdisciplinary Bio/Micro System Technology, College of Engineering, Korea University, Seoul, Korea
| | - Young Gue Koh
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Sun Hye Shin
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yu Jin Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Min Gyo Song
- School of Biomedical Engineering, Korea University, Seoul, Korea
| | - Jung Ok Lee
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hyuck Ki Hong
- Human IT Convergence System R&D Division, Korea Electronics Technology Institute, Seongnam-Si, Gyeonggi-do, Korea
| | - Kyu Back Lee
- Department of Interdisciplinary Bio/Micro System Technology, College of Engineering, Korea University, Seoul, Korea.,School of Biomedical Engineering, Korea University, Seoul, Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Tian JJ, Levy M, Zhang X, Sinnott R, Maddela R. Counteracting Health Risks by Modulating Homeostatic Signaling. Pharmacol Res 2022; 182:106281. [PMID: 35661711 DOI: 10.1016/j.phrs.2022.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Homeostasis was initially conceptualized by Bernard and Cannon around a century ago as a steady state of physiological parameters that vary within a certain range, such as blood pH, body temperature, and heart rate1,2. The underlying mechanisms that maintain homeostasis are explained by negative feedbacks that are executed by the neuronal, endocrine, and immune systems. At the cellular level, homeostasis, such as that of redox and energy steady state, also exists and is regulated by various cell signaling pathways. The induction of homeostatic mechanism is critical for human to adapt to various disruptive insults (stressors); while on the other hand, adaptation occurs at the expense of other physiological processes and thus runs the risk of collateral damages, particularly under conditions of chronic stress. Conceivably, anti-stress protection can be achieved by stressor-mimicking medicinals that elicit adaptive responses prior to an insult and thereby serve as health risk countermeasures; and in situations where maladaptation may occur, downregulating medicinals could be used to suppress the responses and prevent subsequent pathogenesis. Both strategies are preemptive interventions particularly suited for individuals who carry certain lifestyle, environmental, or genetic risk factors. In this article, we will define and characterize a new modality of prophylactic intervention that forestalls diseases via modulating homeostatic signaling. Moreover, we will provide evidence from the literature that support this concept and distinguish it from other homeostasis-related interventions such as adaptogen, hormesis, and xenohormesis.
Collapse
Affiliation(s)
- Junqiang J Tian
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA.
| | - Mark Levy
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Xuekai Zhang
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing100029, China; US Center for Chinese Medicine, 14801 Physicians lane, 171 A 2nd Floor, #281, Rockville MD 20850, USA
| | - Robert Sinnott
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Rolando Maddela
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| |
Collapse
|
14
|
XENOHORMESIS UNDERLYES THE ANTI-AGING AND HEALTHY PROPERTIES OF OLIVE POLYPHENOLS. Mech Ageing Dev 2022; 202:111620. [PMID: 35033546 DOI: 10.1016/j.mad.2022.111620] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
Abstract
The paper provides a comprehensive and foundational mechanistic framework of hormesis that establishes its centrality in medicine and public health. This hormetic framework is applied to the assessment of olive polyphenols with respect to their capacity to slow the onset and reduce the magnitude of a wide range of age-related disorders and neurodegenerative diseases, including Alzheimer's Disease and Parkinson's Disease. It is proposed that olive polyphenol-induced anti-inflammatory protective effects are mediated in large part via the activation of AMPK and the upregulation of Nrf2 pathway. Consistently, herein we also review the importance of the modulation of Nrf2-related stress responsive vitagenes by olive polyphenols, which at low concentration according to the hormesis theory activates this neuroprotective cascade to preserve brain health and its potential use in the prevention and therapy against aging and age-related cognitive disorders in humans.
Collapse
|
15
|
Li Z, Zhang M, Haenen GRMM, Vervoort L, Moalin M. Flavonoids Seen through the Energy Perspective. Int J Mol Sci 2021; 23:187. [PMID: 35008613 PMCID: PMC8745170 DOI: 10.3390/ijms23010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
In all life forms, opposing forces provide the energy that flows through networks in an organism, which fuels life. In this concept, health is the ability of an organism to maintain the balance between these opposing forces, which creates resilience, and a deranged flow of energy is the basis for diseases. Treatment should focus on adjusting the deranged flow of energy, e.g., by the redox modulating activity of antioxidants. A major group of antioxidants is formed by flavonoids, a group of polyphenolic compounds abundantly present in our diet. The objective here is to review how the redox modulation by flavonoids fits in the various concepts on the mode of action of bioactive compounds, so we can 'see' where there is overlap and where the missing links are. Based on this fundament, we should choose our research path aiming to 'understand' the redox modulating profile of specific flavonoids, so we can ultimately rationally apply the redox modulating power of flavonoids to improve our health.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Z.L.); (L.V.); (M.M.)
| | - Ming Zhang
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China
| | - Guido R. M. M. Haenen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Z.L.); (L.V.); (M.M.)
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Lily Vervoort
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Z.L.); (L.V.); (M.M.)
| | - Mohamed Moalin
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Z.L.); (L.V.); (M.M.)
- Research Centre Material Sciences, Zuyd University of Applied Science, 6400 AN Heerlen, The Netherlands
| |
Collapse
|
16
|
Skaperda Z, Tekos F, Vardakas P, Nepka C, Kouretas D. Reconceptualization of Hormetic Responses in the Frame of Redox Toxicology. Int J Mol Sci 2021; 23:ijms23010049. [PMID: 35008472 PMCID: PMC8744777 DOI: 10.3390/ijms23010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 02/01/2023] Open
Abstract
Cellular adaptive mechanisms emerging after exposure to low levels of toxic agents or stressful stimuli comprise an important biological feature that has gained considerable scientific interest. Investigations of low-dose exposures to diverse chemical compounds signify the non-linear mode of action in the exposed cell or organism at such dose levels in contrast to the classic detrimental effects induced at higher ones, a phenomenon usually referred to as hormesis. The resulting phenotype is a beneficial effect that tests our physiology within the limits of our homeostatic adaptations. Therefore, doses below the region of adverse responses are of particular interest and are specified as the hormetic gain zone. The manifestation of redox adaptations aiming to prevent from disturbances of redox homeostasis represent an area of particular interest in hormetic responses, observed after exposure not only to stressors but also to compounds of natural origin, such as phytochemicals. Findings from previous studies on several agents demonstrate the heterogeneity of the specific zone in terms of the molecular events occurring. Major factors deeply involved in these biphasic phenomena are the bioactive compound per se, the dose level, the duration of exposure, the cell, tissue or even organ exposed to and, of course, the biomarker examined. In the end, the molecular fate is a complex toxicological event, based on beneficial and detrimental effects, which, however, are poorly understood to date.
Collapse
Affiliation(s)
- Zoi Skaperda
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (Z.S.); (F.T.); (P.V.)
| | - Fotios Tekos
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (Z.S.); (F.T.); (P.V.)
| | - Periklis Vardakas
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (Z.S.); (F.T.); (P.V.)
| | - Charitini Nepka
- Department of Pathology, University Hospital of Larissa, 41334 Larissa, Greece;
| | - Demetrios Kouretas
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (Z.S.); (F.T.); (P.V.)
- Correspondence: ; Tel.: +30-2410-565-277; Fax: +30-2410-565-293
| |
Collapse
|
17
|
McWilliams S, Carter W, Cooper-Mullin C, DeMoranville K, Frawley A, Pierce B, Skrip M. How Birds During Migration Maintain (Oxidative) Balance. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.742642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Animals dynamically adjust their physiology and behavior to survive in changing environments, and seasonal migration is one life stage that demonstrates these dynamic adjustments. As birds migrate between breeding and wintering areas, they incur physiological demands that challenge their antioxidant system. Migrating birds presumably respond to these oxidative challenges by up-regulating protective endogenous systems or accumulating dietary antioxidants at stopover sites, although our understanding of the pre-migration preparations and mid-migration responses of birds to such oxidative challenges is as yet incomplete. Here we review evidence from field and captive-bird studies that address the following questions: (1) Do migratory birds build antioxidant capacity as they build fat stores in preparation for long flights? (2) Is oxidative damage an inevitable consequence of oxidative challenges such as flight, and, if so, how is the extent of damage affected by factors such as the response of the antioxidant system, the level of energetic challenge, and the availability of dietary antioxidants? (3) Do migratory birds ‘recover’ from the oxidative damage accrued during long-duration flights, and, if so, does the pace of this rebalancing of oxidative status depend on the quality of the stopover site? The answer to all these questions is a qualified ‘yes’ although ecological factors (e.g., diet and habitat quality, geographic barriers to migration, and weather) affect how the antioxidant system responds. Furthermore, the pace of this dynamic physiological response remains an open question, despite its potential importance for shaping outcomes on timescales ranging from single flights to migratory journeys. In sum, the antioxidant system of birds during migration is impressively dynamic and responsive to environmental conditions, and thus provides ample opportunities to study how the physiology of migratory birds responds to a changing and challenging world.
