1
|
Ibrahim DR, Schwarz K, Suiwal S, Maragkou S, Schmitz F. Early Synapse-Specific Alterations of Photoreceptor Mitochondria in the EAE Mouse Model of Multiple Sclerosis. Cells 2025; 14:206. [PMID: 39936997 DOI: 10.3390/cells14030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system (CNS) linked to many neurological disabilities. The visual system is frequently impaired in MS. In previous studies, we observed early malfunctions of rod photoreceptor ribbon synapses in the EAE mouse model of MS that included alterations in synaptic vesicle cycling and disturbances of presynaptic Ca2+ homeostasis. Since these presynaptic events are highly energy-demanding, we analyzed whether synaptic mitochondria, which play a major role in synaptic energy metabolism, might be involved at that early stage. Rod photoreceptor presynaptic terminals contain a single large mitochondrion next to the synaptic ribbon. In the present study, we analyzed the expression of functionally relevant mitochondrial proteins (MIC60, ATP5B, COX1, PINK1, DRP1) by high-resolution qualitative and quantitative immunofluorescence microscopy, immunogold electron microscopy and quantitative Western blot experiments. We observed a decreased expression of many functionally relevant proteins in the synaptic mitochondria of EAE photoreceptors at an early stage, suggesting that early mitochondrial dysfunctions play an important role in the early synapse pathology. Interestingly, mitochondria in presynaptic photoreceptor terminals were strongly compromised in early EAE, whereas extra-synaptic mitochondria in photoreceptor inner segments remained unchanged, demonstrating a functional heterogeneity of photoreceptor mitochondria.
Collapse
Affiliation(s)
- Dalia R Ibrahim
- Institute of Anatomy, Department of Neuroanatomy, Medical School Homburg, Saarland University, 66421 Homburg, Germany
| | - Karin Schwarz
- Institute of Anatomy, Department of Neuroanatomy, Medical School Homburg, Saarland University, 66421 Homburg, Germany
| | - Shweta Suiwal
- Institute of Anatomy, Department of Neuroanatomy, Medical School Homburg, Saarland University, 66421 Homburg, Germany
| | - Sofia Maragkou
- Institute of Anatomy, Department of Neuroanatomy, Medical School Homburg, Saarland University, 66421 Homburg, Germany
| | - Frank Schmitz
- Institute of Anatomy, Department of Neuroanatomy, Medical School Homburg, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
2
|
Bufan B, Ćuruvija I, Blagojević V, Grujić-Milanović J, Prijić I, Radosavljević T, Samardžić J, Radosavljevic M, Janković R, Djuretić J. NMDA Receptor Antagonist Memantine Ameliorates Experimental Autoimmune Encephalomyelitis in Aged Rats. Biomedicines 2024; 12:717. [PMID: 38672073 PMCID: PMC11047843 DOI: 10.3390/biomedicines12040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Aging is closely related to the main aspects of multiple sclerosis (MS). The average age of the MS population is increasing and the number of elderly MS patients is expected to increase. In addition to neurons, N-methyl-D-aspartate receptors (NMDARs) are also expressed on non-neuronal cells, such as immune cells. The aim of this study was to investigate the role of NMDARs in experimental autoimmune encephalomyelitis (EAE) in young and aged rats. Memantine, a non-competitive NMDAR antagonist, was administered to young and aged Dark Agouti rats from day 7 after immunization. Antagonizing NMDARs had a more favourable effect on clinical disease, reactivation, and apoptosis of CD4+ T cells in the target organ of aged EAE rats. The expression of the fractalkine receptor CX3CR1 was increased in memantine-treated rats, but to a greater extent in aged rats. Additionally, memantine increased Nrf2 and Nrf2-regulated enzymes' mRNA expression in brain tissue. The concentrations of superoxide anion radicals, malondialdehyde, and advanced oxidation protein products in brain tissue were consistent with previous results. Overall, our results suggest that NMDARs play a more important role in the pathogenesis of EAE in aged than in young rats.
Collapse
Affiliation(s)
- Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ivana Ćuruvija
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, 11000 Belgrade, Serbia; (I.Ć.); (V.B.); (I.P.)
| | - Veljko Blagojević
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, 11000 Belgrade, Serbia; (I.Ć.); (V.B.); (I.P.)
| | - Jelica Grujić-Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ivana Prijić
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, 11000 Belgrade, Serbia; (I.Ć.); (V.B.); (I.P.)
| | - Tatjana Radosavljević
- Institute of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Janko Samardžić
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (M.R.)
| | - Milica Radosavljevic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (M.R.)
| | - Radmila Janković
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Yang Z, Marcoci C, Öztürk HK, Giama E, Yenicelik AG, Slanař O, Linington C, Desai R, Smith KJ. Tissue Hypoxia and Associated Innate Immune Factors in Experimental Autoimmune Optic Neuritis. Int J Mol Sci 2024; 25:3077. [PMID: 38474322 DOI: 10.3390/ijms25053077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Visual loss in acute optic neuritis is typically attributed to axonal conduction block due to inflammatory demyelination, but the mechanisms remain unclear. Recent research has highlighted tissue hypoxia as an important cause of neurological deficits and tissue damage in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) and, here, we examine whether the optic nerves are hypoxic in experimental optic neuritis induced in Dark Agouti rats. At both the first and second peaks of disease expression, inflamed optic nerves labelled significantly for tissue hypoxia (namely, positive for hypoxia inducible factor-1α (HIF1α) and intravenously administered pimonidazole). Acutely inflamed nerves were also labelled significantly for innate markers of oxidative and nitrative stress and damage, including superoxide, nitric oxide and 3-nitrotyrosine. The density and diameter of capillaries were also increased. We conclude that in acute optic neuritis, the optic nerves are hypoxic and come under oxidative and nitrative stress and damage. Tissue hypoxia can cause mitochondrial failure and thus explains visual loss due to axonal conduction block. Tissue hypoxia can also induce a damaging oxidative and nitrative environment. The findings indicate that treatment to prevent tissue hypoxia in acute optic neuritis may help to restore vision and protect from damaging reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Cristina Marcoci
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Hatice Kübra Öztürk
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
| | - Eleni Giama
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Ayse Gertrude Yenicelik
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
| | - Christopher Linington
- School of Infection and Immunity, The Sir Graeme Davies Building, Glasgow G12 8TA, UK
| | - Roshni Desai
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| |
Collapse
|
4
|
Bu L, Wang C, Bai J, Song J, Zhang Y, Chen H, Suo H. Gut microbiome-based therapies for alleviating cognitive impairment: state of the field, limitations, and future perspectives. Food Funct 2024; 15:1116-1134. [PMID: 38224464 DOI: 10.1039/d3fo02307a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Cognitive impairment (CI) is a multifaceted neurological condition that can trigger negative emotions and a range of concurrent symptoms, imposing significant public health and economic burdens on society. Therefore, it is imperative to discover a remedy for CI. Nevertheless, the mechanisms behind the onset of this disease are multifactorial, which makes the search for effective amelioration difficult and complex, hindering the search for effective measures. Intriguingly, preclinical research indicates that gut microbiota by influencing brain function, plays an important role in the progression of CI. Furthermore, numerous preclinical studies have highlighted the potential of probiotics, prebiotics, fecal microbiota transplantation (FMT), and diet in modulating the gut microbiota, thereby ameliorating CI symptoms. This review provides a comprehensive evaluation of CI pathogenesis, emphasizing the contribution of gut microbiota disorders to CI development. It also summarizes and discusses current strategies and mechanisms centered on the synergistic role of gut microbiota modulation in the microbiota-gut-brain axis in CI development. Finally, problems with existing approaches are contemplated and the development of microbial modulation strategies as therapeutic approaches to promote and restore brain cognition is discussed. Further research considerations and directions are highlighted to provide ideas for future CI prevention and treatment strategies.
Collapse
Affiliation(s)
- Linli Bu
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Yuhong Zhang
- Institute of Food Sciences and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Xizang 850000, China
| | - Hongyu Chen
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| |
Collapse
|
5
|
Li F, Zong W, Xin C, Ren F, Li N, Li H, Li X, Wu L, Dai Z, Chen W, Li M, Gao F, Wang G. Unlocking the link: how hippocampal glutathione-glutamate coupling predicts cognitive impairment in multiple sclerosis patients. Cereb Cortex 2024; 34:bhad400. [PMID: 37943724 DOI: 10.1093/cercor/bhad400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023] Open
Abstract
Cognitive impairment is a common symptom of multiple sclerosis and profoundly impacts quality of life. Glutathione (GSH) and glutamate (Glu) are tightly linked in the brain, participating in cognitive function. However, GSH-Glu couplings in cognitive brain regions and their relationship with cognitive impairment in relapsing-remitting multiple sclerosis (RRMS) remains unclear. Forty-one RRMS patients and 43 healthy controls underwent magnetic resonance spectroscopy to measure GSH and Glu levels in the posterior cingulate cortex, medial prefrontal cortex and left hippocampus. Neuropsychological tests were used to evaluate the cognitive function. The Glu/GSH ratio was used to indicate the coupling between GSH and Glu and was tested as a predictor of cognitive performance. The results show that RRMS patients exhibited reduced hippocampal GSH and Glu levels, which were found to be significant predictors of worse verbal and visuospatial memory, respectively. Moreover, GSH levels were dissociated from Glu levels in the left hippocampus of RRMS patients. Hippocampal Glu/GSH ratio is significantly correlated with processing speed and has a greater predictive effect. Here we show the hippocampal Glu/GSH ratio could serve as a new potential marker for characterizing cognitive impairment in RRMS, providing a new direction for clinical detection of cognitive impairment.
