1
|
Zhang C, Dischler A, Glover K, Qin Y. Neuronal signalling of zinc: from detection and modulation to function. Open Biol 2022; 12:220188. [PMID: 36067793 PMCID: PMC9448499 DOI: 10.1098/rsob.220188] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zinc is an essential trace element that stabilizes protein structures and allosterically modulates a plethora of enzymes, ion channels and neurotransmitter receptors. Labile zinc (Zn2+) acts as an intracellular and intercellular signalling molecule in response to various stimuli, which is especially important in the central nervous system. Zincergic neurons, characterized by Zn2+ deposits in synaptic vesicles and presynaptic Zn2+ release, are found in the cortex, hippocampus, amygdala, olfactory bulb and spinal cord. To provide an overview of synaptic Zn2+ and intracellular Zn2+ signalling in neurons, the present paper summarizes the fluorescent sensors used to detect Zn2+ signals, the cellular mechanisms regulating the generation and buffering of Zn2+ signals, as well as the current perspectives on their pleiotropic effects on phosphorylation signalling, synapse formation, synaptic plasticity, as well as sensory and cognitive function.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Anna Dischler
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Kaitlyn Glover
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
2
|
Zinc in Cognitive Impairment and Aging. Biomolecules 2022; 12:biom12071000. [PMID: 35883555 PMCID: PMC9312494 DOI: 10.3390/biom12071000] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Zinc, an essential micronutrient for life, was first discovered in 1869 and later found to be indispensable for the normal development of plants and for the normal growth of rats and birds. Zinc plays an important role in many physiological and pathological processes in normal mammalian brain development, especially in the development of the central nervous system. Zinc deficiency can lead to neurodegenerative diseases, mental abnormalities, sleep disorders, tumors, vascular diseases, and other pathological conditions, which can cause cognitive impairment and premature aging. This study aimed to review the important effects of zinc and zinc-associated proteins in cognitive impairment and aging, to reveal its molecular mechanism, and to highlight potential interventions for zinc-associated aging and cognitive impairments.
Collapse
|
3
|
Chin-Chan M, Montes S, Blanco-Álvarez VM, Aguirre-Alarcón HA, Hernández-Rodríguez I, Bautista E. Relevance of biometals during neuronal differentiation and myelination: in vitro and in vivo studies. Biometals 2022; 35:395-427. [DOI: 10.1007/s10534-022-00380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/27/2022] [Indexed: 12/20/2022]
|
4
|
Zhao K, Xing R, Yan X. Cyclic dipeptides: Biological activities and self‐assembled materials. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kaili Zhao
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
5
|
Choi BY, Hong DK, Jeong JH, Lee BE, Koh JY, Suh SW. Zinc transporter 3 modulates cell proliferation and neuronal differentiation in the adult hippocampus. Stem Cells 2020; 38:994-1006. [PMID: 32346941 PMCID: PMC7496127 DOI: 10.1002/stem.3194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
The subgranular zone of the dentate gyrus is a subregion of the hippocampus that has two uniquely defining features; it is one of the most active sites of adult neurogenesis as well as the location where the highest concentrations of synaptic zinc are found, the mossy fiber terminals. Therefore, we sought to investigate the idea that vesicular zinc plays a role as a modulator of hippocampal adult neurogenesis. Here, we used ZnT3−/− mice, which are depleted of synaptic‐vesicle zinc, to test the effect of targeted deletion of this transporter on adult neurogenesis. We found that this manipulation reduced progenitor cell turnover as well as led to a marked defect in the maturation of newborn cells that survive in the DG toward a neuronal phenotype. We also investigated the effects of zinc (ZnCl2), n‐acetyl cysteine (NAC), and ZnCl2 plus 2NAC (ZN) supplement on adult hippocampal neurogenesis. Compared with ZnCl2 or NAC, administration of ZN resulted in an increase in proliferation of progenitor cells and neuroblast. ZN also rescued the ZnT3 loss‐associated reduction of neurogenesis via elevation of insulin‐like growth factor‐1 and ERK/CREB activation. Together, these findings reveal that ZnT3 plays a highly important role in maintaining adult hippocampal neurogenesis and supplementation by ZN has a beneficial effect on hippocampal neurogenesis, as well as providing a therapeutic target for enhanced neuroprotection and repair after injury as demonstrated by its ability to prevent aging‐dependent cognitive decline in ZnT3−/− mice. Therefore, the present study suggests that ZnT3 and vesicular zinc are essential for adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Bo Young Choi
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Dae Ki Hong
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jeong Hyun Jeong
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Bo Eun Lee
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jae-Young Koh
- Department of Neurology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang Won Suh
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| |
Collapse
|
6
|