Collapse
|
18
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
19
|
Mostafa AA, El-Sayed MMH, Emam AN, Abd-Rabou AA, Dawood RM, Oudadesse H. Bioactive glass doped with noble metal nanoparticles for bone regeneration: in vitro kinetics and proliferative impact on human bone cell line. RSC Adv 2021; 11:25628-25638. [PMID: 35478889 PMCID: PMC9036971 DOI: 10.1039/d1ra03876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
This work investigates the bioactivity of novel silver-doped (BG-Ag) and gold-doped (BG-Au) quaternary 46S6 bioactive glasses synthesized via a semi-solid-state technique. A pseudo-second-order kinetic model successfully predicted the in vitro uptake kinetic profiles of the initial ion-exchange release of Ca in simulated body fluid, the subsequent Si release, and finally, the adsorption of Ca and P onto the bioactive glasses. Doping with silver nanoparticles enhanced the rate of P uptake by up to approximately 90%; whereas doping with gold nanoparticles improved Ca and P uptake rates by up to about 7 and 2 times, respectively; as well as Ca uptake capacity by up to about 19%. The results revealed that the combined effect of Ca and Si release, and possibly the release of silver and gold ions into solution, influenced apatite formation due to their effect on Ca and P uptake rate and capacity. In general, gold-doped bioactive glasses are favoured for enhancing Ca and P uptake rates in addition to Ca uptake capacity. However, silver-doped bioactive glasses being less expensive can be utilized for applications targeting rapid healing. In vitro studies showed that BG, BG-Ag and BG-Au had no cytotoxic effects on osteosarcoma MG-63 cells, while they exhibited a remarkable cell proliferation even at low concentration. The prepared bioactive glass doped with noble metal nanoparticles could be potentially used in bone regeneration applications.
Collapse
Affiliation(s)
- Amany A Mostafa
- Refractories, Ceramics and Building Materials Department (Biomaterials Group), National Research Centre (NRC) El Bohouth St., Dokki 12622 Cairo Egypt
- Nanomedicine & Tissue Engineering Lab., Medical Research Center of Excellence (MRCE), NRC Egypt
| | - Mayyada M H El-Sayed
- Chemistry Department, School of Sciences and Engineering, American University in Cairo AUC Avenue New Cairo 11835 Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department (Biomaterials Group), National Research Centre (NRC) El Bohouth St., Dokki 12622 Cairo Egypt
- Nanomedicine & Tissue Engineering Lab., Medical Research Center of Excellence (MRCE), NRC Egypt
| | - Ahmed A Abd-Rabou
- Hormones Department, Medical Research Division, National Research Centre Dokki Giza Egypt
| | - Reham M Dawood
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre 33 EL Bohouth Street Dokki Giza 12622 Egypt
| | - Hassane Oudadesse
- Universite de Rennes 1, UMR CNRS 6226 263 Avenue du Général Leclerc 35042 Rennes Cedex France
| |
Collapse
|
20
|
Hitchler MJ, Domann FE. The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in development. Free Radic Biol Med 2021; 170:70-84. [PMID: 33450377 PMCID: PMC8217084 DOI: 10.1016/j.freeradbiomed.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
The development of multicellular organisms involves the unpacking of a complex genetic program. Extensive characterization of discrete developmental steps has revealed the genetic program is controlled by an epigenetic state. Shifting the epigenome is a group of epigenetic enzymes that modify DNA and proteins to regulate cell type specific gene expression. While the role of these modifications in development has been established, the input(s) responsible for electing changes in the epigenetic state remains unknown. Development is also associated with dynamic changes in cellular metabolism, redox, free radical production, and oxygen availability. It has previously been postulated that these changes are causal in development by affecting gene expression. This suggests that oxygen is a morphogenic compound that impacts the removal of epigenetic marks. Likewise, metabolism and reactive oxygen species influence redox signaling through iron and glutathione to limit the availability of key epigenetic cofactors such as α-ketoglutarate, ascorbate, NAD+ and S-adenosylmethionine. Given the close relationship between these cofactors and epigenetic marks it seems likely that the two are linked. Here we describe how changing these inputs might affect the epigenetic state during development to drive gene expression. Combined, these cofactors and reactive oxygen species constitute the epigenetic landscape guiding cells along differing developmental paths.
Collapse
Affiliation(s)
- Michael J Hitchler
- Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center, 4950 Sunset Blvd, Los Angeles, CA, 90027, USA.
| | - Frederick E Domann
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
21
|
Dose-Dependent Effects of Cold Atmospheric Argon Plasma on the Mesenchymal Stem and Osteosarcoma Cells In Vitro. Int J Mol Sci 2021; 22:ijms22136797. [PMID: 34202684 PMCID: PMC8269077 DOI: 10.3390/ijms22136797] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 01/07/2023] Open
Abstract
The antimicrobial, anti-inflammatory and tissue-stimulating effects of cold argon atmospheric plasma (CAAP) accelerate its use in various fields of medicine. Here, we investigated the effects of CAAP at different radiation doses on mesenchymal stem cells (MSCs) and human osteosarcoma (MNNG/HOS) cells. We observed an increase in the growth rate of MSCs at sufficiently low irradiation doses (10–15 min) of CAAP, while the growth of MNNG/HOS cells was slowed down to 41% at the same irradiation doses. Using flow cytometry, we found that these effects are associated with cell cycle arrest and extended death of cancer cells by necrosis. Reactive oxygen species (ROS) formation was detected in both types of cells after 15 min of CAAP treatment. Evaluation of the genes’ transcriptional activity showed that exposure to low doses of CAAP activates the expression of genes responsible for proliferation, DNA replication, and transition between phases of the cell cycle in MSCs. There was a decrease in the transcriptional activity of most of the studied genes in MNNG/HOS osteosarcoma cancer cells. However, increased transcription of osteogenic differentiation genes was observed in normal and cancer cells. The selective effects of low and high doses of CAAP treatment on cancer and normal cells that we found can be considered in terms of hormesis. The low dose of cold argon plasma irradiation stimulated the vital processes in stem cells due to the slight generation of reactive oxygen species. In cancer cells, the same doses evidently lead to the formation of oxidative stress, which was accompanied by a proliferation inhibition and cell death. The differences in the cancer and normal cells’ responses are probably due to different sensitivity to exogenous oxidative stress. Such a selective effect of CAAP action can be used in the combined therapy of oncological diseases such as skin neoplasms, or for the removal of remaining cancer cells after surgical removal of a tumor.
Collapse
|
22
|
Kurpik M, Zalewski P, Kujawska M, Ewertowska M, Ignatowicz E, Cielecka-Piontek J, Jodynis-Liebert J. Can Cranberry Juice Protect against Rotenone-Induced Toxicity in Rats? Nutrients 2021; 13:nu13041050. [PMID: 33805023 PMCID: PMC8063919 DOI: 10.3390/nu13041050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022] Open
Abstract
The high polyphenols content of cranberry accounts for its strong antioxidant activity underlying the beneficial health effects of this fruit. Rotenone (ROT) is a specific inhibitor of mitochondrial complex I in the brain which leads to the generation of oxidative stress. To date, there are few data indicating that toxicity of ROT is not limited to the brain but can also affect other tissues. We aimed to examine whether ROT-induced oxidative stress could be counteracted by cranberry juice not only in the brain but also in the liver and kidney. Wistar rats were given the combined treatment with ROT and cranberry juice (CJ) for 35 days. Parameters of antioxidant status were determined in the organs. ROT enhanced lipid peroxidation solely in the brain. The increase in the DNA damage was noticed in all organs examined and in leukocytes. The beneficial effect of CJ on these parameters appeared only in the brain. Additionally, CJ decreased the activity of serum hepatic enzymes. The effect of CJ on antioxidant enzymes was not consistent, however, in some organs, CJ reversed changes evoked by ROT. Summing up, ROT can cause oxidative damage not only in the brain but also in other organs. CJ demonstrated a protective effect against ROT-induced toxicity.