Collapse
Affiliation(s)
- Fuyan Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Wei Zong
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Chenxi Xin
- School of International Education, Xinxiang Medical University, No. 601, Jinsui Avenue, Hongqi District, Xinxiang 453003, China
| | - Fuxin Ren
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jing-wu Road No. 324, Jinan,250021 China
| | - Ning Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jing-wu Road No. 324, Jinan,250021 China
| | - Honghao Li
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Xiao Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jing-wu Road No. 324, Jinan,250021 China
| | - Lili Wu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, No. 16, Lincui Road, Beijing 100101, China
| | - Zongrui Dai
- Department of Biostatistics, University of Michigan, 500 S. State Street, Ann Arbor, Ann Arbor, MI 48109, United States
| | - Weibo Chen
- Philips Healthcare, Building 718, Lingshi Road, Jing'an District, Shanghai 200072, China
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States
| | - Fei Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Guangbin Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| |
Collapse
|
6
|
Ahmed A, Saleem MA, Saeed F, Afzaal M, Imran A, Akram S, Hussain M, Khan A, Al Jbawi E. A comprehensive review on the impact of calcium and vitamin D insufficiency and allied metabolic disorders in females. Food Sci Nutr 2023; 11:5004-5027. [PMID: 37701195 PMCID: PMC10494632 DOI: 10.1002/fsn3.3519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 09/14/2023] Open
Abstract
Calcium is imperative in maintaining a quality life, particularly during later ages. Its deficiency results in a wide range of metabolic disorders such as dental changes, cataracts, alterations in brain function, and osteoporosis. These deficiencies are more pronounced in females due to increased calcium turnover throughout their life cycle, especially during pregnancy and lactation. Vitamin D perform a central role in the metabolism of calcium. Recent scientific interventions have linked calcium with an array of metabolic disorders in females including hypertension, obesity, premenstrual dysphoric disorder, polycystic ovary syndrome (PCOS), multiple sclerosis, and breast cancer. This review encompasses these female metabolic disorders with special reference to calcium and vitamin D deficiency. This review article aims to present and elaborate on available data regarding the worldwide occurrence of insufficient calcium consumption in females and allied health risks, to provide a basis for formulating strategies and population-level scientific studies to adequately boost calcium intake and position where required.
Collapse
Affiliation(s)
- Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Awais Saleem
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
- Department of Human Nutrition and DieteticsMirpur University of Science and TechnologyMirpurPakistan
| | - Farhan Saeed
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Ali Imran
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Sidra Akram
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Aqsa Khan
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | | |
Collapse
|
7
|
Ortí JEDLR, Cuerda-Ballester M, Sanchis-Sanchis CE, Lajara Romance JM, Navarro-Illana E, García Pardo MP. Exploring the impact of ketogenic diet on multiple sclerosis: obesity, anxiety, depression, and the glutamate system. Front Nutr 2023; 10:1227431. [PMID: 37693246 PMCID: PMC10485376 DOI: 10.3389/fnut.2023.1227431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Background Multiple sclerosis (MS) is a neurodegenerative disorder. Individuals with MS frequently present symptoms such as functional disability, obesity, and anxiety and depression. Axonal demyelination can be observed and implies alterations in mitochondrial activity and increased inflammation associated with disruptions in glutamate neurotransmitter activity. In this context, the ketogenic diet (KD), which promotes the production of ketone bodies in the blood [mainly β-hydroxybutyrate (βHB)], is a non-pharmacological therapeutic alternative that has shown promising results in peripheral obesity reduction and central inflammation reduction. However, the association of this type of diet with emotional symptoms through the modulation of glutamate activity in MS individuals remains unknown. Aim To provide an update on the topic and discuss the potential impact of KD on anxiety and depression through the modulation of glutamate activity in subjects with MS. Discussion The main findings suggest that the KD, as a source of ketone bodies in the blood, improves glutamate activity by reducing obesity, which is associated with insulin resistance and dyslipidemia, promoting central inflammation (particularly through an increase in interleukins IL-1β, IL-6, and IL-17). This improvement would imply a decrease in extrasynaptic glutamate activity, which has been linked to functional disability and the presence of emotional disorders such as anxiety and depression.
Collapse
Affiliation(s)
| | | | | | - Jose María Lajara Romance
- Faculty of Legal, Economic and Social Sciences, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Esther Navarro-Illana
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | | |
Collapse
|
8
|
Pukoli D, Vécsei L. Smouldering Lesion in MS: Microglia, Lymphocytes and Pathobiochemical Mechanisms. Int J Mol Sci 2023; 24:12631. [PMID: 37628811 PMCID: PMC10454160 DOI: 10.3390/ijms241612631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated, chronic inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS). Immune cell infiltration can lead to permanent activation of macrophages and microglia in the parenchyma, resulting in demyelination and neurodegeneration. Thus, neurodegeneration that begins with acute lymphocytic inflammation may progress to chronic inflammation. This chronic inflammation is thought to underlie the development of so-called smouldering lesions. These lesions evolve from acute inflammatory lesions and are associated with continuous low-grade demyelination and neurodegeneration over many years. Their presence is associated with poor disease prognosis and promotes the transition to progressive MS, which may later manifest clinically as progressive MS when neurodegeneration exceeds the upper limit of functional compensation. In smouldering lesions, in the presence of only moderate inflammatory activity, a toxic environment is clearly identifiable and contributes to the progressive degeneration of neurons, axons, and oligodendrocytes and, thus, to clinical disease progression. In addition to the cells of the immune system, the development of oxidative stress in MS lesions, mitochondrial damage, and hypoxia caused by the resulting energy deficit and iron accumulation are thought to play a role in this process. In addition to classical immune mediators, this chronic toxic environment contains high concentrations of oxidants and iron ions, as well as the excitatory neurotransmitter glutamate. In this review, we will discuss how these pathobiochemical markers and mechanisms, alone or in combination, lead to neuronal, axonal, and glial cell death and ultimately to the process of neuroinflammation and neurodegeneration, and then discuss the concepts and conclusions that emerge from these findings. Understanding the role of these pathobiochemical markers would be important to gain a better insight into the relationship between the clinical classification and the pathomechanism of MS.
Collapse
Affiliation(s)
- Dániel Pukoli
- Department of Neurology, Esztergomi Vaszary Kolos Hospital, 2500 Esztergom, Hungary;
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
9
|
Ibrahim Fouad G, Ahmed KA. Remyelinating activities of Carvedilol or alpha lipoic acid in the Cuprizone-Induced rat model of demyelination. Int Immunopharmacol 2023; 118:110125. [PMID: 37028277 DOI: 10.1016/j.intimp.2023.110125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Multiple sclerosis (MS) is a complex and multifactorial neurodegenerative disease with unknown etiology, MS is featured by multifocal demyelinated lesions distributed throughout the brain. It is assumed to result from an interaction between genetic and environmental factors, including nutrition. Therefore, different therapeutic approaches are aiming to stimulate remyelination which could be defined as an endogenous regeneration and repair of myelin in the central nervous system. Carvedilol is an adrenergic receptor antagonist. Alpha lipoic acid (ALA) is a well-known antioxidant. Herein, we investigated the remyelination potential of Carvedilol or ALA post-Cuprizone (CPZ) intoxication. Carvedilol or ALA (20 mg/kg/d) was administrated orally for two weeks at the end of the five weeks of CPZ (0.6%) administration. CPZ provoked demyelination, enhanced oxidative stress, and stimulated neuroinflammation. Histological investigation of CPZ-induced brains showed obvious demyelination in the corpus callosum (CC). Both Carvedilol and ALA demonstrated remyelinating activities, with corresponding upregulation of the expression of MBP and PLP, the major myelin proteins, downregulation of the expression of TNF-α and MMP-9, and decrement of serum IFN-γ levels. Moreover, both Carvedilol and ALA alleviated oxidative stress, and ameliorated muscle fatigue. This study highlights the neurotherapeutic potential of Carvedilol or ALA in CPZ-induced demyelination, and offers a better model for the exploring of neuroregenerative strategies. The current study is the first to demonstrate a pro-remyelinating activity for Carvedilol, as compared to ALA, which might represent a potential additive benefit in halting demyelination and alleviating neurotoxicity. However, we could declare that Carvedilol showed a lower neuroprotective potential than ALA.