Shin J, Kong C, Lee J, Choi BY, Sim J, Koh CS, Park M, Na YC, Suh SW, Chang WS, Chang JW. Focused ultrasound-induced blood-brain barrier opening improves adult hippocampal neurogenesis and cognitive function in a cholinergic degeneration dementia rat model. ALZHEIMERS RESEARCH & THERAPY 2019; 11:110. [PMID: 31881998 PMCID: PMC6933667 DOI: 10.1186/s13195-019-0569-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Background The persistence of adult hippocampal neurogenesis (AHN) is sharply decreased in Alzheimer’s disease (AD). The neuropathologies of AD include the presence of amyloid-β deposition in plaques, tau hyperphosphorylation in neurofibrillary tangles, and cholinergic system degeneration. The focused ultrasound (FUS)-mediated blood-brain barrier opening modulates tau hyperphosphorylation, the accumulation of amyloid-β proteins, and increases in AHN. However, it remains unclear whether FUS can modulate AHN in cholinergic-deficient conditions. In this study, we investigated the effect of FUS on AHN in a cholinergic degeneration rat model of dementia. Methods Adult male Sprague-Dawley rats (n = 48; 200–250 g) were divided into control (phosphate-buffered saline injection), 192 IgG-saporin (SAP), and SAP+FUS groups; in the two latter groups, SAP was injected bilaterally into the lateral ventricle. We applied FUS to the bilateral hippocampus with microbubbles. Immunohistochemistry, enzyme-linked immunosorbent assay, immunoblotting, 5-bromo-2′-deoxyuridine labeling, an acetylcholinesterase assay, and the Morris water maze test were performed to assess choline acetyltransferase, acetylcholinesterase activity, brain-derived neurotrophic factor expression, neural proliferation, and spatial memory, respectively. Statistical significance of differences in between groups was calculated using one-way and two-way analyses of variance followed by Tukey’s multiple comparison test to determine the individual and interactive effects of FUS on immunochemistry and behavioral analysis. P < 0.05 was considered significant. Results Cholinergic degeneration in rats significantly decreased the number of choline acetyltransferase neurons (P < 0.05) in the basal forebrain, as well as AHN and spatial memory function. Rats that underwent FUS-mediated brain-blood barrier opening exhibited significant increases in brain-derived neurotrophic factor (BDNF; P < 0.05), early growth response protein 1 (EGR1) (P < 0.01), AHN (P < 0.01), and acetylcholinesterase activity in the frontal cortex (P < 0.05) and hippocampus (P < 0.01) and crossing over (P < 0.01) the platform in the Morris water maze relative to the SAP group after sonication. Conclusions FUS treatment increased AHN and improved spatial memory. This improvement was mediated by increased hippocampal BDNF and EGR1. FUS treatment may also restore AHN and protect against neurodegeneration, providing a potentially powerful therapeutic strategy for AD.
Collapse
Affiliation(s)
- Jaewoo Shin
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chanho Kong
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jihyeon Lee
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Bo Young Choi
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Jiyeon Sim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Minkyung Park
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Young Cheol Na
- Department of Neurosurgery, Catholic Kwandong University College of Medicine, International St Mary's Hospital, Incheon Metropolitan City, 22771, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea. .,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
7
|
Ahmed A, Zeng G, Jiang D, Lin H, Azhar M, Farooq AD, Choudhary MI, Liu X, Wang Q. Time-dependent impairments in learning and memory in Streptozotocin-induced hyperglycemic rats. Metab Brain Dis 2019; 34:1431-1446. [PMID: 31286327 DOI: 10.1007/s11011-019-00448-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
The sedentary lifestyle is responsible for the high prevalence of diabetes which also impairs cognition including learning and memory. Various studies have highlighted the learning and memory impairments in rodent models but data regarding the timeline of their development and their correlation to biochemical parameters are scarce. So, the present study was designed to investigate the type of memory which is more susceptible to hyperglycemia and its correlation with biochemical parameters such as inflammatory cytokines, cAMP response element binding (CREB) and protein kinase B (Akt) activation. Hyperglycemia was induced using streptozotocin (STZ, 45 mg/kg i.p.) and confirmed by measuring fasting blood glucose levels after 1 week of STZ injection. Learning and memory deficits were evaluated using the Novel Object Recognition Test (NORT) and Morris water maze (MWM), and correlated with biochemical parameters (TNF-α, IL-1β, and dopamine) at 3, 6 and 9 weeks. STZ-injected rats after 3 weeks of injection demonstrated moderate hyperglycemia (blood glucose = 7.99 ± 0.62 mM) with intact learning and reference memory; however, their working memory was impaired in MWM. Severe hyperglycemia (blood glucose = 11.51 ± 0.69 mM) accompanied by impaired short, long, and working memory was evident after 6 weeks whereas learning was intact. After 9 weeks of STZ injection, hyperglycemia was more pronounced (13.69 ± 1.43 mM) and accompanied by a learning deficit in addition to short, long, and working memory impairments. The extent of hyperglycemia either in terms of duration or severity resulted in enhanced inflammation, down-regulation of the level of dopamine, protein expression of AKT and CREB, which possibly affected learning and memory negatively.