Collapse
Affiliation(s)
- Monika Kurpik
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| | - Przemysław Zalewski
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (P.Z.); (J.C.-P.)
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
- Correspondence: ; Tel.: +48-61-847-20-81 (ext. 156)
| | - Małgorzata Ewertowska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| | - Ewa Ignatowicz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (P.Z.); (J.C.-P.)
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| |
Collapse
|
23
|
Less Can Be More: The Hormesis Theory of Stress Adaptation in the Global Biosphere and Its Implications. Biomedicines 2021; 9:biomedicines9030293. [PMID: 33805626 PMCID: PMC8000639 DOI: 10.3390/biomedicines9030293] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
A dose-response relationship to stressors, according to the hormesis theory, is characterized by low-dose stimulation and high-dose inhibition. It is non-linear with a low-dose optimum. Stress responses by cells lead to adapted vitality and fitness. Physical stress can be exerted through heat, radiation, or physical exercise. Chemical stressors include reactive species from oxygen (ROS), nitrogen (RNS), and carbon (RCS), carcinogens, elements, such as lithium (Li) and silicon (Si), and metals, such as silver (Ag), cadmium (Cd), and lead (Pb). Anthropogenic chemicals are agrochemicals (phytotoxins, herbicides), industrial chemicals, and pharmaceuticals. Biochemical stress can be exerted through toxins, medical drugs (e.g., cytostatics, psychopharmaceuticals, non-steroidal inhibitors of inflammation), and through fasting (dietary restriction). Key-lock interactions between enzymes and substrates, antigens and antibodies, antigen-presenting cells, and cognate T cells are the basics of biology, biochemistry, and immunology. Their rules do not obey linear dose-response relationships. The review provides examples of biologic stressors: oncolytic viruses (e.g., immuno-virotherapy of cancer) and hormones (e.g., melatonin, stress hormones). Molecular mechanisms of cellular stress adaptation involve the protein quality control system (PQS) and homeostasis of proteasome, endoplasmic reticulum, and mitochondria. Important components are transcription factors (e.g., Nrf2), micro-RNAs, heat shock proteins, ionic calcium, and enzymes (e.g., glutathion redox enzymes, DNA methyltransferases, and DNA repair enzymes). Cellular growth control, intercellular communication, and resistance to stress from microbial infections involve growth factors, cytokines, chemokines, interferons, and their respective receptors. The effects of hormesis during evolution are multifarious: cell protection and survival, evolutionary flexibility, and epigenetic memory. According to the hormesis theory, this is true for the entire biosphere, e.g., archaia, bacteria, fungi, plants, and the animal kingdoms.
Collapse
|
24
|
Sthijns MMJPE, Jetten MJ, Mohammed SG, Claessen SMH, de Vries RHW, Stell A, de Bont DFA, Engelse MA, Mumcuoglu D, van Blitterswijk CA, Dankers PYW, de Koning EJP, van Apeldoorn AA, LaPointe VLS. Oxidative stress in pancreatic alpha and beta cells as a selection criterion for biocompatible biomaterials. Biomaterials 2020; 267:120449. [PMID: 33129188 DOI: 10.1016/j.biomaterials.2020.120449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
The clinical success rate of islet transplantation, namely independence from insulin injections, is limited by factors that lead to graft failure, including inflammation, acute ischemia, acute phase response, and insufficient vascularization. The ischemia and insufficient vascularization both lead to high levels of oxidative stress, which are further aggravated by islet encapsulation, inflammation, and undesirable cell-biomaterial interactions. To identify biomaterials that would not further increase damaging oxidative stress levels and that are also suitable for manufacturing a beta cell encapsulation device, we studied five clinically approved polymers for their effect on oxidative stress and islet (alpha and beta cell) function. We found that 300 poly(ethylene oxide terephthalate) 55/poly(butylene terephthalate) 45 (PEOT/PBT300) was more resistant to breakage and more elastic than other biomaterials, which is important for its immunoprotective function. In addition, it did not induce oxidative stress or reduce viability in the MIN6 beta cell line, and even promoted protective endogenous antioxidant expression over 7 days. Importantly, PEOT/PBT300 is one of the biomaterials we studied that did not interfere with insulin secretion in human islets.
Collapse
Affiliation(s)
- Mireille M J P E Sthijns
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Marlon J Jetten
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Sami G Mohammed
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Sandra M H Claessen
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Rick H W de Vries
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Adam Stell
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Denise F A de Bont
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Marten A Engelse
- Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Didem Mumcuoglu
- Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Clemens A van Blitterswijk
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Eelco J P de Koning
- Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands; Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Aart A van Apeldoorn
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
25
|
Li Z, Moalin M, Zhang M, Vervoort L, Hursel E, Mommers A, Haenen GRMM. The Flow of the Redox Energy in Quercetin during Its Antioxidant Activity in Water. Int J Mol Sci 2020; 21:E6015. [PMID: 32825576 PMCID: PMC7504380 DOI: 10.3390/ijms21176015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 11/17/2022] Open
Abstract
Most studies on the antioxidant activity of flavonoids like Quercetin (Q) do not consider that it comprises a series of sequential reactions. Therefore, the present study examines how the redox energy flows through the molecule during Q's antioxidant activity, by combining experimental data with quantum calculations. It appears that several main pathways are possible. Pivotal are subsequently: deprotonation of the 7-OH group; intramolecular hydrogen transfer from the 3-OH group to the 4-Oxygen atom; electron transfer leading to two conformers of the Q radical; deprotonation of the OH groups in the B-ring, leading to three different deprotonated Q radicals; and finally electron transfer of each deprotonated Q radical to form the corresponding quercetin quinones. The quinone in which the carbonyl groups are the most separated has the lowest energy content, and is the most abundant quinone. The pathways are also intertwined. The calculations show that Q can pick up redox energy at various sites of the molecule which explains Q's ability to scavenge all sorts of reactive oxidizing species. In the described pathways, Q picked up, e.g., two hydroxyl radicals, which can be processed and softened by forming quercetin quinone.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Mohamed Moalin
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
- Research Centre Material Sciences, Zuyd University of Applied Sciences, 6419 DJ Heerlen, The Netherlands
| | - Ming Zhang
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Lily Vervoort
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Erik Hursel
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Alex Mommers
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Guido R. M. M. Haenen
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| |
Collapse
|
26
|
Hosseini M, Mozafari M. Cerium Oxide Nanoparticles: Recent Advances in Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3072. [PMID: 32660042 PMCID: PMC7411590 DOI: 10.3390/ma13143072] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Submicron biomaterials have recently been found with a wide range of applications for biomedical purposes, mostly due to a considerable decrement in size and an increment in surface area. There have been several attempts to use innovative nanoscale biomaterials for tissue repair and tissue regeneration. One of the most significant metal oxide nanoparticles (NPs), with numerous potential uses in future medicine, is engineered cerium oxide (CeO2) nanoparticles (CeONPs), also known as nanoceria. Although many advancements have been reported so far, nanotoxicological studies suggest that the nanomaterial's characteristics lie behind its potential toxicity. Particularly, physicochemical properties can explain the positive and negative interactions between CeONPs and biosystems at molecular levels. This review represents recent advances of CeONPs in biomedical engineering, with a special focus on tissue engineering and regenerative medicine. In addition, a summary report of the toxicity evidence on CeONPs with a view toward their biomedical applications and physicochemical properties is presented. Considering the critical role of nanoengineering in the manipulation and optimization of CeONPs, it is expected that this class of nanoengineered biomaterials plays a promising role in the future of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran;
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
| |
Collapse
|
27
|
Smith RE. The Effects of Dietary Supplements that Overactivate the Nrf2/ARE System. Curr Med Chem 2020; 27:2077-2094. [DOI: 10.2174/0929867326666190517113533] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 01/31/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
Background:
Inflammation is one of the most misunderstood aspects of human
health. People have been encouraged to eat foods that have a high antioxidant capacity, and in
vitro tests for total antioxidant capacity emerged. They were based on measuring the destruction
of oxidized test compounds in direct reactions with the antioxidants in foods. Many dietary
supplements arrived in the market. They contained purified antioxidants, such as resveratrol
and EGCG that were and still are widely assumed by many to be quite healthy at any
dose.
