1
|
Park W, Kim Y, Cho SH. Protective Effects and Mechanism of Heracleum moellendorffii Hance on Alcohol-Induced Cognitive Decline in Mice. Int J Mol Sci 2024; 25:8526. [PMID: 39126094 PMCID: PMC11313269 DOI: 10.3390/ijms25158526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic and continuous alcohol consumption increases the risk of cognitive decline and may lead to alcohol-related dementia. We investigated the potential of Heracleum moellendorffii Hance root extract (HME) for treating alcohol-related cognitive impairment. Behavioral tests evaluated the effects of HME on cognitive function and depression. Changes in hippocampus and liver tissues were evaluated by Western blotting and H&E staining. The group treated with HME 200 mg/kg showed a significant increase in spontaneous alternation in Y-maze and a decrease in immobility in a forced swimming test (FST) compared to the vehicle-treated group. These results suggest that HME can restore memory deficits and reverse depressive symptoms caused by chronic alcohol consumption. The HME-treated group also upregulated brain-derived neurotrophic factor (BDNF), phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphorylated cAMP response element-binding protein (CREB) in the hippocampus. Additionally, it reduced lipid vacuolation in the liver and increased the expression of aldehyde dehydrogenase 1 (ADH1). The administration of HME improves cognitive impairment and reverses depressive symptoms due to alcohol consumption, restoring neural plasticity in the hippocampus and alcohol metabolism in the liver. These findings suggest that HME is a promising treatment for alcohol-related brain disorders. Molecular mechanisms underlying the therapeutic effects of HME and its active ingredients should be investigated further.
Collapse
Affiliation(s)
- Woohee Park
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Yunna Kim
- Department of Neuropsychiatry, College of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea;
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Hun Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Neuropsychiatry, College of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea;
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Hong S, Kim Y, Kwon Y, Cho SH. Antidepressant Effect of Heracleum moellendorffii Extract on Behavioral Changes in Astrocyte Ablation Mouse Model of Depression by Modulating Neuroinflammation through the Inhibition of Lipocalin-2. Nutrients 2024; 16:2049. [PMID: 38999797 PMCID: PMC11243176 DOI: 10.3390/nu16132049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Astrocyte dysfunction and inflammation play a pivotal role in depression. In this study, we evaluated the antidepressant properties of Heracleum moellendorffii root extract (HME), which is traditionally used for inflammation-related diseases, in a mouse model with astrocyte depletion that resembles the prefrontal cortex pathology of depressive patients. Mice were divided into four groups, with 10 mice per group. To induce astrocyte ablation in the mice's prefrontal cortex (PFC), we used astrocytic toxin L-alpha-aminoadipic acid (L-AAA) and administered HME orally at 200 and 500 mg/kg for 22 days. We utilized the tail suspension test (TST) to assess depression-like behaviors and the open field test (OFT) to evaluate anxiety-like activities. Additionally, astrocytic and inflammatory markers in the PFC were evaluated using immunohistochemistry and ELISA. The results showed that infusion of L-AAA significantly decreased the expression of astrocytic glial fibrillary acidic protein (GFAP), which was accompanied by increased depression and anxiety-like behaviors. However, HME significantly reversed these effects by dose-dependently enhancing GFAP expression and modulating inflammatory markers, such as TNF-α, IL-6, and particularly lipocalin-2, a master proinflammatory mediator. These results imply that HME contributes to the alleviation of depression and anxiety-like behaviors by promoting astrocyte recovery and reducing neuroinflammation, especially through lipocalin-2 inhibition.
Collapse
Affiliation(s)
- Soonsang Hong
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.H.); (Y.K.)
| | - Yunna Kim
- Department of Neuropsychiatry, College of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea;
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - YongJu Kwon
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.H.); (Y.K.)
| | - Seung-Hun Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.H.); (Y.K.)
- Department of Neuropsychiatry, College of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea;
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Yang Y, Lv Z, An Q, Xu D, Sun L, Wang Y, Chen X, Shao X, Huo T, Yang S, Liu J, Luo H, Quan Q. Tricholoma matsutake polysaccharides suppress excessive melanogenesis via JNK-mediated pathway: Investigation in 8- methoxypsoralen induced B16-F10 melanoma cells and clinical study. Heliyon 2024; 10:e29363. [PMID: 38644864 PMCID: PMC11033116 DOI: 10.1016/j.heliyon.2024.e29363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
Skin hyperpigmentation is a worldwide condition associated with augmented melanogenesis. However, conventional therapies often entail various adverse effects. Here, we explore the safety range and depigmentary effects of polysaccharides extract of Tricholoma matsutake (PETM) in an in vitro model and further evaluated its efficacy at the clinical level. An induced-melanogenesis model was established by treating B16-F10 melanoma cells with 8-methoxypsoralen (8-MOP). Effects of PETM on cell viability and melanin content were examined and compared to a commonly used depigmentary agent, α-arbutin. Expressions of key melanogenic factors and upstream signaling pathway were analysed by quantitative PCR and western blot. Moreover, a placebo-controlled clinical study involving Chinese females with skin hyperpigmentation was conducted to measure the efficacy of PETM on improving facial pigmented spots, melanin index, and individual typology angle (ITA°). Results demonstrated that PETM (up to 0.5 mg/mL) had little effect on the viability and motility of B16-F10 cells. Notably, it significantly suppressed the melanin content and expressions of key melanogenic factors induced by 8-MOP in B16-F10 melanoma cells. Western blotting results revealed that PETM inhibited melanogenesis by inactivating c-Jun N-terminal kinase (JNK), and this inhibitory role could be rescued by JNK agonist treatment. Clinical findings showed that PETM treatment resulted in a significant reduction of facial hyperpigmented spot, decreased melanin index, and improved ITA° value compared to the placebo-control group. In conclusion, these in vitro and clinical evidence demonstrated the safety and depigmentary efficacy of PETM, a novel polysaccharide agent. The distinct mechanism of action of PETM on melanogenic signaling pathway positions it as a promising agent for developing alternative therapies.