Collapse
|
10
|
ALNasser MN, AlSaadi AM, Whitby A, Kim DH, Mellor IR, Carter WG. Acai Berry ( Euterpe sp.) Extracts Are Neuroprotective against L-Glutamate-Induced Toxicity by Limiting Mitochondrial Dysfunction and Cellular Redox Stress. Life (Basel) 2023; 13:life13041019. [PMID: 37109548 PMCID: PMC10144606 DOI: 10.3390/life13041019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Aberrant accumulation of the neurotransmitter L-glutamate (L-Glu) has been implicated as a mechanism of neurodegeneration, and the release of L-Glu after stroke onset leads to a toxicity cascade that results in neuronal death. The acai berry (Euterpe oleracea) is a potential dietary nutraceutical. The aim of this research was to investigate the neuroprotective effects of acai berry aqueous and ethanolic extracts to reduce the neurotoxicity to neuronal cells triggered by L-Glu application. L-Glu and acai berry effects on cell viability were quantified using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, and effects on cellular bioenergetics were assessed via quantitation of the levels of cellular ATP, mitochondrial membrane potential (MMP), and production of reactive oxygen species (ROS) in neuroblastoma cells. Cell viability was also evaluated in human cortical neuronal progenitor cell culture after L-Glu or/and acai berry application. In isolated cells, activated currents using patch-clamping were employed to determine whether L-Glu neurotoxicity was mediated by ionotropic L-Glu-receptors (iGluRs). L-Glu caused a significant reduction in cell viability, ATP, and MMP levels and increased ROS production. The co-application of both acai berry extracts with L-Glu provided neuroprotection against L-Glu with sustained cell viability, decreased LDH production, restored ATP and MMP levels, and reduced ROS levels. Whole-cell patch-clamp recordings showed that L-Glu toxicity is not mediated by the activation of iGluRs in neuroblastoma cells. Fractionation and analysis of acai berry extracts with liquid chromatography-mass spectrometry identified several phytochemical antioxidants that may have provided neuroprotective effects. In summary, the acai berry contains nutraceuticals with antioxidant activity that may be a beneficial dietary component to limit pathological deficits triggered by excessive L-Glu accumulations.
Collapse
Affiliation(s)
- Maryam N ALNasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box No. 400, Al-Ahsa 31982, Saudi Arabia
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ayman M AlSaadi
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Alison Whitby
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ian R Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Wayne G Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
11
|
Polyák H, Galla Z, Nánási N, Cseh EK, Rajda C, Veres G, Spekker E, Szabó Á, Klivényi P, Tanaka M, Vécsei L. The Tryptophan-Kynurenine Metabolic System Is Suppressed in Cuprizone-Induced Model of Demyelination Simulating Progressive Multiple Sclerosis. Biomedicines 2023; 11:biomedicines11030945. [PMID: 36979924 PMCID: PMC10046567 DOI: 10.3390/biomedicines11030945] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Progressive multiple sclerosis (MS) is a chronic disease with a unique pattern, which is histologically classified into the subpial type 3 lesions in the autopsy. The lesion is also homologous to that of cuprizone (CPZ) toxin-induced animal models of demyelination. Aberration of the tryptophan (TRP)-kynurenine (KYN) metabolic system has been observed in patients with MS; nevertheless, the KYN metabolite profile of progressive MS remains inconclusive. In this study, C57Bl/6J male mice were treated with 0.2% CPZ toxin for 5 weeks and then underwent 4 weeks of recovery. We measured the levels of serotonin, TRP, and KYN metabolites in the plasma and the brain samples of mice at weeks 1, 3, and 5 of demyelination, and at weeks 7 and 9 of remyelination periods by ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) after body weight measurement and immunohistochemical analysis to confirm the development of demyelination. The UHPLC-MS/MS measurements demonstrated a significant reduction of kynurenic acid, 3-hydoxykynurenine (3-HK), and xanthurenic acid in the plasma and a significant reduction of 3-HK, and anthranilic acid in the brain samples at week 5. Here, we show the profile of KYN metabolites in the CPZ-induced mouse model of demyelination. Thus, the KYN metabolite profile potentially serves as a biomarker of progressive MS and thus opens a new path toward planning personalized treatment, which is frequently obscured with immunologic components in MS deterioration.
Collapse
Affiliation(s)
- Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Zsolt Galla
- Department of Pediatrics, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Nikolett Nánási
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Edina Katalin Cseh
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Cecília Rajda
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Gábor Veres
- Independent Researcher, H-6726 Szeged, Hungary
| | - Eleonóra Spekker
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
12
|
Amatruda M, Harris K, Matis A, Davies AL, McElroy D, Clark M, Linington C, Desai R, Smith KJ. Oxygen treatment reduces neurological deficits and demyelination in two animal models of multiple sclerosis. Neuropathol Appl Neurobiol 2023; 49:e12868. [PMID: 36520661 PMCID: PMC10107096 DOI: 10.1111/nan.12868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
AIMS The objective of the study is to explore the importance of tissue hypoxia in causing neurological deficits and demyelination in the inflamed CNS, and the value of inspiratory oxygen treatment, using both active and passive experimental autoimmune encephalomyelitis (EAE). METHODS Normobaric oxygen treatment was administered to Dark Agouti rats with either active or passive EAE, compared with room air-treated, and naïve, controls. RESULTS Severe neurological deficits in active EAE were significantly improved after just 1 h of breathing approximately 95% oxygen. The improvement was greater and more persistent when oxygen was applied either prophylactically (from immunisation for 23 days), or therapeutically from the onset of neurological deficits for 24, 48, or 72 h. Therapeutic oxygen for 72 h significantly reduced demyelination and the integrated stress response in oligodendrocytes at the peak of disease, and protected from oligodendrocyte loss, without evidence of increased oxidative damage. T-cell infiltration and cytokine expression in the spinal cord remained similar to that in untreated animals. The severe neurological deficit of animals with passive EAE occurred in conjunction with spinal hypoxia and was significantly reduced by oxygen treatment initiated before their onset. CONCLUSIONS Severe neurological deficits in both active and passive EAE can be caused by hypoxia and reduced by oxygen treatment. Oxygen treatment also reduces demyelination in active EAE, despite the autoimmune origin of the disease.
Collapse
Affiliation(s)
- Mario Amatruda
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kate Harris
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Alina Matis
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Andrew L Davies
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Daniel McElroy
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Michael Clark
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Christopher Linington
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Roshni Desai
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
13
|
Lorefice L, Pitzalis M, Murgia F, Fenu G, Atzori L, Cocco E. Omics approaches to understanding the efficacy and safety of disease-modifying treatments in multiple sclerosis. Front Genet 2023; 14:1076421. [PMID: 36793897 PMCID: PMC9922720 DOI: 10.3389/fgene.2023.1076421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
From the perspective of precision medicine, the challenge for the future is to improve the accuracy of diagnosis, prognosis, and prediction of therapeutic responses through the identification of biomarkers. In this framework, the omics sciences (genomics, transcriptomics, proteomics, and metabolomics) and their combined use represent innovative approaches for the exploration of the complexity and heterogeneity of multiple sclerosis (MS). This review examines the evidence currently available on the application of omics sciences to MS, analyses the methods, their limitations, the samples used, and their characteristics, with a particular focus on biomarkers associated with the disease state, exposure to disease-modifying treatments (DMTs), and drug efficacies and safety profiles.
Collapse
Affiliation(s)
- Lorena Lorefice
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- *Correspondence: Lorena Lorefice,
| | - Maristella Pitzalis
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Federica Murgia
- Dpt of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppe Fenu
- Department of Neurosciences, ARNAS Brotzu, Cagliari, Italy
| | - Luigi Atzori
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
14
|
Antunes FTT, De Souza AH, Figueira J, Binda NS, Carvalho VPR, Vieira LB, Gomez MV. Targeting N-type calcium channels in young-onset of some neurological diseases. Front Cell Dev Biol 2022; 10:1090765. [PMID: 36601540 PMCID: PMC9806183 DOI: 10.3389/fcell.2022.1090765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Calcium (Ca 2+) is an important second messenger in charge of many critical processes in the central nervous system (CNS), including membrane excitability, neurotransmission, learning, memory, cell proliferation, and apoptosis. In this way, the voltage-gated calcium channels (VGCCs) act as a key supply for Ca2+ entry into the cytoplasm and organelles. Importantly, the dysregulation of these channels has been reported in many neurological diseases of young-onset, with associated genetic factors, such as migraine, multiple sclerosis, and Huntington's disease. Notably, the literature has pointed to the role of N-type Ca2+ channels (NTCCs) in controlling a variety of processes, including pain, inflammation, and excitotoxicity. Moreover, several Ca2+ channel blockers that are used for therapeutic purposes have been shown to act on the N-type channels. Therefore, this review provides an overview of the NTCCs in neurological disorders focusing mainly on Huntington's disease, multiple sclerosis, and migraine. It will discuss possible strategies to generate novel therapeutic strategies.