Methods:
The literature on inflammation and the Nrf2/ARE antioxidant system was searched
systematically. Articles from prestigious, peer-reviewed journals were obtained and read. The
information obtained from them was used to write this review article.
Results:
Over 150 articles and books were read. The information obtained from them showed
that very few dietary antioxidants exert their effects by reacting directly with Reactive Oxygen
and Nitrogen Species (RONS). Instead, most of the effective antioxidants activate the endogenous
Nrf2/ARE antioxidant system. This helps prevent smoldering inflammation and the
diseases that it can cause. However, when overactivated or activated constitutively, the
Nrf2/ARE antioxidant system can cause some of these diseases, including many types of
multidrug resistant cancer, autoimmune, neurodegenerative and cardiovascular diseases.
Conclusion:
Even though green tea, as well as many fruits, vegetables and spices are quite
healthy, dietary supplements that deliver much higher doses of antioxidants may not be. People
who are diagnosed with cancer and plan to start chemotherapy and/or radiotherapy should
probably avoid such supplements. This is because multidrug resistant tumors can hijack and
overactivate the Nrf2/ARE antioxidant system.
Collapse
|
28
|
Li Z, Moalin M, Zhang M, Vervoort L, Mommers A, Haenen GR. Delocalization of the Unpaired Electron in the Quercetin Radical: Comparison of Experimental ESR Data with DFT Calculations. Int J Mol Sci 2020; 21:E2033. [PMID: 32188142 PMCID: PMC7139295 DOI: 10.3390/ijms21062033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
In the antioxidant activity of quercetin (Q), stabilization of the energy in the quercetin radical (Q•) by delocalization of the unpaired electron (UE) in Q• is pivotal. The aim of this study is to further examine the delocalization of the UE in Q•, and to elucidate the importance of the functional groups of Q for the stabilization of the UE by combining experimentally obtained spin resonance spectroscopy (ESR) measurements with theoretical density functional theory (DFT) calculations. The ESR spectrum and DFT calculation of Q• and structurally related radicals both suggest that the UE of Q• is mostly delocalized in the B ring and partly on the AC ring. The negatively charged oxygen groups in the B ring (3' and 4') of Q• have an electron-donating effect that attract and stabilize the UE in the B ring. Radicals structurally related to Q• indicate that the negatively charged oxygen at 4' has more of an effect on concentrating the UE in ring B than the negatively charged oxygen at 3'. The DFT calculation showed that an OH group at the 3-position of the AC ring is essential for concentrating the radical on the C2-C3 double bond. All these effects help to explain how the high energy of the UE is captured and a stable Q• is generated, which is pivotal in the antioxidant activity of Q.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
| | - Mohamed Moalin
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
- Research Centre Material Sciences, Zuyd University of Applied Sciences, 6419 DJ Heerlen, The Netherlands
| | - Ming Zhang
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
| | - Lily Vervoort
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
| | - Alex Mommers
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
| | - Guido R.M.M. Haenen
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
| |
Collapse
|
29
|
Agathokleous E, Calabrese EJ. A global environmental health perspective and optimisation of stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135263. [PMID: 31836236 DOI: 10.1016/j.scitotenv.2019.135263] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 05/17/2023]
Abstract
The phrase "what doesn't kill us makes us stronger" suggests the possibility that living systems have evolved a spectrum of adaptive mechanisms resulting in a biological stress response strategy that enhances resilience in a targeted quantifiable manner for amplitude and duration. If so, what are its evolutionary foundations and impact on biological diversity? Substantial research demonstrates that numerous agents enhance biological performance and resilience at low doses in a manner described by the hormetic dose response, being inhibitory and/or harmful at higher doses. This Review assesses how environmental changes impact the spectrum and intensity of biological stresses, how they affect health, and how such knowledge may improve strategies in confronting global environmental change.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| | - Edward J Calabrese
- Professor of Toxicology, Department of Environmental Health Sciences, Morrill I, N344; University of Massachusetts, Amherst, MA 01003 USA
| |
Collapse
|
30
|
Li H, Huang X, Zhan A. Stress Memory of Recurrent Environmental Challenges in Marine Invasive Species: Ciona robusta as a Case Study. Front Physiol 2020; 11:94. [PMID: 32116797 PMCID: PMC7031352 DOI: 10.3389/fphys.2020.00094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Fluctuating environmental changes impose tremendous stresses on sessile organisms in marine ecosystems, in turn, organisms develop complex response mechanisms to keep adaptive homeostasis for survival. Physiological plasticity is one of the primary lines of defense against environmental challenges, and such defense often relies on the antioxidant defense system (ADS). Hence, it is imperative to understand response mechanisms of ADS to fluctuating environments. Invasive species provide excellent models to study how species cope with environmental stresses, as invasive species encounter sudden, and often recurrent, extensive environmental challenges during the whole invasion process. Here, we studied the roles of ADS on rapid response to recurrent cold challenges in a highly invasive tunicate (Ciona robusta) by simulating cold stresses during its invasion process. We assessed antioxidative indicators, including malondialdehyde (MDA), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), as well as transcriptional changes of ADS-related genes to reveal the physiological plasticity under recurring cold stresses. Our results demonstrated that physiological homeostasis relied on the resilience of ADS, which further accordingly tuned antioxidant activity and gene expression to changing environments. The initial cold stress remodeled baselines of ADS to promote the development of stress memory, and subsequent stress memory largely decreased the physiological response to recurrent environmental challenges. All results here suggest that C. robusta could develop stress memory to maintain physiological homeostasis in changing or harsh environments. The results obtained in this study provide new insights into the mechanism of rapid physiological adaption during biological invasions.
Collapse
Affiliation(s)
- Hanxi Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xuena Huang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aibin Zhan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Cherkas A, Holota S, Mdzinarashvili T, Gabbianelli R, Zarkovic N. Glucose as a Major Antioxidant: When, What for and Why It Fails? Antioxidants (Basel) 2020; 9:antiox9020140. [PMID: 32033390 PMCID: PMC7070274 DOI: 10.3390/antiox9020140] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
A human organism depends on stable glucose blood levels in order to maintain its metabolic needs. Glucose is considered to be the most important energy source, and glycolysis is postulated as a backbone pathway. However, when the glucose supply is limited, ketone bodies and amino acids can be used to produce enough ATP. In contrast, for the functioning of the pentose phosphate pathway (PPP) glucose is essential and cannot be substituted by other metabolites. The PPP generates and maintains the levels of nicotinamide adenine dinucleotide phosphate (NADPH) needed for the reduction in oxidized glutathione and protein thiols, the synthesis of lipids and DNA as well as for xenobiotic detoxification, regulatory redox signaling and counteracting infections. The flux of glucose into a PPP—particularly under extreme oxidative and toxic challenges—is critical for survival, whereas the glycolytic pathway is primarily activated when glucose is abundant, and there is lack of NADP+ that is required for the activation of glucose-6 phosphate dehydrogenase. An important role of glycogen stores in resistance to oxidative challenges is discussed. Current evidences explain the disruptive metabolic effects and detrimental health consequences of chronic nutritional carbohydrate overload, and provide new insights into the positive metabolic effects of intermittent fasting, caloric restriction, exercise, and ketogenic diet through modulation of redox homeostasis.