Collapse
Affiliation(s)
- Yang Yang
- Yunnan Baiyao Group Co., Ltd., Kunming, 650504, China
- East Asia Skin Health Research Center, Beijing, 100037, China
| | - Zheng Lv
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Quan An
- Yunnan Baiyao Group Co., Ltd., Kunming, 650504, China
- East Asia Skin Health Research Center, Beijing, 100037, China
| | - Detian Xu
- Shanghai Skin Disease Hospital, Tongji University Medical School, Shanghai, 200050, China
- The Ice Dermalab, Shanghai, 200050, China
| | - Longjie Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiming Wang
- East Asia Skin Health Research Center, Beijing, 100037, China
| | - Xuexue Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xue Shao
- Yunnan Baiyao Group Co., Ltd., Kunming, 650504, China
- East Asia Skin Health Research Center, Beijing, 100037, China
| | - Tong Huo
- Yunnan Baiyao Group Co., Ltd., Kunming, 650504, China
- East Asia Skin Health Research Center, Beijing, 100037, China
| | - Shuangrui Yang
- Kunming Hospital of Traditional Chinese Medicine, Kunming, 650011, China
| | - Jiali Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Haoshu Luo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qianghua Quan
- Yunnan Baiyao Group Co., Ltd., Kunming, 650504, China
- East Asia Skin Health Research Center, Beijing, 100037, China
| |
Collapse
|
4
|
Jang HY, Lee SO. Heme Oxygenase 1-Mediated Anti-Inflammatory Effect of Extract from the Aerial Part of Heracleum moellendorffii Hance. Foods 2023; 12:3309. [PMID: 37685243 PMCID: PMC10486398 DOI: 10.3390/foods12173309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
In this study, the anti-inflammatory effects of a methanolic extract from the aerial part of Heracleum moellendorffii Hance (HmAPE) and its underlying mechanisms were investigated. HmAPE demonstrated a significant reduction in nitric oxide production in lipopolysaccharide (LPS)-treated murine macrophage RAW264.7 cells, and HmAPE decreased the protein and mRNA expression of inducible nitric oxide synthase. Further mechanistic studies on inflammatory signaling pathways revealed that HmAPE-mediated downregulation of inflammatory gene expressions was not associated with mitogen-activated protein kinases or nuclear factor-κB signaling pathways. However, HmAPE treatment activated nuclear factor E2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression, which is known to suppress pro-inflammatory cytokine production. Additionally, treatment with a selective HO-1 inhibitor, tin protoporphyrin IX, partially reversed the effects of HmAPE in LPS-treated RAW264.7 cells, indicating that HmAPE inhibited LPS-induced NO production, at least in part, through induction of Nrf2-mediated HO-1 expression. These findings suggest that HmAPE could serve as a potential edible source with anti-inflammatory properties, and further studies are required to ascertain its anti-inflammatory efficacy in vivo.
Collapse
Affiliation(s)
| | - Syng-Ook Lee
- Correspondence: ; Tel.: +82-53-580-5570; Fax: +82-53-580-5372
| |
Collapse
|
5
|
Monmai C, Kim JS, Chin JH, Lee S, Baek SH. Inhibitory Effects of Polyphenol- and Flavonoid-Enriched Rice Seed Extract on Melanogenesis in Melan-a Cells via MAPK Signaling-Mediated MITF Downregulation. Int J Mol Sci 2023; 24:11841. [PMID: 37511600 PMCID: PMC10380342 DOI: 10.3390/ijms241411841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Melanin production is an important process that prevents the host skin from harmful ultraviolet radiation; however, an overproduction of melanin results in skin diseases. In the present study, we determined the antioxidative and anti-melanogenic activities of polyphenol- and flavonoid-enriched rice seed extracts in melan-a cells. The polyphenol and flavonoid content of Hopum (HP) and Sebok (SB) rice seed extracts was measured. The antioxidant capacity was determined using the ABTS radical scavenging method. SB contained high amounts of polyphenols and flavonoids, which significantly increased antioxidative activity compared with HP. Various concentrations of these extracts were evaluated in a cytotoxicity using melan-a cells. At 100 µg/mL, there was no significant difference for all treatments compared with untreated cells. Therefore, 100 µg/mL was selected as a concentration for the further experiments. SB significantly suppressed the phosphorylation/activation of p-38 MAPK, increased the expression of phosphorylated ERK 1/2 and Akt, and downregulated the microphthalmia-associated transcription factor (MITF). This resulted in decreased levels of tyrosinase and tyrosinase-related protein-1 and -2. These results indicate the potential of polyphenol- and flavonoid-enriched rice seed as a treatment for hyperpigmentation.