Collapse
Affiliation(s)
- Flavia Tasmin Techera Antunes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alessandra Hubner De Souza
- Post-Graduate Program of Health Sciences, Faculdade de Ciências Médicas de, Belo Horizonte, Minas Gerais, Brazil,*Correspondence: Alessandra Hubner De Souza, ; Marcus Vinícius Gomez,
| | - Juliana Figueira
- Pharmacology Department, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Nancy Scardua Binda
- Pharmacology Department, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Luciene Bruno Vieira
- Pharmacology Departament, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcus Vinícius Gomez
- Graduate Program in Health Sciences, Faculty Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil,*Correspondence: Alessandra Hubner De Souza, ; Marcus Vinícius Gomez,
| |
Collapse
|
15
|
Momchilova A, Pankov R, Alexandrov A, Markovska T, Pankov S, Krastev P, Staneva G, Vassileva E, Krastev N, Pinkas A. Sphingolipid Catabolism and Glycerophospholipid Levels Are Altered in Erythrocytes and Plasma from Multiple Sclerosis Patients. Int J Mol Sci 2022; 23:ijms23147592. [PMID: 35886939 PMCID: PMC9315580 DOI: 10.3390/ijms23147592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory, degenerative disease of the central nervous system. Changes in lipid metabolism have been suggested to play important roles in MS pathophysiology and progression. In this work we analyzed the lipid composition and sphingolipid-catabolizing enzymes in erythrocytes and plasma from MS patients and healthy controls. We observed reduction of sphingomyelin (SM) and elevation of its products—ceramide (CER) and shingosine (SPH). These changes were supported by the detected up-regulation of the activity of acid sphingomyelinase (ASM) in MS plasma and alkaline ceramidase (ALCER) in erythrocytes from MS patients. In addition, Western blot analysis showed elevated expression of ASM, but not of ALCER. We also compared the ratios between saturated (SAT), unsaturated (UNSAT) and polyunsaturated fatty acids and suggest, based on the significant differences observed for this ratio, that the UNSAT/SAT values could serve as a marker distinguishing erythrocytes and plasma of MS from controls. In conclusion, the application of lipid analysis in the medical practice would contribute to definition of more precise diagnosis, analysis of disease progression, and evaluation of therapeutic strategies. Based on the molecular changes of blood lipids in neurodegenerative pathologies, including MS, clinical lipidomic analytical approaches could become a promising contemporary tool for personalized medicine.
Collapse
Affiliation(s)
- Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (T.M.); (S.P.); (G.S.)
- Correspondence: ; Tel.: +359-2-9792686 or +359-898-238971
| | - Roumen Pankov
- Biological Faculty, Sofia University, 8, Dragan Tzankov Str., 1164 Sofia, Bulgaria;
| | - Alexander Alexandrov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (T.M.); (S.P.); (G.S.)
| | - Tania Markovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (T.M.); (S.P.); (G.S.)
| | - Stefan Pankov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (T.M.); (S.P.); (G.S.)
| | - Plamen Krastev
- Cardiology Clinic, University Hospital St. Ekaterina, 1431 Sofia, Bulgaria;
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (T.M.); (S.P.); (G.S.)
| | - Evgenia Vassileva
- Clinic of Neurology, Tsaritsa Yoanna University Hospital-ISUL, 1527 Sofia, Bulgaria;
| | - Nikolai Krastev
- Department of Anatomy, Histology and Embryology, Medical University-Sofia, Blvd. Sv. Georgi Sofiisky 1, 1431 Sofia, Bulgaria;
- Medical Center Relax, 8 Ami Bue Str., 1606 Sofia, Bulgaria
| | - Adriana Pinkas
- STEP/CSTEP, Office of Continuing Education, Suffolk County Community College 30 Greene Ave., Sayville, NY 11782, USA;
| |
Collapse
|
16
|
AL-Nasser MN, Mellor IR, Carter WG. Is L-Glutamate Toxic to Neurons and Thereby Contributes to Neuronal Loss and Neurodegeneration? A Systematic Review. Brain Sci 2022; 12:577. [PMID: 35624964 PMCID: PMC9139234 DOI: 10.3390/brainsci12050577] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
L-glutamate (L-Glu) is a nonessential amino acid, but an extensively utilised excitatory neurotransmitter with critical roles in normal brain function. Aberrant accumulation of L-Glu has been linked to neurotoxicity and neurodegeneration. To investigate this further, we systematically reviewed the literature to evaluate the effects of L-Glu on neuronal viability linked to the pathogenesis and/or progression of neurodegenerative diseases (NDDs). A search in PubMed, Medline, Embase, and Web of Science Core Collection was conducted to retrieve studies that investigated an association between L-Glu and pathology for five NDDs: Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Together, 4060 studies were identified, of which 71 met eligibility criteria. Despite several inadequacies, including small sample size, employment of supraphysiological concentrations, and a range of administration routes, it was concluded that exposure to L-Glu in vitro or in vivo has multiple pathogenic mechanisms that influence neuronal viability. These mechanisms include oxidative stress, reduced antioxidant defence, neuroinflammation, altered neurotransmitter levels, protein accumulations, excitotoxicity, mitochondrial dysfunction, intracellular calcium level changes, and effects on neuronal histology, cognitive function, and animal behaviour. This implies that clinical and epidemiological studies are required to assess the potential neuronal harm arising from excessive intake of exogenous L-Glu.
Collapse
Affiliation(s)
- Maryam N. AL-Nasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Wayne G. Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
17
|
Xu Z, Elrashidy RA, Li B, Liu G. Oxidative Stress: A Putative Link Between Lower Urinary Tract Symptoms and Aging and Major Chronic Diseases. Front Med (Lausanne) 2022; 9:812967. [PMID: 35360727 PMCID: PMC8960172 DOI: 10.3389/fmed.2022.812967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aging and major chronic diseases are risk factors for lower urinary tract symptoms (LUTS). On the other hand, oxidative stress (OS) is one of the fundamental mechanisms of aging and the development of chronic diseases. Therefore, OS might be a candidate mechanism linking these two clinical entities. This article aims to summarize the studies on the prevalence of LUTS, the role of OS in aging and chronic diseases, and the potential mechanisms supporting the putative link. A comprehensive literature search was performed to identify recent reports investigating LUTS and OS in major chronic diseases. In addition, studies on the impact of OS on the lower urinary tract, including bladder, urethra, and prostate, were collected and summarized. Many studies showed LUTS are prevalent in aging and major chronic diseases, including obesity, metabolic syndrome, diabetes, cardiovascular disease, hypertension, obstructive sleep apnea, autoimmune diseases, Alzheimer’s disease, and Parkinson’s disease. At the same time, OS is a key component in the pathogenesis of those chronic diseases and conditions. Recent studies also provided evidence that exacerbated OS can cause functional and/or structural changes in the bladder, urethra, and prostate, leading to LUTS. The reviewed data support the concept that OS is involved in multiple risk factors-associated LUTS, although further studies are needed to confirm the causative relationship. The specific ROS/RNS and corresponding reactions/pathways involved in chronic diseases and associated LUTS should be identified in the future and could serve as therapeutic targets.
Collapse
Affiliation(s)
- Zhenqun Xu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Rania A. Elrashidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Bo Li
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Guiming Liu,
| |
Collapse
|
18
|
In Vivo Assessment of the Ameliorative Impact of Some Medicinal Plant Extracts on Lipopolysaccharide-Induced Multiple Sclerosis in Wistar Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051608. [PMID: 35268709 PMCID: PMC8911946 DOI: 10.3390/molecules27051608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 01/21/2023]
Abstract
Multiple sclerosis is a chronic autoimmune disorder that leads to the demyelination of nerve fibers, which is the major cause of non-traumatic disability all around the world. Herbal plants Nepeta hindustana L., Vitex negundo L., and Argemone albiflora L., in addition to anti-inflammatory and anti-oxidative effects, have shown great potential as neuroprotective agents. The study was aimed to develop a neuroprotective model to study the effectiveness of herbal plants (N. hindustana, V. negundo, and A. albiflora) against multiple sclerosis. The in vivo neuroprotective effects of ethanolic extracts isolated from N. hindustana, V. negundo, and A. albiflora were evaluated in lipopolysaccharides (LPS) induced multiple sclerosis Wistar rat model. The rat models were categorized into seven groups including group A as normal, B as LPS induced diseased group, while C, D, E, F, and G were designed as treatment groups. Histopathological evaluation and biochemical markers including stress and inflammatory (MMP-6, MDA, TNF-α, AOPPs, AGEs, NO, IL-17 and IL-2), antioxidant (SOD, GSH, CAT, GPx), DNA damage (Isop-2α, 8OHdG) as well as molecular biomarkers (RAGE, Caspase-8, p38) along with glutamate, homocysteine, acetylcholinesterase, and myelin binding protein (MBP) were investigated. The obtained data were analyzed using SPSS version 21 and GraphPad Prism 8.0. The different extract treated groups (C, D, E, F, G) displayed a substantial neuroprotective effect regarding remyelination of axonal terminals and oligodendrocytes migration, reduced lymphocytic infiltrations, and reduced necrosis of Purkinje cells. The levels of stress, inflammatory, and DNA damage markers were observed high in the diseased group B, which were reduced after treatments with plant extracts. The antioxidant activity was significantly reduced in diseased induced group B, however, their levels were raised after treatment with plant extract. Group F (a mélange of all the extracts) showed the most significant change among all other treatment groups (C, D, E, G). The communal dose of selected plant extracts regulates neurodegeneration at the cellular level resulting in restoration and remyelination of axonal neurons. Moreover, 400 mg/kg dose of three plants in conjugation (Group F) were found to be more effective in restoring the normal activities of all measured parameters than independent doses (Group C, D, E) and is comparable with standard drug nimodipine (Group G) clinically used for the treatment of multiple sclerosis. The present study, for the first time, reported the clinical evidence of N. hindustana, V. negundo, and A. albiflora against multiple sclerosis and concludes that all three plants showed remyelination as well neuroprotective effects which may be used as a potential natural neurotherapeutic agent against multiple sclerosis.