Collapse
Affiliation(s)
- Andriy Cherkas
- Department of Internal Medicine # 1, Lviv National Medical University, 79010 Lviv, Ukraine
- Correspondence:
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Lviv National Medical University, 79010 Lviv, Ukraine;
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Eastern European National University, 43025 Lutsk, Ukraine
| | - Tamaz Mdzinarashvili
- Institute of Medical and Applied Biophysics, I. Javakhishvili Tbilisi State University, 0128 Tbilisi, Georgia;
| | - Rosita Gabbianelli
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Institute “Rudjer Boskovic”, HR-10000 Zagreb, Croatia;
| |
Collapse
|
32
|
Albulescu R, Popa AC, Enciu AM, Albulescu L, Dudau M, Popescu ID, Mihai S, Codrici E, Pop S, Lupu AR, Stan GE, Manda G, Tanase C. Comprehensive In Vitro Testing of Calcium Phosphate-Based Bioceramics with Orthopedic and Dentistry Applications. MATERIALS 2019; 12:ma12223704. [PMID: 31717621 PMCID: PMC6888321 DOI: 10.3390/ma12223704] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Recently, a large spectrum of biomaterials emerged, with emphasis on various pure, blended, or doped calcium phosphates (CaPs). Although basic cytocompatibility testing protocols are referred by International Organization for Standardization (ISO) 10993 (parts 1-22), rigorous in vitro testing using cutting-edge technologies should be carried out in order to fully understand the behavior of various biomaterials (whether in bulk or low-dimensional object form) and to better gauge their outcome when implanted. In this review, current molecular techniques are assessed for the in-depth characterization of angiogenic potential, osteogenic capability, and the modulation of oxidative stress and inflammation properties of CaPs and their cation- and/or anion-substituted derivatives. Using such techniques, mechanisms of action of these compounds can be deciphered, highlighting the signaling pathway activation, cross-talk, and modulation by microRNA expression, which in turn can safely pave the road toward a better filtering of the truly functional, application-ready innovative therapeutic bioceramic-based solutions.
Collapse
Affiliation(s)
- Radu Albulescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department Pharmaceutical Biotechnology, National Institute for Chemical-Pharmaceutical R&D, 031299, Bucharest, Romania
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, 077125 Magurele, Romania (G.E.S.)
- Army Centre for Medical Research, 010195 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Lucian Albulescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Maria Dudau
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Simona Mihai
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Elena Codrici
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Sevinci Pop
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Andreea-Roxana Lupu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania
| | - George E. Stan
- National Institute of Materials Physics, 077125 Magurele, Romania (G.E.S.)
| | - Gina Manda
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Cajal Institute, Titu Maiorescu University, 004051 Bucharest, Romania
- Correspondence:
| |
Collapse
|
33
|
Koval L, Proshkina E, Shaposhnikov M, Moskalev A. The role of DNA repair genes in radiation-induced adaptive response in Drosophila melanogaster is differential and conditional. Biogerontology 2019; 21:45-56. [PMID: 31624983 DOI: 10.1007/s10522-019-09842-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Studies in human and mammalian cell cultures have shown that induction of DNA repair mechanisms is required for the formation of stimulation effects of low doses of ionizing radiation, named "hormesis". Nevertheless, the role of cellular defense mechanisms in the formation of radiation-induced hormesis at the level of whole organism remains poorly studied. The aim of this work was to investigate the role of genes involved in different mechanisms and stages of DNA repair in radioadaptive response and radiation hormesis by lifespan parameters in Drosophila melanogaster. We studied genes that control DNA damage sensing (D-Gadd45, Hus1, mnk), nucleotide excision repair (mei-9, mus210, Mus209), base excision repair (Rrp1), DNA double-stranded break repair by homologous recombination (Brca2, spn-B, okr) and non-homologous end joining (Ku80, WRNexo), and the Mus309 gene that participates in several mechanisms of DNA repair. The obtained results demonstrate that in flies with mutations in studied genes radioadaptive response and radiation hormesis are absent or appear to a lesser extent than in wild-type Canton-S flies. Chronic exposure of γ-radiation in a low dose during pre-imaginal stages of development leads to an increase in expression of the studied DNA repair genes, which is maintained throughout the lifespan of flies. However, the activation of conditional ubiquitous overexpression of DNA repair genes does not induce resistance to an acute exposure to γ-radiation and reinforces its negative impact.
Collapse
Affiliation(s)
- Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Komi Republic, Russian Federation, 167982
- Pitirim Sorokin Syktyvkar State University, Syktyvkar, Komi Republic, Russian Federation, 167000
| | - Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Komi Republic, Russian Federation, 167982
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Komi Republic, Russian Federation, 167982
- Pitirim Sorokin Syktyvkar State University, Syktyvkar, Komi Republic, Russian Federation, 167000
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Komi Republic, Russian Federation, 167982.
- Pitirim Sorokin Syktyvkar State University, Syktyvkar, Komi Republic, Russian Federation, 167000.
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation, 119991.
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation, 141701.
| |
Collapse
|
34
|
ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9062098. [PMID: 31687089 PMCID: PMC6800937 DOI: 10.1155/2019/9062098] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022]
Abstract
Physical plasmas generate unique mixes of reactive oxygen and nitrogen species (RONS or ROS). Only a bit more than a decade ago, these plasmas, operating at body temperature, started to be considered for medical therapy with considerably little mechanistic redox chemistry or biomedical research existing on that topic at that time. Today, a vast body of evidence is available on physical plasma-derived ROS, from their spatiotemporal resolution in the plasma gas phase to sophisticated chemical and biochemical analysis of these species once dissolved in liquids. Data from in silico analysis dissected potential reaction pathways of plasma-derived reactive species with biological membranes, and in vitro and in vivo experiments in cell and animal disease models identified molecular mechanisms and potential therapeutic benefits of physical plasmas. In 2013, the first medical plasma systems entered the European market as class IIa devices and have proven to be a valuable resource in dermatology, especially for supporting the healing of chronic wounds. The first results in cancer patients treated with plasma are promising, too. Due to the many potentials of this blooming new field ahead, there is a need to highlight the main concepts distilled from plasma research in chemistry and biology that serve as a mechanistic link between plasma physics (how and which plasma-derived ROS are produced) and therapy (what is the medical benefit). This inevitably puts cellular membranes in focus, as these are the natural interphase between ROS produced by plasmas and translation of their chemical reactivity into distinct biological responses.
Collapse
|
35
|
Lee YM, Lee DH. Mitochondrial Toxins and Healthy Lifestyle Meet at the Crossroad of Hormesis. Diabetes Metab J 2019; 43:568-577. [PMID: 31694079 PMCID: PMC6834830 DOI: 10.4093/dmj.2019.0143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/11/2019] [Indexed: 01/15/2023] Open
Abstract
Mitochondrial function is crucial for the maintenance of cellular homeostasis under physiological and stress conditions. Thus, chronic exposure to environmental chemicals that affect mitochondrial function can have harmful effects on humans. We argue that the concept of hormesis should be revisited to explain the non-linear responses to mitochondrial toxins at a low-dose range and develop practical methods to protect humans from the negative effects of mitochondrial toxins. Of the most concern to humans are lipophilic chemical mixtures and heavy metals, owing to their physical properties. Even though these chemicals tend to demonstrate no safe level in humans, a non-linear dose-response has been also observed. Stress response activation, i.e., hormesis, can explain this non-linearity. Recently, hormesis has reemerged as a unifying concept because diverse stressors can induce similar stress responses. Besides potentially harmful environmental chemicals, healthy lifestyle interventions such as exercise, calorie restriction (especially glucose), cognitive stimulation, and phytochemical intake also activate stress responses. This conceptual link can lead to the development of practical methods that counterbalance the harm of mitochondrial toxins. Unlike chemical hormesis with its safety issues, the activation of stress responses via lifestyle modification can be safely used to combat the negative effects of mitochondrial toxins.