Collapse
Affiliation(s)
- Chaiwat Monmai
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| | - Jin-Suk Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| | - Joong Hyoun Chin
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - So-Hyeon Baek
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| |
Collapse
|
6
|
Ko EY, Lee JH, Sivanesan I, Choi MJ, Keum YS, Saini RK. Carotenoid and Tocopherol Profiling in 18 Korean Traditional Green Leafy Vegetables by LC-SIM-MS. Foods 2023; 12:1312. [PMID: 36981238 PMCID: PMC10048374 DOI: 10.3390/foods12061312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Fruits and vegetables are a vital source of redox-active phytochemicals in the diet. Traditional green leafy vegetables (GLVs) are a rich source of carotenoids, dietary fiber, minerals, phenols, vitamins, and tocopherols and are commonly consumed in rural areas worldwide. In traditional Korean medicine, many GLVs are used to treat various ailments. However, data on the carotenoid and tocopherol content of many traditional GLVs consumed in the Republic of Korea are insufficient. The current work aims to compare the carotenoid and tocopherol profiles of 18 traditional GLVs by utilizing a single ion monitoring LC-MS approach to identify the potential GLVs for commercial cultivation and healthy diet formulations. Among the traditional GLVs investigated, (all-E)-lutein was the most abundant carotenoid, ranging from 44.4% in Glehnia littoralis to 52.1% in Heracleum moellendorffii. It was followed by (all-E)-violaxanthin and (all-E)-β-carotene. The highest contents of (all-E)-violaxanthin (75.6 µg/g FW), 9-Z-neoxanthin (48.4 µg/g FW), (all-E)-luteoxanthin (10.8 µg/g FW), (all-E)-lutein (174.1 µg/g FW), total xanthophylls (310.5 µg/g FW), (all-E)-β-carotene (69.6 µg/g FW), and total carotenoids (380.1 µg/g FW) were recorded in Pimpinella brachycarpa. Surprisingly, Taraxacum mongolicum also showed the highest contents of (all-E)-violaxanthin, (all-E)-lutein, and total carotenoids, which were statistically non-significant (p > 0.05, Tukey HSD) with P. brachycarpa. The highest concentration of (all-E)-zeaxanthin (14.4 µg/g FW) was recorded in Solidago virga-aurea. Among the studied herbs, 13.9 (H. moellendorffii)-133.6 µg/g FW (Toona sinensis) of α-tocopherol was recorded. Overall, the results suggest that P. brachycarpa and T. mongolicum are rich sources of carotenoids. On the other hand, T. sinensis is a rich source of α-tocopherol. These GLVs can be utilized in the diet to enhance the intake of health-beneficial carotenoids and α-tocopherol.
Collapse
Affiliation(s)
- Eun-Young Ko
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea;
| | - Ji-Ho Lee
- Department of Crop Science, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.L.); (Y.-S.K.); (R.K.S.)
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea;
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea;
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.L.); (Y.-S.K.); (R.K.S.)
| | - Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.L.); (Y.-S.K.); (R.K.S.)
| |
Collapse
|
7
|
Sathasivam R, Kim NS, Choi M, Kwon H, Nguyen BV, Kim JK, Jeong DH, Park EJ, Park HW, Park SU. Identification, In Silico Characterization, and Differential Expression Profiles of Carotenoid, Xanthophyll, Apocarotenoid Biosynthetic Pathways Genes, and Analysis of Carotenoid and Xanthophyll Accumulation in Heracleum moellendorffii Hance. Int J Mol Sci 2022; 23:ijms23094845. [PMID: 35563233 PMCID: PMC9099461 DOI: 10.3390/ijms23094845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Heracleum moellendorffii Hance is a non-woody forest plant widely used in China, Korea, and Japan because of its various therapeutic properties. However, the genetic details of the carotenoid pathway (CP), xanthophyll pathway (XP), and apocarotenoid pathway (AP) genes have not been studied. Thus, the CP, XP, and AP genes of H. moellendorffii were detected and analyzed. A total of fifteen genes were identified, of which eight, four, and three belonged to CP, XP, and AP, respectively. All identified genes possessed full open reading frames. Phylogenetic characterization of the identified gene sequences showed the highest similarity with other higher plants. Multiple alignments and 3D dimensional structures showed several diverse conserved motifs, such as the carotene-binding motif, dinucleotide-binding motif, and aspartate or glutamate residues. The results of real-time PCR showed that the CP, XP, and AP genes were highly expressed in leaves, followed by the stems and roots. In total, eight different individual carotenoids were identified using HPLC analysis. The highest individual and total carotenoid content were achieved in the leaves, followed by the stems and roots. This study will provide more information on the gene structure of the CP, XP, and AP genes, which may help to increase the accumulation of carotenoids in H. moellendorffii through genetic engineering. These results could be helpful for further molecular and functional studies of CP, XP, and AP genes.
Collapse
Affiliation(s)
- Ramaraj Sathasivam
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (R.S.); (M.C.); (H.K.)
| | - Nam Su Kim
- Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongju-si 28116, Korea;
| | - Minsol Choi
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (R.S.); (M.C.); (H.K.)
| | - Haejin Kwon
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (R.S.); (M.C.); (H.K.)
| | - Bao Van Nguyen
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea;
| | - Dae Hui Jeong
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Korea; (D.H.J.); (E.J.P.)
| | - Eung Jun Park
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Korea; (D.H.J.); (E.J.P.)
| | - Hong Woo Park
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Korea; (D.H.J.); (E.J.P.)
- Correspondence: (H.W.P.); (S.U.P.); Tel.: +82-54-630-5649 (H.W.P.); +82-42-821-5730 (S.U.P.); Fax: +82-42-822-2631 (S.U.P.)
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (R.S.); (M.C.); (H.K.)
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
- Correspondence: (H.W.P.); (S.U.P.); Tel.: +82-54-630-5649 (H.W.P.); +82-42-821-5730 (S.U.P.); Fax: +82-42-822-2631 (S.U.P.)