Collapse
|
19
|
Differential Proteomic Analysis of Astrocytes and Astrocytes-Derived Extracellular Vesicles from Control and Rai Knockout Mice: Insights into the Mechanisms of Neuroprotection. Int J Mol Sci 2021; 22:ijms22157933. [PMID: 34360699 PMCID: PMC8348125 DOI: 10.3390/ijms22157933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022] Open
Abstract
Reactive astrocytes are a hallmark of neurodegenerative disease including multiple sclerosis. It is widely accepted that astrocytes may adopt alternative phenotypes depending on a combination of environmental cues and intrinsic features in a highly plastic and heterogeneous manner. However, we still lack a full understanding of signals and associated signaling pathways driving astrocyte reaction and of the mechanisms by which they drive disease. We have previously shown in the experimental autoimmune encephalomyelitis mouse model that deficiency of the molecular adaptor Rai reduces disease severity and demyelination. Moreover, using primary mouse astrocytes, we showed that Rai contributes to the generation of a pro-inflammatory central nervous system (CNS) microenvironment through the production of nitric oxide and IL-6 and by impairing CD39 activity in response to soluble factors released by encephalitogenic T cells. Here, we investigated the impact of Rai expression on astrocyte function both under basal conditions and in response to IL-17 treatment using a proteomic approach. We found that astrocytes and astrocyte-derived extracellular vesicles contain a set of proteins, to which Rai contributes, that are involved in the regulation of oligodendrocyte differentiation and myelination, nitrogen metabolism, and oxidative stress. The HIF-1α pathway and cellular energetic metabolism were the most statistically relevant molecular pathways and were related to ENOA and HSP70 dysregulation.
Collapse
|
20
|
Pukoli D, Polyák H, Rajda C, Vécsei L. Kynurenines and Neurofilament Light Chain in Multiple Sclerosis. Front Neurosci 2021; 15:658202. [PMID: 34113231 PMCID: PMC8185147 DOI: 10.3389/fnins.2021.658202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis is an autoimmune, demyelinating, and neurodegenerative disease of the central nervous system. In recent years, it has been proven that the kynurenine system plays a significant role in the development of several nervous system disorders, including multiple sclerosis. Kynurenine pathway metabolites have both neurotoxic and neuroprotective effects. Moreover, the enzymes of the kynurenine pathway play an important role in immunomodulation processes, among others, as well as interacting with neuronal energy balance and various redox reactions. Dysregulation of many of the enzymatic steps in kynurenine pathway and upregulated levels of these metabolites locally in the central nervous system, contribute to the progression of multiple sclerosis pathology. This process can initiate a pathogenic cascade, including microglia activation, glutamate excitotoxicity, chronic oxidative stress or accumulated mitochondrial damage in the axons, that finally disrupt the homeostasis of neurons, leads to destabilization of neuronal cell cytoskeleton, contributes to neuro-axonal damage and neurodegeneration. Neurofilaments are good biomarkers of the neuro-axonal damage and their level reliably indicates the severity of multiple sclerosis and the treatment response. There is increasing evidence that connections exist between the molecules generated in the kynurenine metabolic pathway and the change in neurofilament concentrations. Thus the alterations in the kynurenine pathway may be an important biomarker of the course of multiple sclerosis. In our present review, we report the possible relationship and connection between neurofilaments and the kynurenine system in multiple sclerosis based on the available evidences.
Collapse
Affiliation(s)
- Dániel Pukoli
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Neurology, Vaszary Kolos Hospital, Esztergom, Hungary
| | - Helga Polyák
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Cecilia Rajda
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
21
|
Yang RP, Cai DK, Chen YX, Gang HN, Wei M, Zhu DQ, Li SM, Yang JM, Luo SN, Bi XL, Sun DM. Metabolic Insight Into the Neuroprotective Effect of Tao-He-Cheng-Qi (THCQ) Decoction on ICH Rats Using Untargeted Metabolomics. Front Pharmacol 2021; 12:636457. [PMID: 34012394 PMCID: PMC8126979 DOI: 10.3389/fphar.2021.636457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 01/01/2023] Open
Abstract
Tao-He-Cheng-Qi decoction (THCQ) is an effective traditional Chinese medicine used to treat intracerebral hemorrhage (ICH). This study was performed to investigate the possible neuroprotective effect of THCQ decoction on secondary brain damage in rats with intracerebral hemorrhage and to elucidate the potential mechanism based on a metabolomics approach. Sprague-Dawley (SD) rats were randomly divided into five groups: the sham group, collagenase-induced ICH model group, THCQ low-dose (THCQ-L)-treated group, THCQ moderate-dose (THCQ-M)-treated group and THCQ high-dose (THCQ-H)-treated group. Following 3 days of treatment, behavioral changes and histopathological lesions in the brain were estimated. Untargeted metabolomics analysis with multivariate statistics was performed by using ultrahigh-performance liquid chromatography–mass spectrometry (UPLC-Q-Exactive Orbitrap MS). THCQ treatment at two dosages (5.64 and 11.27 g/kg·d) remarkably improved behavior (p < 0.05), brain water content (BMC) and hemorheology (p < 0.05) and improved brain nerve tissue pathology and inflammatory infiltration in ICH rats. Moreover, a metabolomic analysis demonstrated that the serum metabolic profiles of ICH patients were significantly different between the sham group and the ICH-induced model group. Twenty-seven biomarkers were identified that potentially predict the clinical benefits of THCQ decoction. Of these, 4 biomarkers were found to be THCQ-H group-specific, while others were shared between two clusters. These metabolites are mainly involved in amino acid metabolism and glutamate-mediated cell excitotoxicity, lipid metabolism-mediated oxidative stress, and mitochondrial dysfunction caused by energy metabolism disorders. In addition, a correlation analysis showed that the behavioral scores, brain water content and hemorheology were correlated with levels of serum metabolites derived from amino acid and lipid metabolism. In conclusion, the results indicate that THCQ decoction significantly attenuates ICH-induced secondary brain injury, which could be mediated by improving metabolic disorders in cerebral hemorrhage rats.
Collapse
Affiliation(s)
- Rui-Pei Yang
- Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of T. C. M), Guangzhou, China
| | - Da-Ke Cai
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of T. C. M), Guangzhou, China
| | - Yu-Xing Chen
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of T. C. M), Guangzhou, China
| | - Hai-Ning Gang
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of T. C. M), Guangzhou, China
| | - Mei Wei
- Guangdong Yifang Pharmaceutical Co., Ltd. Foshan, China
| | - De-Quan Zhu
- Guangdong Yifang Pharmaceutical Co., Ltd. Foshan, China
| | - Su-Mei Li
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of T. C. M), Guangzhou, China
| | - Jiu-Mei Yang
- Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of T. C. M), Guangzhou, China
| | - Si-Ni Luo
- Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of T. C. M), Guangzhou, China
| | - Xiao-Li Bi
- Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of T. C. M), Guangzhou, China
| | - Dong-Mei Sun
- Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Yifang Pharmaceutical Co., Ltd. Foshan, China
| |
Collapse
|
22
|
López-Pedrera C, Villalba JM, Patiño-Trives AM, Luque-Tévar M, Barbarroja N, Aguirre MÁ, Escudero-Contreras A, Pérez-Sánchez C. Therapeutic Potential and Immunomodulatory Role of Coenzyme Q 10 and Its Analogues in Systemic Autoimmune Diseases. Antioxidants (Basel) 2021; 10:antiox10040600. [PMID: 33924642 PMCID: PMC8069673 DOI: 10.3390/antiox10040600] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a mitochondrial electron carrier and a powerful lipophilic antioxidant located in membranes and plasma lipoproteins. CoQ10 is endogenously synthesized and obtained from the diet, which has raised interest in its therapeutic potential against pathologies related to mitochondrial dysfunction and enhanced oxidative stress. Novel formulations of solubilized CoQ10 and the stabilization of reduced CoQ10 (ubiquinol) have improved its bioavailability and efficacy. Synthetic analogues with increased solubility, such as idebenone, or accumulated selectively in mitochondria, such as MitoQ, have also demonstrated promising properties. CoQ10 has shown beneficial effects in autoimmune diseases. Leukocytes from antiphospholipid syndrome (APS) patients exhibit an oxidative perturbation closely related to the prothrombotic status. In vivo ubiquinol supplementation in APS modulated the overexpression of inflammatory and thrombotic risk-markers. Mitochondrial abnormalities also contribute to immune dysregulation and organ damage in systemic lupus erythematosus (SLE). Idebenone and MitoQ improved clinical and immunological features of lupus-like disease in mice. Clinical trials and experimental models have further demonstrated a therapeutic role for CoQ10 in Rheumatoid Arthritis, multiple sclerosis and type 1 diabetes. This review summarizes the effects of CoQ10 and its analogs in modulating processes involved in autoimmune disorders, highlighting the potential of these therapeutic approaches for patients with immune-mediated diseases.