Collapse
Affiliation(s)
- Yu Mi Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Duk Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
36
|
Severens-Rijvers CAH, Al-Nasiry S, Vincken A, Haenen G, Winkens B, Ghossein-Doha C, Spaanderman MAE, Peeters LLH. Early-Pregnancy Circulating Antioxidant Capacity and Hemodynamic Adaptation in Recurrent Placental Syndrome: An Exploratory Study. Gynecol Obstet Invest 2019; 84:616-622. [PMID: 31357192 DOI: 10.1159/000501254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/27/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND/AIMS Placental syndromes (PS) refer to pregnancy complications that include gestational hypertension, (pre)eclampsia, HELLP syndrome, and/or placental insufficiency-induced fetal growth restriction. These disorders are characterized by increased oxidative stress. This study aims to test the hypothesis that the abnormal hemodynamic adaptation to pregnancy, typical for early PS pregnancy, is accompanied by abnormal maternal levels of antioxidants relative to those in normal pregnancy. METHODS Before, and at 12, 16, and 20 weeks pregnancy, we measured trolox equivalent antioxidant capacity (TEAC), uric acid (UA), and TEACC (TEAC corrected for UA) in maternal serum of former PS patients, who either developed recurrent PS (rPS; n = 16) or had a normal next pregnancy (non-rPS; n = 23). Concomitantly, we also measured various hemodynamic variables. RESULTS rPS differed from non-rPS by higher TEACC levels before pregnancy (178 vs. 152 µM; p = 0.02) and at 20 weeks pregnancy (180 vs. 160 µM; p = 0.04). Only non-rPS responded to pregnancy by significant rises in hemodynamic measures. CONCLUSION These data indicate that rPS pregnancies are preceded by an increase in antioxidant capacity, presumably induced by subclinical vascular injury and low-grade chronic inflammation.
Collapse
Affiliation(s)
| | - Salwan Al-Nasiry
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Annemiek Vincken
- Department of Family Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Guido Haenen
- Department of Pharmacology and Toxicology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bjorn Winkens
- Department of Methodology and Statistics, Maastricht University Medical Centre, CAPHRI Research School, Maastricht, The Netherlands
| | - Chahinda Ghossein-Doha
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marc A E Spaanderman
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Louis L H Peeters
- Department of Obstetrics, UMC Utrecht, Division "Vrouw and Baby", Utrecht, The Netherlands
| |
Collapse
|
37
|
De Tollenaere M, Meunier M, Scandolera A, Sandre J, Lambert C, Chapuis E, Auriol D, Reynaud R. Well-aging: A new strategy for skin homeostasis under multi-stressed conditions. J Cosmet Dermatol 2019; 19:444-455. [PMID: 31232507 PMCID: PMC7003805 DOI: 10.1111/jocd.13047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/19/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
Background Several studies evidenced significant increase of cortisol is the consequence of UV or emotional stress and leads to various deleterious effects in the skin. Aim The well‐aging, a new concept of lifestyle, procures an alternative to the anti‐aging strategy. We demonstrated that Tephrosia purpurea extract is able to stimulate well‐being hormones while reducing cortisol release. Furthermore, we hypothesized that the extract could positively influence the global skin homeostasis. Method We evaluated the impact of the extract on cortisol, β‐endorphin, and dopamine, released by normal human epidermal keratinocytes (NHEKs). A gene expression study was realized on NHEKs and NHDFs. The protein over‐expression of HMOX1 and NQO1 was evidenced at cellular and tissue level. Finally, we conducted a clinical study on 21 women living in a polluted environment in order to observe the impact of the active on global skin improvement. Results The extract is able to reduce significantly the cortisol release while inducing the production of β‐endorphin and dopamine. The gene expression study revealed that Tephrosia purpurea extract up‐regulated the genes involved in antioxidant response and skin renewal. Moreover, the induction of HMOX and NQO1 expression was confirmed on NHDFs, NHEKs and in RHE. We clinically demonstrated that the extract improved significantly the skin by reducing dark circles, represented by an improvement of L*, a*, and ITA parameters. Conclusion Tephrosia purpurea extract has beneficial effects on skin homeostasis through control of the well‐being state and antioxidant defenses leading to an improvement of dark circles, a clinical features particularly impacted by emotional and environmental stress.
Collapse
Affiliation(s)
| | - Marie Meunier
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| | | | - Jérôme Sandre
- Chirurgien Plasticien et Esthétique, Polyclinique de Courlancy, Reims, France
| | - Carole Lambert
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| | - Emilie Chapuis
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| | - Daniel Auriol
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| | - Romain Reynaud
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| |
Collapse
|
38
|
Guéguen Y, Bontemps A, Ebrahimian TG. Adaptive responses to low doses of radiation or chemicals: their cellular and molecular mechanisms. Cell Mol Life Sci 2019; 76:1255-1273. [PMID: 30535789 PMCID: PMC11105647 DOI: 10.1007/s00018-018-2987-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/09/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022]
Abstract
This article reviews the current knowledge on the mechanisms of adaptive response to low doses of ionizing radiation or chemical exposure. A better knowledge of these mechanisms is needed to improve our understanding of health risks at low levels of environmental or occupational exposure and their involvement in cancer or non-cancer diseases. This response is orchestrated through a multifaceted cellular program involving the concerted action of diverse stress response pathways. These evolutionary highly conserved defense mechanisms determine the cellular response to chemical and physical aggression. They include DNA damage repair (p53, ATM, PARP pathways), antioxidant response (Nrf2 pathway), immune/inflammatory response (NF-κB pathway), cell survival/death pathway (apoptosis), endoplasmic response to stress (UPR response), and other cytoprotective processes including autophagy, cell cycle regulation, and the unfolded protein response. The coordinated action of these processes induced by low-dose radiation or chemicals produces biological effects that are currently estimated with the linear non-threshold model. These effects are controversial. They are difficult to detect because of their low magnitude, the scarcity of events in humans, and the difficulty of corroborating associations over the long term. Improving our understanding of these biological consequences should help humans and their environment by enabling better risk estimates, the revision of radiation protection standards, and possible therapeutic advances.
Collapse
Affiliation(s)
- Yann Guéguen
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France.
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRSI, Fontenay-aux-Roses, France.
| | - Alice Bontemps
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France
| | - Teni G Ebrahimian
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
39
|
Zhou DR, Eid R, Boucher E, Miller KA, Mandato CA, Greenwood MT. Stress is an agonist for the induction of programmed cell death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:699-712. [DOI: 10.1016/j.bbamcr.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
|
40
|
Zhang M, Moalin M, Vervoort L, Li ZW, Wu WB, Haenen G. Connecting Western and Eastern Medicine from an Energy Perspective. Int J Mol Sci 2019; 20:E1512. [PMID: 30917563 PMCID: PMC6470590 DOI: 10.3390/ijms20061512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
Although Western medicine and Eastern medicine are worlds apart, there is a striking overlap in the basic principle of these types of medicine when we look at them from the perspective of energy. In both worlds, opposing forces provide the energy that flows through networks in an organism, which fuels life. In this concept, health is the ability of an organism to maintain the balance between these opposing forces, i.e., homeostasis (West) and harmony (East), which creates resilience. Moreover, strategies used to treat diseases are strikingly alike, namely adjusting the flow of energy by changing the connections in the network. The energy perspective provides a basis to integrate Eastern and Western medicine, and opens new directions for research to get the best of both worlds.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Mohamed Moalin
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands.
- Research Centre Material Sciences, Zuyd University of Applied Science, 6400 AN Heerlen, The Netherlands.
| | - Lily Vervoort
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Zheng Wen Li
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Wen Bo Wu
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Guido Haenen
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
41
|
Agathokleous E, Belz RG, Calatayud V, De Marco A, Hoshika Y, Kitao M, Saitanis CJ, Sicard P, Paoletti E, Calabrese EJ. Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose-response models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:61-74. [PMID: 30172135 DOI: 10.1016/j.scitotenv.2018.08.264] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 05/03/2023]
Abstract
UNLABELLED The nature of the dose-response relationship in the low dose zone and how this concept may be used by regulatory agencies for science-based policy guidance and risk assessment practices are addressed here by using the effects of surface ozone (O3) on plants as a key example for dynamic ecosystems sustainability. This paper evaluates the current use of the linear non-threshold (LNT) dose-response model for O3. The LNT model has been typically applied in limited field studies which measured damage from high exposures, and used to estimate responses to lower concentrations. This risk assessment strategy ignores the possibility of biological acclimation to low doses of stressor agents. The upregulation of adaptive responses by low O3 concentrations typically yields pleiotropic responses, with some induced endpoints displaying hormetic-like biphasic dose-response relationships. Such observations recognize the need for risk assessment flexibility depending upon the endpoints measured, background responses, as well as possible dose-time compensatory responses. Regulatory modeling strategies would be significantly improved by the adoption of the hormetic dose response as a formal/routine risk assessment option based on its substantial support within the literature, capacity to describe the entire dose-response continuum, documented explanatory dose-dependent mechanisms, and flexibility to default to a threshold feature when background responses preclude application of biphasic dose responses. CAPSULE The processes of ozone hazard and risk assessment can be enhanced by incorporating hormesis into their principles and practices.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan; Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan.
| | - Regina G Belz
- University of Hohenheim, Agroecology Unit, Hans-Ruthenberg Institute, 70593 Stuttgart, Germany.
| | - Vicent Calatayud
- Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnològic, 46980 Paterna, Valencia, Spain.