| |
Collapse
|
8
|
Wang Z, Xue Y, Zeng Q, Zhu Z, Wang Y, Wu Y, Shen C, Zhu H, Jiang C, Liu L, Liu Q. Glycyrrhiza acid-Licochalcone A complexes for enhanced bioavailability and anti-melanogenic effect of Licochalcone A: cellular uptake and in vitro experiments. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Goelzer Neto CF, do Nascimento P, da Silveira VC, Nunes de Mattos AB, Bertol CD. Natural Sources of Melanogenic Inhibitors: A Systematic Review. Int J Cosmet Sci 2022; 44:143-153. [PMID: 35048395 DOI: 10.1111/ics.12763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Melanin gives some natural protection against the harmful effects of UV radiation, however, excessive production of melanin causes skin hyperpigmentation. Depigmenting cosmetics can be used to control this process, however, depigmenting agents commonly used have some disadvantages, such as low bioavailability, photosensitization, cellular toxicity, and insolubility. Natural sources of melanogenic inhibitors have become important alternatives to synthetic ones. The objective of this review was to summarise the results of studies on natural extracts that have been reported in the literature to inhibit the process of melanogenesis, giving a view on their suitability for potential use in new cosmetic formulations for skin-lightening. DATA SOURCES A systematic literature search was carried out using the descriptors: "melanogenesis", "tyrosinase", "tyrosinase inhibition", and "natural agents". STUDY SELECTION Publications were selected based on our designated inclusion and exclusion criteria and a total of fifteen studies were found which met these criteria. DATA EXTRACTION The following were used in the review of each paper which met the criteria: the name of the plant (all of the natural extracts turned out to be from plants), the method used to obtain the plant extract, the method for evaluating anti-tyrosinase activity, the main results and the conclusions. DATA SYNTHESIS All evaluated natural agents demonstrated anti-tyrosinase effect. The species Leathesia difformis, Morus alba, Orostachys japonicus, Heracleum moellendorffii, Coix lacryma-jobi (adlay), Inula brittanica, and Gailardia aristata stood out from the others due to their application as potential inhibitors of more than three proteins related to melanogenesis, including the cyclic adenosine monophosphate response element-binding protein (CREB), microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), tyrosinase-related protein-2 (TRP-2), and dopachrome tautomerase (DCT). CONCLUSION The plants present an anti-tyrosinase effect that must be better explored in the new cosmetic formulations. The anti-melanogenic effects of the plant are mainly related to presence of phenolic and antioxidant compounds.
Collapse
Affiliation(s)
| | | | | | | | - Charise Dallazem Bertol
- Human Aging, University of Passo Fundo, Rio Grande do Sul, Brazil.,College of Pharmacy, University of Passo Fundo, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Geum NG, Son HJ, Yeo JH, Yu JH, Choi MY, Lee JW, Baek JK, Jeong JB. Anti-obesity activity of Heracleum moellendorffii root extracts in 3T3-L1 adipocytes. Food Sci Nutr 2021; 9:5939-5945. [PMID: 34760227 PMCID: PMC8565208 DOI: 10.1002/fsn3.2487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
It has been reported that H. mollendorffii roots (HMR) have various pharmacological activities such as anti-inflammatory activity and immunostimulatory activity. However, the anti-obesity activity of HMR has not been studied. Thus, we evaluated in vitro anti-obesity of HMR in mouse preadipocytes, 3T3-L1 cells. HMR reduced the lipid accumulation and triglyceride (TG) contents in 3T3-L1 cells. HMR inhibited the protein expressions such as CCAAT/enhancer-binding protein alpha (CEBPα), peroxisome proliferator-activated receptor gamma (PPARγ), perilipin-1, adiponectin, fatty acid-binding protein 4 (FABP4), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) related to the lipid accumulation of the mature adipocytes. In addition, HMR induced the proteasomal degradation of CEBPα related to the differentiation of the preadipocytes into the mature adipocytes by activating c-Jun N-terminal kinases (JNK) and glycogen synthase kinase 3 beta (GSK3β). Based on the results of this study, HMR inhibited the differentiation of preadipocytes into mature adipocytes through the CEBPα degradation via JNK and GSK3β activation and subsequently blocked lipid accumulation of mature adipocytes through inhibiting lipid accumulation-related proteins such as CEBPα, PPARγ, perilipin-1, adiponectin, FABP4, FAS, and ACC.
Collapse
Affiliation(s)
- Na Gyeong Geum
- Department of Medicinal Plant ResourcesAndong National UniversityAndongRepublic of Korea
| | - Ho Jun Son
- Forest Medicinal Resources Research CenterNational Institute of Forest ScienceYeongjuRepublic of Korea
| | - Joo Ho Yeo
- Department of Medicinal Plant ResourcesAndong National UniversityAndongRepublic of Korea
- Agricultural Corporation E·Farm CorpYeongjuKorea
| | - Ju Hyeong Yu
- Department of Medicinal Plant ResourcesAndong National UniversityAndongRepublic of Korea
- Agricultural Corporation E·Farm CorpYeongjuKorea
| | - Min Yeong Choi
- Department of Medicinal Plant ResourcesAndong National UniversityAndongRepublic of Korea
- PINOGEN CO LtdAndongKorea
| | - Jae Won Lee
- Agricultural Corporation E·Farm CorpYeongjuKorea
| | - Jueng Kyu Baek
- Department of Medicinal Plant ResourcesAndong National UniversityAndongRepublic of Korea
| | - Jin Boo Jeong
- Department of Medicinal Plant ResourcesAndong National UniversityAndongRepublic of Korea
| |
Collapse
|
11
|
Youn WB, Hernandez JO, Park BB. Effects of Shade and Planting Methods on the Growth of Heracleum moellendorffii and Adenophora divaricata in Different Soil Moisture and Nutrient Conditions. PLANTS 2021; 10:plants10102203. [PMID: 34686011 PMCID: PMC8537555 DOI: 10.3390/plants10102203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
In this study, the interacting effects of shade and planting methods on the growth and competitive ability of two understory plants Heracleum moellendorffii Hance and Adenophora divaricata Franch. & Sav. were investigated under different soil moisture and nutrient conditions. One-year-old seedlings were subjected to different light levels (0%, 35%, and 55% shade) and planting methods (monoculture and mixed) under contrasting soil moisture (1.2 L/m2 and 2.3 L/m2 of water) and soil nutrient conditions (unfertilized and fertilized). Here, shading significantly improved the height growth of H. moellendorffii (10–20 cm increase) in unfertilized and fertilized plots and at high soil moisture conditions. Contrarily, A. divaricata seedlings planted singly at full sunlight yielded a higher aboveground biomass growth (8–17 g plant−1), compared with those shaded and intercropped seedlings (0.9–3.9 g plant−1). The increased competitiveness of H. moellendorffii suppressed the growth of A. divaricata across different light conditions when planted together. The amount of light, soil moisture, and nutrients and their interactions significantly affected the growth of the seedlings, resulting in asymmetric interspecific competition between the two species. Results provide us with a better understanding of the environmental factors affecting plant growth for forest farming in the understory.