Collapse
Affiliation(s)
- Ayaz Ahmed
- Affiliated TCM hospital/ Sino-Portugal TCM International Cooperation Center / Department of Physiology in School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Guirong Zeng
- Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dejiang Jiang
- Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| | - Haiying Lin
- Affiliated TCM hospital/ Sino-Portugal TCM International Cooperation Center / Department of Physiology in School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Mudassar Azhar
- Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ahsana Dar Farooq
- Hamdard Al-Majeed College of Eastern Medicine, Hamdard University, Karachi, 74600, Pakistan
| | - Muhammad Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Biochemistry, College of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Xinmin Liu
- Affiliated TCM hospital/ Sino-Portugal TCM International Cooperation Center / Department of Physiology in School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China.
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qiong Wang
- Affiliated TCM hospital/ Sino-Portugal TCM International Cooperation Center / Department of Physiology in School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
8
|
Grottelli S, Mezzasoma L, Scarpelli P, Cacciatore I, Cellini B, Bellezza I. Cyclo(His-Pro) inhibits NLRP3 inflammasome cascade in ALS microglial cells. Mol Cell Neurosci 2018; 94:23-31. [PMID: 30439413 DOI: 10.1016/j.mcn.2018.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/31/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation, i.e. self-propelling progressive cycle of microglial activation and neuron damage, as well as improper protein folding, are recognized as major culprits of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). Mutations in several proteins have been linked to ALS pathogenesis, including the G93A mutation in the superoxide dismutase 1 (SOD1) enzyme. SOD1(G93A) mutant is prone to aggregate thus inducing both oxidative stress and neuroinflammation. In this study we used hSOD1(G93A) microglial cells to investigate the effects of the antioxidant and anti-inflammatory cyclic dipeptide (His-Pro) on LPS-induced inflammasome activation. We found that cyclo(His-Pro) inhibits NLRP3 inflammasome activation by reducing protein nitration via reduction in NO and ROS levels, indicative of lower peroxynitrite generation by LPS. Low levels in peroxynitrite are related to NF-κB inhibition responsible for iNOS down-regulation and NO dampening. On the other hand, cyclo(His-Pro)-mediated ROS attenuation, not linked to Nrf2 activation in this cellular model, is ascribed to increased soluble SOD1 activity due to the up-regulation of Hsp70 and Hsp27 expression. Conclusively, our results, besides corroborating the anti-inflammatory properties of cyclo(His-Pro), highlight a novel role of the cyclic dipeptide as a proteostasis regulator, and therefore a good candidate for the treatment of ALS and other misfolding diseases.
Collapse
Affiliation(s)
- Silvia Grottelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Letizia Mezzasoma
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Scarpelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Ivana Cacciatore
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Ilaria Bellezza
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.
| |
Collapse
|
9
|
Kalantarian G, Ziamajidi N, Mahjub R, Goodarzi MT, Saidijam M, Soleimani Asl S, Abbasalipourkabir R. Effect of insulin-coated trimethyl chitosan nanoparticles on IGF-1, IGF-2, and apoptosis in the hippocampus of diabetic male rats. Restor Neurol Neurosci 2018; 36:571-581. [PMID: 29889083 DOI: 10.3233/rnn-170807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Subcutaneous injection of insulin can lead to problems such as hypoglycemia and edema. OBJECTIVE The purpose of this research was to evaluate the effect of oral insulin-coated trimethyl chitosan nanoparticles on control of glycemic status, IGF-1 and IGF-2 levels, and apoptosis in the hippocampus of rats with diabetes mellitus. METHODS Insulin-coated trimethyl chitosan nanoparticles were prepared by the polyelectrolyte complex method (PEC) method. Insulin loading content, loading efficiency, quantity and quality of particle size were evaluated. In vivo study was performed in different treatment groups of male Wistar rats with diabetes mellitus by insulin-coated trimethyl chitosan nanoparticles or subcutaneous injection of trade insulin. The duration of diabetes was eight weeks and the treatment was started after that time and continued for another two weeks. Body weight, fasting blood glucose (FBS), hippocampal apoptosis, and immunohistochemical (IHC) protein levels of IGF-1 and IGF-2 were assessed at the end of the experiments. RESULTS The size and polydispersity indexes were 533 nanometers and 0.533, respectively. Insulin coated trimethyl chitosan nanoparticles showed high loading efficiency (97.67% ) and loading content (48.83% ). The spherical shape of nanoparticle was confirmed by transmission electron microscopic (TEM). The amine, amide, ether and aliphatic groups were evaluated using FT-IR spectrophotometer which represented the correctness of the insulin coated trimethyl chitosan nanoparticles. Although the apoptotic index was not changed either by insulin-coated nano-particles or commercial insulin, in vivo results showed the efficacy of insulin-coated nanoparticles as well as commercial insulin in compensated weight loss, FBS and protein levels of IGF-1 and IGF-2. CONCLUSIONS The present study showed the efficacy of insulin coated nanoparticle in oral route manner that can be tested in Phase I- III clinical trials. However, a behavioral study could reveal the efficacy of insulin-loaded nanoparticles in the improvement of cognitive changes through the modulation of IGF-1 and IGF-2 levels in the hippocampus.
Collapse
Affiliation(s)
- Giti Kalantarian
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Endometrium and Endometriosis Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
| | | |
Collapse
|