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, S. Maria di Galeria, Rome 00123, Italy.
| | - Yasutomo Hoshika
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan.
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| | - Pierre Sicard
- ARGANS, 260 route du Pin Montard, BP 234, Sophia Antipolis Cedex 06904, France.
| | - Elena Paoletti
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
42
|
Xie H, Wang P, Wu J. Effect of exposure of osteoblast-like cells to low-dose silver nanoparticles: uptake, retention and osteogenic activity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:260-267. [PMID: 30663398 DOI: 10.1080/21691401.2018.1552594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hongjun Xie
- Stomatology Department, Linyi People’s Hospital, Linyi, China
| | - Pei Wang
- Stomatology Department, Tianjin Fourth Central Hospital, Tianjin, China
| | - Jie Wu
- Stomatology Department, Shandong Medical College, Linyi, China
| |
Collapse
|
43
|
Wang D, Zhang Y, Yang S, Zhao D, Wang M. A polysaccharide from cultured mycelium of Hericium erinaceus relieves ulcerative colitis by counteracting oxidative stress and improving mitochondrial function. Int J Biol Macromol 2018; 125:572-579. [PMID: 30543884 DOI: 10.1016/j.ijbiomac.2018.12.092] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/04/2018] [Accepted: 12/09/2018] [Indexed: 12/13/2022]
Abstract
EP-1 is a polysaccharide with a molecular weight of approximately 3100 Da, which is extracted from the cultured mycelium of Hericium erinaceus. Its anti-ulcerative colitis activity was evaluated in experimental systems using rats with ulcerative colitis and Caco-2 cells as models for experimentation. Our results showed that the treatment of EP-1 could increase SOD enzyme activity as well as decrease ROS content and oxidative damage both in vivo and in vitro. As a consequence, mitochondria function improved significantly, indicated by the increase of oxygen consumption and ATP production. In addition, increased respiration activity accelerated the elimination of excessive ROS substrate and enhanced bioenergy generation. Finally, upon treatment with EP-1, apoptosis of intestinal epithelial cells was reduced and UC was relieved accordingly. Thus, EP-1 shows potential for the development of new functional foods and drugs, especially in regard to treating ulcerative colitis.
Collapse
Affiliation(s)
- Dandan Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun 130021, China; Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yanqiu Zhang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Shuang Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Daqing Zhao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun 130021, China; Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun 130021, China; Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130021, China.
| |
Collapse
|
44
|
Silva DC, Serrano L, Oliveira TMA, Mansano AS, Almeida EA, Vieira EM. Effects of parabens on antioxidant system and oxidative damages in Nile tilapia (Oreochromis niloticus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:85-91. [PMID: 29990743 DOI: 10.1016/j.ecoenv.2018.06.076] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
In this study, effects of parabens on antioxidant defenses and oxidative damages in gills and liver of Nile tilapia (Oreochromis niloticus) were evaluated. Adult Nile tilapia were exposed to methyl, ethyl, propyl, butyl and benzylparaben and a mixture of methyl and propylparaben for 6 and 12 days. The biomarkers analyzed were superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), total glutathione (GSH-t) and lipid peroxidation measured by malondialdehyde (MDA) content. Results indicated that exposure to parabens caused biochemical changes in gill and liver cells, which in turn modulated enzymatic and non-enzymatic antioxidants in Nile tilapia. SOD, GPx and GR activity significantly increased in gills and liver after exposure to most parabens. CAT activity had little (liver) or no alteration (gills) in this fish species after treatment with parabens. GSH-t content in liver decreased after 6 days of exposure to parabens, but after 12 days, GSH-t levels increased in liver in all treatments, indicating an antioxidant adaptation to exposure to sublethal doses of parabens. Regarding the MDA levels, no alterations were observed in gills compared to control and in liver the MDA content was reduced after 12d of exposure to ethylparaben, butylparaben and paraben mixture, indicating no lipid peroxidation in the analyzed tissues. Our results demonstrate parabens-induced adaptive responses in fish, which were important in the protection against oxidative damages.
Collapse
Affiliation(s)
- Daniele C Silva
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| | - Lenard Serrano
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| | - Thiessa M A Oliveira
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| | - Adrislaine S Mansano
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| | - Eduardo A Almeida
- Department of Chemistry and Environmental Sciences, Paulista State University (IBILCE/UNESP), Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Eny M Vieira
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
45
|
A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis. Cell Death Dis 2018; 9:1005. [PMID: 30258181 PMCID: PMC6158189 DOI: 10.1038/s41419-018-1063-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/26/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Abstract
Cystathionine β-synthase (CBS) is responsible for the first enzymatic reaction in the transsulfuration pathway of sulfur amino acids. The molecular function and mechanism of CBS as well as that of transsulfuration pathway remain ill-defined in cell proliferation and death. In the present study, we designed, synthesized and obtained a bioactive inhibitor CH004 for human CBS, which functions in vitro and in vivo. CH004 inhibits CBS activity, elevated the cellular homocysteine and suppressed the production of hydrogen sulfide in a dose-dependent manner in cells or in vivo. Chemical or genetic inhibition of CBS demonstrates that endogenous CBS is closely coupled with cell proliferation and cell cycle. Moreover, CH004 substantially retarded in vivo tumor growth in a xenograft mice model of liver cancer. Importantly, inhibition of CBS triggers ferroptosis in hepatocellular carcinoma. Overall, the study provides several clues for studying the interplays amongst transsulfuration pathway, ferroptosis and liver cancer.
Collapse
|
46
|
Sthijns MMJPE, van Blitterswijk CA, LaPointe VLS. Redox regulation in regenerative medicine and tissue engineering: The paradox of oxygen. J Tissue Eng Regen Med 2018; 12:2013-2020. [PMID: 30044552 PMCID: PMC6221092 DOI: 10.1002/term.2730] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/07/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022]
Abstract
One of the biggest challenges in tissue engineering and regenerative medicine is to incorporate a functioning vasculature to overcome the consequences of a lack of oxygen and nutrients in the tissue construct. Otherwise, decreased oxygen tension leads to incomplete metabolism and the formation of the so‐called reactive oxygen species (ROS). Cells have many endogenous antioxidant systems to ensure a balance between ROS and antioxidants, but if this balance is disrupted by factors such as high levels of ROS due to long‐term hypoxia, there will be tissue damage and dysfunction. Current attempts to solve the oxygen problem in the field rarely take into account the importance of the redox balance and are instead centred on releasing or generating oxygen. The first problem with this approach is that although oxygen is necessary for life, it is paradoxically also a highly toxic molecule. Furthermore, although some oxygen‐generating biomaterials produce oxygen, they also generate hydrogen peroxide, a ROS, as an intermediate product. In this review, we discuss why it would be a superior strategy to supplement oxygen delivery with molecules to safeguard the important redox balance. Redox sensor proteins that can stimulate the anaerobic metabolism, angiogenesis, and enhancement of endogenous antioxidant systems are discussed as promising targets. We propose that redox regulating biomaterials have the potential to tackle some of the challenges related to angiogenesis and that the knowledge in this review will help scientists in tissue engineering and regenerative medicine realize this aim.