Collapse
Affiliation(s)
- Woo Bin Youn
- Department of Environment and Forest Resources, Chungnam National University, Daejeon 34134, Korea; (W.B.Y.); (J.O.H.)
| | - Jonathan Ogayon Hernandez
- Department of Environment and Forest Resources, Chungnam National University, Daejeon 34134, Korea; (W.B.Y.); (J.O.H.)
- Department of Forest Biological Sciences, University of the Philippines, Los Baños 4031, Philippines
| | - Byung Bae Park
- Department of Environment and Forest Resources, Chungnam National University, Daejeon 34134, Korea; (W.B.Y.); (J.O.H.)
- Correspondence:
| |
Collapse
|
12
|
Huang CY, Liu IH, Huang XZ, Chen HJ, Chang ST, Chang ML, Ho YT, Chang HT. Antimelanogenesis Effects of Leaf Extract and Phytochemicals from Ceylon Olive ( Elaeocarpus serratus) in Zebrafish Model. Pharmaceutics 2021; 13:pharmaceutics13071059. [PMID: 34371750 PMCID: PMC8309042 DOI: 10.3390/pharmaceutics13071059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 01/15/2023] Open
Abstract
The melanogenesis inhibition effect in zebrafish (Danio rerio) and antityrosinase activity of the ethanolic extract and its phytochemicals from Ceylon olive (Elaeocarpus serratus Linn.) leaves were investigated in this study. Among the leaf extract and four soluble fractions, the ethyl acetate soluble fraction exhibits the best antityrosinase and antimelanogenesis activities. One phenolic acid, gallic acid, and two flavonoids, myricetin and mearnsetin, are isolated from the active subfractions through the bioassay-guided isolation; their structures are elucidated based on the 1D and 2D NMR, FTIR, UV, and MS spectroscopic analyses. These compounds have significant antityrosinase activity whether using l-tyrosine or l-DOPA as the substrate; mearnsetin shows the optimal activity. In the enzyme kinetic investigation, both gallic acid and mearnsetin are the competitive-type inhibitors against mushroom tyrosinase, and myricetin acts as a mixed-type tyrosinase inhibitor. Leaf extract and an ethyl acetate soluble fraction show effective performance in the inhibition of melanin formation in zebrafish embryos. Mearnsetin also possesses a promising antimelanogenesis effect, which is superior to the positive control, arbutin. Results reveal that the Ceylon olive leaf extract and its phytochemicals, especially mearnsetin, have the potential to be used as antimelanogenesis and skin-whitening ingredients.
Collapse
Affiliation(s)
- Chi-Ya Huang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan; (C.-Y.H.); (X.-Z.H.); (H.-J.C.); (S.-T.C.); (Y.-T.H.)
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan;
| | - Xiang-Zhe Huang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan; (C.-Y.H.); (X.-Z.H.); (H.-J.C.); (S.-T.C.); (Y.-T.H.)
| | - Hui-Jen Chen
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan; (C.-Y.H.); (X.-Z.H.); (H.-J.C.); (S.-T.C.); (Y.-T.H.)
| | - Shang-Tzen Chang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan; (C.-Y.H.); (X.-Z.H.); (H.-J.C.); (S.-T.C.); (Y.-T.H.)
| | - Mei-Ling Chang
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 104, Taiwan;
| | - Yu-Tung Ho
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan; (C.-Y.H.); (X.-Z.H.); (H.-J.C.); (S.-T.C.); (Y.-T.H.)
| | - Hui-Ting Chang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan; (C.-Y.H.); (X.-Z.H.); (H.-J.C.); (S.-T.C.); (Y.-T.H.)
- Correspondence: ; Tel.: +886-2-3366-5880
| |
Collapse
|
13
|
Application of Calcium Chloride-Sodium Alginate to Improve the Texture of Quick-Frozen Heracleum moellendorffii. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5510779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heat-soak and quick freezing could deteriorate the texture of vegetables. In this work, it was found that calcium chloride-sodium alginate (SA) could improve the appearance, brittleness, and chewiness of processed Heracleum moellendorffii (HM), a kind of popular nutritious wild vegetable in China. The effect resulted from the increase of calcium content in the vegetable, which was closely related to the ratio of calcium chloride to SA, the concentration of texture retaining agent, and soaking time significantly (
). The best way to maintain the texture was to soak HM in 4 g/L of calcium chloride-SA (mass ratio 1 : 2) at 50°C for 30 minutes. The calcium content was increased to 71.56 mg/100g, and the brittleness and chewiness were 4630 gf and 2583.33 gf, respectively. The microstructure found that calcium could adhere to an inherent position on the cell membrane and protected the sample from cell damage and chloroplast spilling from the cell during thawing and quick freezing. The results showed that calcium chloride-SA treatment may be a promising method to improve the texture of vegetables during quick-frozen storage.
Collapse
|
14
|
Son HJ, Eo HJ, Park GH, Jeong JB. Heracleum moellendorffii root extracts exert immunostimulatory activity through TLR2/4-dependent MAPK activation in mouse macrophages, RAW264.7 cells. Food Sci Nutr 2021; 9:514-521. [PMID: 33473312 PMCID: PMC7802540 DOI: 10.1002/fsn3.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Heracleum moellendorffii (H. moellendorffii) is a family of Umbelliferae and has long been used for food and medicinal purposes. However, the immune-enhancing activity of H. moellendorffii has not been studied. Thus, we evaluated in vitro immune-enhancing activity of H. moellendorffii through macrophage activation using RAW264.7 cells. Heracleum moellendorffii Root extracts (HMR) increased the production of immunomodulators such as NO, iNOS, IL-1β, IL-6 IL-12, TNF-α, and MCP-1 and activated phagocytosis in RAW264.7 cells. Inhibition of TLR2 and TLR4 reduced the production of immunomodulators induced by HMR. Inhibition of MAPK signaling attenuated the production of immunomodulators induced by HMR, but inhibitions of NF-κB or PI3K/AKT signaling did not affect HMR-mediated production of immunomodulators. HMR activated MAPK signaling pathway, and activation of MAPK signaling pathways by HMR was reversed by TLR2 and TLR4 inhibition. Based on the results of this study, HMR is thought to activate macrophages through the production of immunomodulators and phagocytosis activation through TLR2/4-dependent MAPK signaling pathway. Therefore, it is thought that HMR has the potential to be used as an agent for enhancing immunity.