Collapse
Affiliation(s)
- Chary López-Pedrera
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
- Correspondence: ; Tel.: +34-957-213795
| | - José Manuel Villalba
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, 14014 Córdoba, Spain; (J.M.V.); (C.P.-S.)
| | - Alejandra Mª Patiño-Trives
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Maria Luque-Tévar
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Nuria Barbarroja
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Mª Ángeles Aguirre
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Alejandro Escudero-Contreras
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Carlos Pérez-Sánchez
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, 14014 Córdoba, Spain; (J.M.V.); (C.P.-S.)
| |
Collapse
|
23
|
Chaves AR, Snow NJ, Alcock LR, Ploughman M. Probing the Brain-Body Connection Using Transcranial Magnetic Stimulation (TMS): Validating a Promising Tool to Provide Biomarkers of Neuroplasticity and Central Nervous System Function. Brain Sci 2021; 11:384. [PMID: 33803028 PMCID: PMC8002717 DOI: 10.3390/brainsci11030384] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/18/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive method used to investigate neurophysiological integrity of the human neuromotor system. We describe in detail, the methodology of a single pulse TMS protocol that was performed in a large cohort of people (n = 110) with multiple sclerosis (MS). The aim was to establish and validate a core-set of TMS variables that predicted typical MS clinical outcomes: walking speed, hand dexterity, fatigue, and cognitive processing speed. We provide a brief and simple methodological pipeline to examine excitatory and inhibitory corticospinal mechanisms in MS that map to clinical status. Delayed and longer ipsilateral silent period (a measure of transcallosal inhibition; the influence of one brain hemisphere's activity over the other), longer cortical silent period (suggestive of greater corticospinal inhibition via GABA) and higher resting motor threshold (lower corticospinal excitability) most strongly related to clinical outcomes, especially when measured in the hemisphere corresponding to the weaker hand. Greater interhemispheric asymmetry (imbalance between hemispheres) correlated with poorer performance in the greatest number of clinical outcomes. We also show, not surprisingly, that TMS variables related more strongly to motor outcomes than non-motor outcomes. As it was validated in a large sample of patients with varying severities of central nervous system dysfunction, the protocol described herein can be used by investigators and clinicians alike to investigate the role of TMS as a biomarker in MS and other central nervous system disorders.
Collapse
Affiliation(s)
| | | | | | - Michelle Ploughman
- L.A. Miller Centre, Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1A 1E5, Canada; (A.R.C.); (N.J.S.); (L.R.A.)
| |
Collapse
|
24
|
Polyák H, Cseh EK, Bohár Z, Rajda C, Zádori D, Klivényi P, Toldi J, Vécsei L. Cuprizone markedly decreases kynurenic acid levels in the rodent brain tissue and plasma. Heliyon 2021; 7:e06124. [PMID: 33553777 PMCID: PMC7856478 DOI: 10.1016/j.heliyon.2021.e06124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Background The kynurenine (KYN) pathway (KP) of the tryptophan (TRP) metabolism seems to play a role in the pathomechanism of multiple sclerosis (MS). Cuprizone (CPZ) treated animals develop both demyelination (DEM) and remyelination (REM) in lack of peripheral immune response, such as the lesion pattern type III and IV in MS, representing primary oligodendrogliopathy. Objective To measure the metabolites of the KP in the CPZ treated animals, including TRP, KYN and kynurenic acid (KYNA). We proposed that KYNA levels might be decreased in the CPZ-induced demyelinating phase of the animal model of MS, which model represents the progressive phase of the disease. Methods A total of 64 C57Bl/6J animals were used for the study. Immunohistochemical (IHC) measurements were performed to prove the effect of CPZ, whereas high-performance liquid chromatography (HPLC) was used to quantify the metabolites of the KP (n = 10/4 groups; DEM, CO1, REM, CO2). Results IHC measurements proved the detrimental effects of CPZ. HPLC measurements demonstrated a decrease of KYNA in the hippocampus (p < 0.05), somatosensory cortex (p < 0.01) and in plasma (p < 0.001). Conclusion This is the first evidence of marked reduction in KYNA levels in a non-immune mediated model of MS. Our results suggest an involvement of the KP in the pathomechanism of MS, which needs to be further elucidated.
Collapse
Affiliation(s)
- Helga Polyák
- Department of Neurology, Interdisciplinary Centre of Excellence, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Edina Katalin Cseh
- Department of Neurology, Interdisciplinary Centre of Excellence, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Interdisciplinary Centre of Excellence, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Cecilia Rajda
- Department of Neurology, Interdisciplinary Centre of Excellence, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, Interdisciplinary Centre of Excellence, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Interdisciplinary Centre of Excellence, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Centre of Excellence, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
- Corresponding author.
| |
Collapse
|
25
|
Cerebrospinal fluid lipidomic biomarker signatures of demyelination for multiple sclerosis and Guillain-Barré syndrome. Sci Rep 2020; 10:18380. [PMID: 33110173 PMCID: PMC7592055 DOI: 10.1038/s41598-020-75502-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) and Guillain–Barré syndrome (GBS) are demyelinating disorders affecting the central nervous system and peripheral nervous system (PNS), respectively. Cerebrospinal fluid (CSF) is one of the most valuable sources of diagnostic biomarkers in neurological diseases. In the present study high sensitivity shotgun mass spectrometry was used to characterise the CSF lipidome of patients with MS, GBS and controls with non-demyelinating diseases. The quantification of 222 CSF lipid molecular species revealed characteristic changes in the absolute and relative lipid concentrations in MS and GBS compared to the controls. For the GBS group, the fourfold elevation in the total lipid content was a discriminatory and a newly identified feature of PNS demyelination. In contrast, in MS, the accumulation of the myelin-derived cerebrosides represented a specific feature of demyelination. As a common feature of demyelination, we identified upregulated levels of lipid metabolic intermediates. We found strong positive correlation between total protein content and lipid concentrations in both diseases. By exploring the CSF lipidome we demonstrate usefulness of broad-range shotgun lipidomic analysis as a fast and reliable method of biomarker discovery in patients with demyelinating neurological disorders that might be a valuable diagnostic complement to existing examinations.
Collapse
|
26
|
Air Pollution-Related Brain Metal Dyshomeostasis as a Potential Risk Factor for Neurodevelopmental Disorders and Neurodegenerative Diseases. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence links air pollution (AP) exposure to effects on the central nervous system structure and function. Particulate matter AP, especially the ultrafine (nanoparticle) components, can carry numerous metal and trace element contaminants that can reach the brain in utero and after birth. Excess brain exposure to either essential or non-essential elements can result in brain dyshomeostasis, which has been implicated in both neurodevelopmental disorders (NDDs; autism spectrum disorder, schizophrenia, and attention deficit hyperactivity disorder) and neurodegenerative diseases (NDGDs; Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis). This review summarizes the current understanding of the extent to which the inhalational or intranasal instillation of metals reproduces in vivo the shared features of NDDs and NDGDs, including enlarged lateral ventricles, alterations in myelination, glutamatergic dysfunction, neuronal cell death, inflammation, microglial activation, oxidative stress, mitochondrial dysfunction, altered social behaviors, cognitive dysfunction, and impulsivity. Although evidence is limited to date, neuronal cell death, oxidative stress, and mitochondrial dysfunction are reproduced by numerous metals. Understanding the specific contribution of metals/trace elements to this neurotoxicity can guide the development of more realistic animal exposure models of human AP exposure and consequently lead to a more meaningful approach to mechanistic studies, potential intervention strategies, and regulatory requirements.