Collapse
Affiliation(s)
- Mireille M J P E Sthijns
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Clemens A van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Vanessa L S LaPointe
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
47
|
Rabelo ACS, de Pádua Lúcio K, Araújo CM, de Araújo GR, de Amorim Miranda PH, Carneiro ACA, de Castro Ribeiro ÉM, de Melo Silva B, de Lima WG, Costa DC. Baccharis trimera protects against ethanol induced hepatotoxicity in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:1-13. [PMID: 29289796 DOI: 10.1016/j.jep.2017.12.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 12/13/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baccharis trimera has been traditionally used in Brazil to treat liver diseases. AIM OF THE STUDY To evaluate the protective effect of Baccharis trimera in an ethanol induced hepatotoxicity model. MATERIALS AND METHODS The antioxidant capacity was evaluated in vitro by the ability to scavenged the DPPH radical, by the quantification of ROS, NO and the transcription factor Nrf2. Hepatotoxicity was induced in animals by administration of absolute ethanol for 2 days (acute) or with ethanol diluted for 28 days (chronic). The biochemical parameters of hepatic function (ALT and AST), renal function (urea and creatinine) and lipid profile (total cholesterol, triglycerides and HDL) were evaluated. In addition to antioxidant defense (SOD, catalase, glutathione), oxidative damage markers (TBARS and carbonylated protein), MMP-2 activity and liver histology. RESULTS Baccharis trimera promoted a decrease in ROS and NO, and at low concentrations promoted increased transcription of Nrf2. In the acute experiment it promoted increase of HDL, in the activity of SOD and GPx, besides diminishing TBARS and microesteatosis. Already in the chronic experiment B. trimera improved the hepatic and renal profile, decreased triglycerides and MMP-2 activity, in addition to diminishing microesteatosis. CONCLUSION We believe that B. trimera action is possibly more associated with direct neutralizing effects or inhibition of reactive species production pathways rather than the modulation of the antioxidant enzymes activity. Thus it is possible to infer that the biological effects triggered by adaptive responses are complex and multifactorial depending on the dose, the time and the compounds used.
Collapse
Affiliation(s)
- Ana Carolina Silveira Rabelo
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Karine de Pádua Lúcio
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Carolina Morais Araújo
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Glaucy Rodrigues de Araújo
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Pedro Henrique de Amorim Miranda
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Ana Claudia Alvarenga Carneiro
- Laboratory of Biology and Biotechnology of Microorganisms, Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Érica Milena de Castro Ribeiro
- Laboratory of Biology and Biotechnology of Microorganisms, Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Breno de Melo Silva
- Laboratory of Biology and Biotechnology of Microorganisms, Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Wanderson Geraldo de Lima
- Laboratory of Morphopathology (LMP), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil.
| |
Collapse
|
48
|
Counteraction of Oxidative Stress by Vitamin E Affects Epigenetic Regulation by Increasing Global Methylation and Gene Expression of MLH1 and DNMT1 Dose Dependently in Caco-2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3734250. [PMID: 29854080 PMCID: PMC5944233 DOI: 10.1155/2018/3734250] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
Obesity- or diabetes-induced oxidative stress is discussed as a major risk factor for DNA damage. Vitamin E and many polyphenols exhibit antioxidative activities with consequences on epigenetic regulation of inflammation and DNA repair. The present study investigated the counteraction of oxidative stress by vitamin E in the colorectal cancer cell line Caco-2 under normal (1 g/l) and high (4.5 g/l) glucose cell culture condition. Malondialdehyde (MDA) as a surrogate marker of lipid peroxidation and reactive oxygen species (ROS) was analyzed. Gene expression and promoter methylation of the DNA repair gene MutL homolog 1 (MLH1) and the DNA methyltransferase 1 (DNMT1) as well as global methylation by LINE-1 were investigated. Results revealed a dose-dependent counteracting effect of vitamin E on H2O2-induced oxidative stress. Thereby, 10 μM vitamin E proved to be more efficient than did 50 μM in reducing MDA. Further, an induction of MLH1 and DNMT1 gene expression was noticed, accompanied by an increase in global methylation. Whether LINE-1 hypomethylation is a cause or effect of oxidative stress is still unclear. In conclusion, supplementation of exogenous antioxidants like vitamin E in vitro exhibits beneficial effects concerning oxidative stress as well as epigenetic regulation involved in DNA repair.
Collapse
|
49
|
Morroni F, Sita G, Djemil A, D'Amico M, Pruccoli L, Cantelli-Forti G, Hrelia P, Tarozzi A. Comparison of Adaptive Neuroprotective Mechanisms of Sulforaphane and its Interconversion Product Erucin in in Vitro and in Vivo Models of Parkinson's Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:856-865. [PMID: 29307179 DOI: 10.1021/acs.jafc.7b04641] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Several studies suggest that an increase of glutathione (GSH) through activation of the transcriptional nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in the dopaminergic neurons may be a promising neuroprotective strategy in Parkinson's disease (PD). Among Nrf2 activators, isothiocyanate sulforaphane (SFN), derived from precursor glucosinolate present in Brassica vegetables, has gained attention as a potential neuroprotective compound. Bioavailability studies also suggest the contribution of SFN metabolites, including erucin (ERN), to the neuroprotective effects of SFN. Therefore, we compared the in vitro neuroprotective effects of SFN and ERN at the same dose level (5 μM) and oxidative treatment with 6-hydroxydopamine (6-OHDA) in SH-SY5Y cells. The pretreatment of SH-SY5Y cells with SFN recorded a higher (p < 0.05) active nuclear Nrf2 protein (12.0 ± 0.4 vs 8.0 ± 0.2 fold increase), mRNA Nrf2 (2.0 ± 0.3 vs 1.4 ± 0.1 fold increase), total GSH (384.0 ± 9.0 vs 256.0 ± 8.0 μM) levels, and resistance to neuronal apoptosis elicited by 6-OHDA compared to ERN. By contrast, the simultaneous treatment of SH-SY5Y cells with either SFN or ERN and 6-OHDA recorded similar neuroprotective effects with both the isothiocyanates (Nrf2 protein 2.2 ± 0.2 vs 2.1 ± 0.1 and mRNA Nrf2 2.1 ± 0.3 vs 1.9 ± 0.2 fold increase; total GSH 384.0 ± 4.8 vs 352.0 ± 6.4 μM). Finally, in vitro finding was confirmed in a 6-OHDA-PD mouse model. The metabolic oxidation of ERN to SFN could account for their similar neuroprotective effects in vivo, raising the possibility of using vegetables containing a precursor of ERN for systemic antioxidant benefits in a similar manner to SFN.
Collapse
Affiliation(s)
- Fabiana Morroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna , Bologna, Italy
| | - Giulia Sita
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna , Bologna, Italy
| | - Alice Djemil
- Department of Experimental, Diagnostic and Specialised Medicine, General Pathology Unit, Alma Mater Studiorum-University of Bologna , Bologna, Italy
| | - Massimo D'Amico
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna , Rimini, Italy
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna , Rimini, Italy
| | - Giorgio Cantelli-Forti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna , Rimini, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna , Bologna, Italy
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna , Rimini, Italy
| |
Collapse
|
50
|
Activation versus inhibition of microsomal glutathione S-transferase activity by acrolein. Dependence on the concentration and time of acrolein exposure. Chem Biol Interact 2017; 275:116-120. [PMID: 28780321 DOI: 10.1016/j.cbi.2017.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 11/23/2022]
Abstract
The toxicity of acrolein, an α,β-unsaturated aldehyde, is due to its soft electrophilic nature and primarily involves the adduction of protein thiols. The thiol glutathione (GSH) forms the first line of defense against acrolein. The present study confirms that acrolein added to isolated rat liver microsomes can increase microsomal GSH transferase (MGST) activity 2-3 fold, which can be seen as a direct adaptive increase in the protection against acrolein. At a relatively high exposure level, acrolein appeared to inhibit MGST. The activation is due to adduction of thiol groups, and the inactivation probably involves adduction of amino groups in the enzyme by acrolein. The preference of acrolein to react with thiol groups over amino groups can explain why the enzyme is activated at a low exposure level and inhibited at a high exposure level of acrolein. These opposite forms of direct adaptation on the level of enzyme activity further narrow the thin line between survival and promotion of cell death, governed by the level of exposure.
Collapse
|