Collapse
Affiliation(s)
- Ho Jun Son
- Forest Medicinal Resources Research CenterNational Institute of Forest ScienceYeongjuKorea
| | - Hyun Ji Eo
- Forest Medicinal Resources Research CenterNational Institute of Forest ScienceYeongjuKorea
| | - Gwang Hun Park
- Forest Medicinal Resources Research CenterNational Institute of Forest ScienceYeongjuKorea
| | - Jin Boo Jeong
- Department of Medicinal Plant ResourcesAndong National UniversityAndongKorea
| |
Collapse
|
15
|
Qian W, Liu W, Zhu D, Cao Y, Tang A, Gong G, Su H. Natural skin-whitening compounds for the treatment of melanogenesis (Review). Exp Ther Med 2020; 20:173-185. [PMID: 32509007 PMCID: PMC7271691 DOI: 10.3892/etm.2020.8687] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/17/2020] [Indexed: 01/23/2023] Open
Abstract
Melanogenesis is the process for the production of melanin, which is the primary cause of human skin pigmentation. Skin-whitening agents are commercially available for those who wish to have a lighter skin complexions. To date, although numerous natural compounds have been proposed to alleviate hyperpigmentation, insufficient attention has been focused on potential natural skin-whitening agents and their mechanism of action from the perspective of compound classification. In the present article, the synthetic process of melanogenesis and associated core signaling pathways are summarized. An overview of the list of natural skin-lightening agents, along with their compound classifications, is also presented, where their efficacy based on their respective mechanisms of action on melanogenesis is discussed.
Collapse
Affiliation(s)
- Wenhui Qian
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Wenya Liu
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Yanli Cao
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Anfu Tang
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Guangming Gong
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Hua Su
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
16
|
Zhao N, Su X, Wang Y, Chen J, Zhuang W. Traditional Chinese Herbal Medicine for Whitening. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20905148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Melanin is the chief pigment responsible for the pigmentation of human skin. Increasing evidence indicates that traditional Chinese drugs with skin-whitening effects are attracting the attention of consumers and researchers because they are perceived to be milder, safer, and healthier than synthetic alternatives. This commentary summarizes the current research on Chinese herbal medicines that inhibit melanin and their biological activities. The findings presented in this study suggest that these traditional Chinese herbal medicines might be potential candidates for novel skin-whitening agents.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Xiaoming Su
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Yueyang Wang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| |
Collapse
|
17
|
Kim HN, Kim JD, Yeo JH, Son HJ, Park SB, Park GH, Eo HJ, Jeong JB. Heracleum moellendorffii roots inhibit the production of pro-inflammatory mediators through the inhibition of NF-κB and MAPK signaling, and activation of ROS/Nrf2/HO-1 signaling in LPS-stimulated RAW264.7 cells. Altern Ther Health Med 2019; 19:310. [PMID: 31718640 PMCID: PMC6852938 DOI: 10.1186/s12906-019-2735-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Heracleum moellendorffii roots (HM-R) have been long treated for inflammatory diseases such as arthritis, backache and fever. However, an anti-inflammatory effect and the specific mechanism of HM-R were not yet clear. In this study, we for the first time explored the anti-inflammatory of HM-R. METHODS The cytotoxicity of HM-R against RAW264.7 cells was evaluated using MTT assay. The inhibition of NO and PGE2 production by HM-R was evaluated using Griess reagent and Prostaglandin E2 ELISA Kit, respectively. The changes in mRNA or protein level following HM-R treatment were assessed by RT-PCR and Western blot analysis, respectively. RESULTS HM-R dose-dependently blocked LPS-induced NO and PGE2 production. In addition, HM-R inhibited LPS-induced overexpression of iNOS, COX-2, IL-1β and IL-6 in RAW264.7 cells. HM-R inhibited LPS-induced NF-κB signaling activation through blocking IκB-α degradation and p65 nuclear accumulation. Furthermore, HM-R inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. HM-R increased nuclear accumulation of Nrf2 and HO-1 expression. However, NAC reduced the increased nuclear accumulation of Nrf2 and HO-1 expression by HM-R. In HPLC analysis, falcarinol was detected from HM-R as an anti-inflammatory compound. CONCLUSIONS These results indicate that HM-R may exert anti-inflammatory activity by inhibiting NF-κB and MAPK signaling, and activating ROS/Nrf2/HO-1 signaling. These findings suggest that HM-R has a potential as a natural material for the development of anti-inflammatory drugs.