Collapse
|
27
|
Tanaka M, Vécsei L. Monitoring the Redox Status in Multiple Sclerosis. Biomedicines 2020; 8:E406. [PMID: 33053739 PMCID: PMC7599550 DOI: 10.3390/biomedicines8100406] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Worldwide, over 2.2 million people suffer from multiple sclerosis (MS), a multifactorial demyelinating disease of the central nervous system. MS is characterized by a wide range of motor, autonomic, and psychobehavioral symptoms, including depression, anxiety, and dementia. The blood, cerebrospinal fluid, and postmortem brain samples of MS patients provide evidence on the disturbance of reduction-oxidation (redox) homeostasis, such as the alterations of oxidative and antioxidative enzyme activities and the presence of degradation products. This review article discusses the components of redox homeostasis, including reactive chemical species, oxidative enzymes, antioxidative enzymes, and degradation products. The reactive chemical species cover frequently discussed reactive oxygen/nitrogen species, infrequently featured reactive chemicals such as sulfur, carbonyl, halogen, selenium, and nucleophilic species that potentially act as reductive, as well as pro-oxidative stressors. The antioxidative enzyme systems cover the nuclear factor erythroid-2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway. The NRF2 and other transcriptional factors potentially become a biomarker sensitive to the initial phase of oxidative stress. Altered components of the redox homeostasis in MS were discussed in search of a diagnostic, prognostic, predictive, and/or therapeutic biomarker. Finally, monitoring the battery of reactive chemical species, oxidative enzymes, antioxidative enzymes, and degradation products helps to evaluate the redox status of MS patients to expedite the building of personalized treatment plans for the sake of a better quality of life.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
28
|
Birkner K, Wasser B, Ruck T, Thalman C, Luchtman D, Pape K, Schmaul S, Bitar L, Krämer-Albers EM, Stroh A, Meuth SG, Zipp F, Bittner S. β1-Integrin- and KV1.3 channel-dependent signaling stimulates glutamate release from Th17 cells. J Clin Invest 2020; 130:715-732. [PMID: 31661467 DOI: 10.1172/jci126381] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 10/22/2019] [Indexed: 12/22/2022] Open
Abstract
Although the impact of Th17 cells on autoimmunity is undisputable, their pathogenic effector mechanism is still enigmatic. We discovered soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) complex proteins in Th17 cells that enable a vesicular glutamate release pathway that induces local intracytoplasmic calcium release and subsequent damage in neurons. This pathway is glutamine dependent and triggered by binding of β1-integrin to vascular cell adhesion molecule 1 (VCAM-1) on neurons in the inflammatory context. Glutamate secretion could be blocked by inhibiting either glutaminase or KV1.3 channels, which are known to be linked to integrin expression and highly expressed on stimulated T cells. Although KV1.3 is not expressed in CNS tissue, intrathecal administration of a KV1.3 channel blocker or a glutaminase inhibitor ameliorated disability in experimental neuroinflammation. In humans, T cells from patients with multiple sclerosis secreted higher levels of glutamate, and cerebrospinal fluid glutamine levels were increased. Altogether, our findings demonstrate that β1-integrin- and KV1.3 channel-dependent signaling stimulates glutamate release from Th17 cells upon direct cell-cell contact between Th17 cells and neurons.
Collapse
Affiliation(s)
- Katharina Birkner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beatrice Wasser
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tobias Ruck
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Carine Thalman
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dirk Luchtman
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katrin Pape
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Samantha Schmaul
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lynn Bitar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Albrecht Stroh
- Institute for Pathophysiology, FTN, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven G Meuth
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
29
|
Brimson JM, Brimson S, Chomchoei C, Tencomnao T. Using sigma-ligands as part of a multi-receptor approach to target diseases of the brain. Expert Opin Ther Targets 2020; 24:1009-1028. [PMID: 32746649 DOI: 10.1080/14728222.2020.1805435] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The sigma receptors are found abundantly in the central nervous system and are targets for the treatment of various diseases, including Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD), depression, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). However, for many of these diseases, other receptors and targets have been the focus of the most, such as acetylcholine esterase inhibitors in Alzheimer's and dopamine replacement in Parkinson's. The currently available drugs for these diseases have limited success resulting in the requirement of an alternative approach to their treatment. AREAS COVERED In this review, we discuss the potential role of the sigma receptors and their ligands as part of a multi receptor approach in the treatment of the diseases mentioned above. The literature reviewed was obtained through searches in databases, including PubMed, Web of Science, Google Scholar, and Scopus. EXPERT OPINION Given sigma receptor agonists provide neuroprotection along with other benefits such as potentiating the effects of other receptors, further development of multi-receptor targeting ligands, and or the development of multi-drug combinations to target multiple receptors may prove beneficial in the future treatment of degenerative diseases of the CNS, especially when coupled with better diagnostic techniques.
Collapse
Affiliation(s)
- James Michael Brimson
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Chanichon Chomchoei
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Tewin Tencomnao
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| |
Collapse
|
30
|
Hoxha M, Spahiu E, Prendi E, Zappacosta B. A Systematic Review on the Role of Arachidonic Acid Pathway in Multiple Sclerosis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 21:160-187. [PMID: 32842948 DOI: 10.2174/1871527319666200825164123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/28/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND & OBJECTIVE Multiple sclerosis (MS) is an inflammatory neurodegenerative disease characterized by destruction of oligodendrocytes, immune cell infiltration and demyelination. Inflammation plays a significant role in MS, and the inflammatory mediators such as eicosanoids, leukotrienes, superoxide radicals are involved in pro-inflammatory responses in MS. In this systematic review we tried to define and discuss all the findings of in vivo animal studies and human clinical trials on the potential association between arachidonic acid (AA) pathway and multiple sclerosis. METHODS A systematic literature search across Pubmed, Scopus, Embase and Cochrane database was conducted. This systematic review was performed according to PRISMA guidelines. RESULTS A total of 146 studies were included, of which 34 were conducted in animals, 58 in humans, and 60 studies reported the role of different compounds that target AA mediators or their corresponding enzymes/ receptors, and can have a therapeutic effect in MS. These results suggest that eicosanoids have significant roles in experimental autoimmune encephalomyelitis (EAE) and MS. The data from animal and human studies elucidated that PGI2, PGF2α, PGD2, isoprostanes, PGE2, PLA2, LTs are increased in MS. PLA2 inhibition modulates the progression of the disease. PGE1 analogues can be a useful option in the treatment of MS. CONCLUSIONS All studies reported the beneficial effects of COX and LOX inhibitors in MS. The hybrid compounds, such as COX-2 inhibitors/TP antagonists and 5-LOX inhibitors can be an innovative approach for multiple sclerosis treatment. Future work in MS should shed light in synthesizing new compounds targeting arachidonic acid pathway.
Collapse
Affiliation(s)
- Malvina Hoxha
- Department of Chemical-Toxicological and Pharmacological Evaluations of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, Rruga Dritan Hoxha, Tirana. Albania
| | | | - Emanuela Prendi
- Catholic University Our Lady of Good Counsel, Department of Biomedical Sciences, Rruga Dritan Hoxha, Tirana. Albania
| | - Bruno Zappacosta
- Department of Chemical-Toxicological and Pharmacological Evaluations of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, Rruga Dritan Hoxha, Tirana. Albania
| |
Collapse
|
31
|
Ferreira HB, Neves B, Guerra IM, Moreira A, Melo T, Paiva A, Domingues MR. An overview of lipidomic analysis in different human matrices of multiple sclerosis. Mult Scler Relat Disord 2020; 44:102189. [PMID: 32516740 DOI: 10.1016/j.msard.2020.102189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis is a chronic inflammatory and neurodegenerative disease of the central nervous system, and it is one of the most common neurological cause of disability in young adults. It is known that several factors contribute to increase the risk of development and pathogenesis of multiple sclerosis, nonetheless, but the true etiology of this pathology remains unknown. Similar to other inflammatory diseases, oxidative stress and lipid peroxidation are also associated to multiple sclerosis. Alterations in the lipid profile seem to be a hallmark of this pathology which can contribute to the dysregulation of lipid homeostasis and lipid metabolism in multiple sclerosis. Lipidomic studies analysed in this review clearly demonstrate the role of lipids in inflammatory processes, in immunity, and in the onset and development of multiple sclerosis. Several investigations reported alterations of some molecular lipid species, in particular, with decrease of fatty acids (FA) 18:2 and 20:4 and total polyunsaturated FA, with compensatory increases of saturated FA with shorter carbon chains. Oxidized phospholipids were reported in few studies as well. Also, it was shown that clinical lipidomics has potential as a tool to aid both in multiple sclerosis diagnosis and therapeutics by allowing a detailed lipidome profiling of the patients suffering with this disease.
Collapse
Affiliation(s)
- Helena Beatriz Ferreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Inês M Guerra
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Moreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.; Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Ciências Biomédicas Laboratoriais, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal.
| |
Collapse
|
32
|
Activity of Antioxidant Defense Enzymes in Rats with Experimental Allergic Encephalomyelitis. Bull Exp Biol Med 2020; 168:761-766. [PMID: 32328934 DOI: 10.1007/s10517-020-04797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 10/24/2022]
Abstract
We studied activities of antioxidant system enzymes in tissues of rats with experimental allergic encephalomyelitis. It was shown that the development of pathology is accompanied by deformation of the neurons and axonal degeneration, intensification of free radical oxidation, exhaustion of the reduced glutathione pool, and multidirectional changes in activities of antioxidant enzymes in rat tissues. The observed imbalance in the antioxidant defense system can be associated with excessive glutathione utilization in the glutathione transferase reaction and different severity of the pathological process in the brain and spinal cord. The received data necessitate the search for compounds that can prevent inhibition of antioxidant system components in order to analyze the possibility of their use in the treatment of multiple sclerosis.