Collapse
|
18
|
Kang L, Yu Y, Zhou SD, He XJ. Sequence and phylogenetic analysis of complete plastid genome of a medicinal plant Heracleum moellendorffii. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1572474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Lu Kang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
19
|
Attenuation of melanogenesis by Nymphaea nouchali (Burm. f) flower extract through the regulation of cAMP/CREB/MAPKs/MITF and proteasomal degradation of tyrosinase. Sci Rep 2018; 8:13928. [PMID: 30224716 PMCID: PMC6141596 DOI: 10.1038/s41598-018-32303-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
Medicinal plants have been used to treat diseases from time immemorial. We aimed to examine the efficacy of the ethyl acetate fraction of Nymphaea nouchali flower extract (NNFE) against melanogenesis process, and the underlying mechanisms in vitro and in vivo. Paper spray ionisation mass spectroscopy and (+) mode electrospray ionisation revealed the presence of seven flavonoids, two spermidine alkaloids, 3,4,8,9,10-pentahydroxy-dibenzo[b,d]pyran-6-one, and shoyuflavone C in NNFE. NNFE (100 µg/mL) significantly inhibited the monophenolase and diphenolase activities of mushroom tyrosinase at 94.90 ± 0.003% and 93.034 ± 0.003%, respectively. NNFE significantly suppressed cellular tyrosinase activity and melanin synthesis in vitro in melan-a cells and in vivo in HRM2 hairless mice. Furthermore, NNFE inhibited tyrosinase (TYR), tyrosinase-related protein (TYRP)-1, TYRP-2, and microphthalmia-associated transcription factor (MITF) expression, thereby blocking melanin synthesis. In particular, NNFE suppressed cAMP production with subsequent downregulation of CREB phosphorylation. Additionally, it stimulated MAP kinase phosphorylation (p38, JNK, and ERK1/2) and the proteasomal debasement pathway, leading to degradation of tyrosinase and MITF and the suppression of melanin production. Moreover, selective inhibitors of ERK1/2, JNK, and p38 attenuated NNFE inhibitory effects on melanogenesis, and MG-132 (a proteasome inhibitor) prevented the NNFE-induced decline in tyrosinase protein levels. In conclusion, these findings indicate that NNFE is a potential therapy for hyperpigmentation.
Collapse
|
20
|
Byeon JH, Alam MB, Kim KC, Heo S, Lim JY, Kwon YG, Zhao P, Cha YH, Choi HJ, Lee SH. Anti-Melanogenic Effect of Chestnut Spike Extract through Downregulation of Tyrosinase-Related Proteins and Activation of ERK 1/2. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Melanin has been reported to be the key factor for skin homeostasis. Besides defining an important human phenotypic trait, melanin overproduction may cause various disorders such as vitiligo, Addison's disease, Cushing's syndrome, and melasma. In this study, we aimed to investigate the anti-melanogenic potential of dried spike extract of chestnut. The extract inhibited tyrosinase (TYR) activity in a dose-dependent manner. Cellular melanin content decreased markedly after treatment with the extract. The spike extract inhibited microphthalmia-associated transcription factor (MITF) expression and downregulated TYR, TYRP-1, and TYRP-2 protein expression by increasing the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 signalling pathway in melan-a cells. In addition, treatment with U0126, a specific inhibitor of ERK, restored melanin content. Collectively, these results suggest that the chestnut spike extract attenuated melanogenesis by inhibiting MITF expression and downregulating TYR, TYRP-1, and TYRP-2 protein expressions via activation of ERK1/2 pathway.
Collapse
Affiliation(s)
- Jung-Hee Byeon
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Md Badrul Alam
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Food & Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ki-Chan Kim
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sangsun Heo
- School of Bioconvergence, Jungbu University, Gumsan 32713, Republic of Korea
| | - Ji-young Lim
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoon-Gyung Kwon
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Peijun Zhao
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeong-Ho Cha
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hee-Jeong Choi
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Food & Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
21
|
Song HY, Kim HM, Kim WS, Byun EH, Jang BS, Choi DS, Byun EB. Effect of gamma irradiation on the anti-oxidant and anti-melanogenic activity of black ginseng extract in B16F10 melanoma cells. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Hong JH, Cao SW, Xiang SJ, Ruan SF, An BC, Wang ZX, Wu WF, Chen HJ, Weng LD, Zhang L, Liu L, Chen YY, Shen Q, Zhu HX, Liu Q. Glycyrrhiza flavonoids and its major component, licochalcone A, inhibit melanogenesis through MAPK/ERK pathway by activating ERK phosphorylation. J Dermatol Sci 2018; 91:S0923-1811(18)30203-2. [PMID: 29730172 DOI: 10.1016/j.jdermsci.2018.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Jun-Hui Hong
- School of Traditional Chinese Medicine, Southern Medical University, 510515, PR China
| | - Si-Wei Cao
- School of Traditional Chinese Medicine, Southern Medical University, 510515, PR China
| | - Shi-Jian Xiang
- School of Traditional Chinese Medicine, Southern Medical University, 510515, PR China
| | - Shi-Fa Ruan
- School of Traditional Chinese Medicine, Southern Medical University, 510515, PR China
| | - Bai-Chao An
- School of Traditional Chinese Medicine, Southern Medical University, 510515, PR China
| | - Zhu-Xian Wang
- School of Traditional Chinese Medicine, Southern Medical University, 510515, PR China
| | - Wen-Feng Wu
- School of Traditional Chinese Medicine, Southern Medical University, 510515, PR China
| | - Huo-Ji Chen
- School of Traditional Chinese Medicine, Southern Medical University, 510515, PR China
| | - Li-Dong Weng
- School of Traditional Chinese Medicine, Southern Medical University, 510515, PR China
| | - Lu Zhang
- School of Traditional Chinese Medicine, Southern Medical University, 510515, PR China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, 510515, PR China
| | - Yu-Yao Chen
- School of Traditional Chinese Medicine, Southern Medical University, 510515, PR China
| | - Qun Shen
- School of Traditional Chinese Medicine, Southern Medical University, 510515, PR China
| | - Hong-Xia Zhu
- Hospital of Integrated Chinese and Western Medicine, Southern Medical University, 510315, PR China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, 510515, PR China.
| |
Collapse
|
23
|
Cho BO, Che DN, Shin JY, Kang HJ, Kim JH, Kim HY, Cho WG, Jang SI. Ameliorative effects of Diospyros lotus leaf extract against UVB-induced skin damage in BALB/c mice. Biomed Pharmacother 2017; 95:264-274. [DOI: 10.1016/j.biopha.2017.07.159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/10/2017] [Accepted: 07/30/2017] [Indexed: 11/17/2022] Open
|
24
|
FGF21 regulates melanogenesis in alpaca melanocytes via ERK1/2-mediated MITF downregulation. Biochem Biophys Res Commun 2017. [PMID: 28623131 DOI: 10.1016/j.bbrc.2017.06.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is known as a metabolic regulator to regulate the metabolism of glucose and lipids. However, the underlying mechanism of FGF21 on melanin synthesis remains unknown. Therefore, the current study investigates the effect of FGF21 on melanogenesis in alpaca melanocytes. We transfected the FGF21 into alpaca melanocytes, then detected the melanin contents, protein and mRNA levels of pigmentation-related genes in order to determine the melanogenesis-regulating pathway of FGF21. The results showed that FGF21 overexpression suppressed melanogenesis and decreased the expression of the major target genes termed microphthalmia-associated transcription factor (MITF) and its downstream genes, including tyrosinase (TYR) and tyrosinase-related protein 2 (TRP2). However FGF21 increased the expression of phospho-extracellular signal-regulated kinase (p-Erk1/2). In contrast, FGF21-siRNA, a small interference RNA mediating FGF21 silencing, abolished the inhibition of melanogenesis. Altogether, FGF21 may decrease melanogenesis in alpaca melanocytes via ERK activation and subsequent MITF downregulation, which is then followed by the suppression of melanogenic enzymes and melanin production.
Collapse
|
25
|
Inhibitory effects of Stichopus japonicus extract on melanogenesis of mouse cells via ERK phosphorylation. Mol Med Rep 2017; 16:1079-1086. [PMID: 28586027 PMCID: PMC5561873 DOI: 10.3892/mmr.2017.6686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 03/17/2017] [Indexed: 11/21/2022] Open
Abstract
Stichopus japonicus has been used as a folk medicine and as an ingredient in traditional food in East Asian countries. In recent years, the bioactive compounds found in S. japonicus have been reported to possess efficacy in wound healing and may be of potential use in the cosmeceutical, pharmaceutical and biomedical industries. Although the components and their functions require further investigation, S. japonicus extracts exhibit anti-inflammatory properties, and may be used for cancer prevention and treatment. Although several reports have examined different aspects of S. japonicus, the effects of S. japonicus extract on melanogenesis in the skin has not been reported to date. Therefore the present study aimed to investigate the effects of S. japonicus extract on melanogenesis. Treatment with a mixture of S. japonicus extracts (MSCE) reduced melanin synthesis and tyrosinase (TYR) activity in mouse melanocyte cells lines, B16F10 and Melan-A. In addition, MSCE treatment reduced the protein expression levels of TYR, tyrosinase-related protein-1 and tyrosinase-related protein-2. The reduced protein levels may be the result of decreased microphthalmia-associated transcription factor (MITF) expression, which is an important regulator of melanogenesis. The reduced expression level of MITF was associated with delayed phosphorylation of extracellular signal-regulated kinase (ERK) induced by MSCE treatment. A specific MEK inhibitor, PD98059, significantly blocked MSCE-mediated inhibition of melanin synthesis. In conclusion, these results indicate that MSCE may be useful as a potential skin-whitening compound in the skin medical industry.
Collapse
|
26
|
Alam MB, Bajpai VK, Lee J, Zhao P, Byeon JH, Ra JS, Majumder R, Lee JS, Yoon JI, Rather IA, Park YH, Kim K, Na M, Lee SH. Inhibition of melanogenesis by jineol from Scolopendra subspinipes mutilans via MAP-Kinase mediated MITF downregulation and the proteasomal degradation of tyrosinase. Sci Rep 2017; 7:45858. [PMID: 28393917 PMCID: PMC5385534 DOI: 10.1038/srep45858] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/06/2017] [Indexed: 12/26/2022] Open
Abstract
In this study, the authors investigated the anti-melanogenic effects of 3,8-dihydroxyquinoline (jineol) isolated from Scolopendra subspinipes mutilans, the mechanisms responsible for its inhibition of melanogenesis in melan-a cells, and its antioxidant efficacy. Mushroom tyrosinase activities and melanin contents were determined in melan-a cells, and the protein and mRNA levels of MITF, tyrosinase, TYRP-1, and TYRP-2 were assessed. Jineol exhibited significant, concentration-dependent antioxidant effects as determined by DPPH, ABTS, CUPRAC, and FRAP assays. Jineol significantly inhibited mushroom tyrosinase activity by functioning as an uncompetitive inhibitor, and markedly inhibited melanin production and intracellular tyrosinase activity in melan-a cells. In addition, jineol abolished the expressions of tyrosinase, TYRP-1, TYRP-2, and MITF, thereby blocking melanin production and interfering with the phosphorylations of ERK1/2 and p38. Furthermore, specific inhibitors of ERK1/2 and p38 prevented melanogenesis inhibition by jineol, and the proteasome inhibitor (MG-132) prevented jineol-induced reductions in cellular tyrosinase levels. Taken together, jineol was found to stimulate MAP-kinase (ERK1/2 and p38) phosphorylation and the proteolytic degradation pathway, which led to the degradations of MITF and tyrosinase, and to suppress the productions of melanin.
Collapse
Affiliation(s)
- Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Vivek K Bajpai
- Department of Applied Microbiology and Biotechnology, Microbiome Laboratory, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - JungIn Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Peijun Zhao
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Jung-Hee Byeon
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Jeong-Sic Ra
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Rajib Majumder
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Bio-security and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2567, Australia
| | - Jong Sung Lee
- Kcellbio, Seoulsoop Kolon Digital Tower, Seongsuil-ro-4-gil, Seongdong-gu 04713, Seoul, Korea
| | - Jung-In Yoon
- Kcellbio, Seoulsoop Kolon Digital Tower, Seongsuil-ro-4-gil, Seongdong-gu 04713, Seoul, Korea
| | - Irfan A Rather
- Department of Applied Microbiology and Biotechnology, Microbiome Laboratory, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Yong-Ha Park
- Department of Applied Microbiology and Biotechnology, Microbiome Laboratory, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Kangmin Kim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, 79 Gobong-ro, Iksan-si 570-752, Jeonbuk, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|