Collapse
|
33
|
Zhang X, Jin J, Xie A. Laquinimod inhibits MMP+ induced NLRP3 inflammasome activation in human neuronal cells. Immunopharmacol Immunotoxicol 2020; 42:264-271. [PMID: 32249647 DOI: 10.1080/08923973.2020.1746967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective: Nod-like receptor protein 3 (NLRP3) inflammasome plays anessentialrole in neuroinflammation in the Parkinson's disease (PD) progression. Laquinimodis an immunomodulator that is clinically used for the treatment of multiple sclerosis. This study aims to investigate whether laquinimod possessesa protective effect against MPP+-induced NLRP3 activation.Materials and methods: In a variety of tests on human SH-SY5Y neuronal cells, 1-methyl-4-phenyl Pyridine (MPP+) was used to mimic the microenvironment of PD. Activation of NLRP3 inflammasome was measured by western blot analysis and enzyme linked immunosorbent assay (ELISA).Results: Laquinimod had a significant protective impact against MPP+-induced neurotoxicity. Our results demonstrate that laquinimod prevented MPP+-induced reduction of cell proliferation, the release of lactate dehydrogenase (LDH), and apoptosis. Importantly, treatment with laquinimod significantly inhibited the activation of the NLRP3 inflammasome by reducing the levels of its components, including NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and cleaved caspase 1 (P10). Consistently, laquinimod prevented MPP+-induced secretions of interleukin 1β (IL-1β) and interleukin-18 (IL-18). Additionally, laquinimod also reduced the expression of other related factors, such as intracellular reactive oxygen species (ROS), NADPH oxidase 4 (NOX-4), thioredoxin-interacting protein (TxNIP). Furthermore, laquinimod prevented the reduction of sirtuin 1 (SIRT1) from MPP+ stimulation. Inhibition of SIRT1 abolished the protective effects of laquinimod against the activation of the NLRP3 inflammasome, suggesting the involvement of SIRT1 in this process.Conclusion: These findings suggest that laquinimod treatment might be a possible therapeutic strategy for neuroinflammation in PD.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianing Jin
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Strategies for Neuroprotection in Multiple Sclerosis and the Role of Calcium. Int J Mol Sci 2020; 21:ijms21051663. [PMID: 32121306 PMCID: PMC7084497 DOI: 10.3390/ijms21051663] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Calcium ions are vital for maintaining the physiological and biochemical processes inside cells. The central nervous system (CNS) is particularly dependent on calcium homeostasis and its dysregulation has been associated with several neurodegenerative disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD) and Huntington’s disease (HD), as well as with multiple sclerosis (MS). Hence, the modulation of calcium influx into the cells and the targeting of calcium-mediated signaling pathways may present a promising therapeutic approach for these diseases. This review provides an overview on calcium channels in neurons and glial cells. Special emphasis is put on MS, a chronic autoimmune disease of the CNS. While the initial relapsing-remitting stage of MS can be treated effectively with immune modulatory and immunosuppressive drugs, the subsequent progressive stage has remained largely untreatable. Here we summarize several approaches that have been and are currently being tested for their neuroprotective capacities in MS and we discuss which role calcium could play in this regard.
Collapse
|
35
|
Jiao J, Wang Y, Ren P, Sun S, Wu M. Necrosulfonamide Ameliorates Neurological Impairment in Spinal Cord Injury by Improving Antioxidative Capacity. Front Pharmacol 2020; 10:1538. [PMID: 31998134 PMCID: PMC6962303 DOI: 10.3389/fphar.2019.01538] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022] Open
Abstract
Currently, there is no efficient therapy for spinal cord injury (SCI). Anoxemia after SCI is a key problem, which leads to tissue destruction, while hypoxia after SCI induces cell injury along with inflammation. Mixed-lineage kinase domain-like protein (MLKL) is a critical signal molecule of necroptosis, and mitochondrial dysfunction is regarded as one of the most pivotal events after SCI. Based on the important role of MLKL in cell damage and potential role of mitochondrial dysfunction, our study focuses on the regulation of MLKL by Necrosulfonamide (NSA) in mitochondrial dysfunction of oxygen-glucose deprivation (OGD)-induced cell damage and SCI-mice, which specifically blocks the MLKL. Our results showed that NSA protected against a decrease in the mitochondrial membrane potential, adenosine triphosphate, glutathione, and superoxide dismutase levels and an increase in reactive oxygen species and malonyldialdehyde levels. NSA also improved the locomotor function in SCI-mice and OGD-induced spinal neuron injury through inhibition of MLKL activation independently of receptor-interacting protein kinase 3 (RIP3) phosphorylation. Besides the protective effects, NSA exhibited a therapeutic window. The optimal treatment time was within 12 h after the injury in the SCI-mice model. In conclusion, our data suggest a close association between the NSA level inhibiting p-MLKL independently of RIP3 phosphorylation and induction of neurological impairment by improving antioxidative capacity after SCI. NSA ameliorates neurological impairment in SCI through inhibiting MLKL-dependent necroptosis. It also provides a theoretical basis for further research and application of NSA in the treatment of SCI.
Collapse
Affiliation(s)
- Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Pengfei Ren
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Shicai Sun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Yin JJ, He Y, An J, Miao Q, Sui RX, Wang Q, Yu JZ, Xiao BG, Ma CG. Dynamic Balance of Microglia and Astrocytes Involved in the Remyelinating Effect of Ginkgolide B. Front Cell Neurosci 2020; 13:572. [PMID: 31969806 PMCID: PMC6960131 DOI: 10.3389/fncel.2019.00572] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/12/2019] [Indexed: 01/04/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disorder in the central nervous system (CNS), in which remyelination failure results in persistent neurologic impairment. Ginkgolide B (GB), a major terpene lactone and active component of Ginkgo biloba, has neuroprotective effects in several models of neurological diseases. Here, our results show, by using an in vivo cuprizone (CPZ)-induced demyelinating model, administration of GB improved behavior abnormalities, promoted myelin generation, and significantly regulated the dynamic balance of microglia and astrocytes by inhibiting the expression of TLR4, NF-κB and iNOS as well as IL-1β and TNF-α, and up-regulating the expression of Arg-1 and neurotrophic factors. GB treatment also induced the generation of oligodendrocyte precursor cells (OPCs). In vitro cell experiments yielded the results similar to those of the in vivo model. The dynamic balance by decreasing microglia-mediated neuroinflammation and promoting astrocyte-derived neurotrophic factors should contribute to endogenous remyelination. Despite GB treatment may represent a novel strategy for promoting myelin recovery, the precise mechanism of GB targeting microglia and astrocytes remains to be further explored.
Collapse
Affiliation(s)
- Jun-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yan He
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jun An
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Qiang Miao
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Ruo-Xuan Sui
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jie-Zhong Yu
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China.,Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Shanxi Datong University, Datong, China
| |
Collapse
|
37
|
Li R, Dai Z, Hu D, Zeng H, Fang Z, Zhuang Z, Xu H, Huang Q, Cui Y, Zhang H. Mapping the Alterations of Glutamate Using Glu-Weighted CEST MRI in a Rat Model of Fatigue. Front Neurol 2020; 11:589128. [PMID: 33250853 PMCID: PMC7673456 DOI: 10.3389/fneur.2020.589128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/07/2020] [Indexed: 02/05/2023] Open
Abstract
Objective: Glutamate dysregulation may play an important role in the pathophysiology of fatigue. Glutamate weighted chemical exchange saturation transfer (Glu-weighted CEST) MRI is a recently developed technology which enables measuring glutamate in vivo with high sensitivity and spatial resolution. The purpose of this study is to map the alternations of brain glutamate in a rat model of fatigue. Methods: Rats were subjected to 10 days fatigue loading procedure (fatigue group) or reared without any fatigue loading (control group). Spontaneous activities of rats in the fatigue group were recorded from 3 days before fatigue loading to 4 days after the end of fatigue loading. Glu-weighted CEST were performed following 10-day fatigue loading. Results: Rats in the fatigue group exhibited significant reduced spontaneous activities after 10-day fatigue loading. The glutamate level in the whole brain increased significantly in the fatigue group compared to that in the control group. Further analysis of glutamate in the sub-regions of brain including the prefrontal cortex, hippocampus, and striatum revealed a trend of increment, although statistical significance was not reached. Significance: The increase of glutamate level in the brain may be a crucial process involved in the pathophysiology of fatigue.
Collapse
Affiliation(s)
- Ruili Li
- Department of Psychiatry, Mental Health Center of Shantou University, Shantou, China
| | - Zhuozhi Dai
- Department of Radiology, Shantou Central Hospital, Shantou, China
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Di Hu
- Laboratory for Biofunction Dynamic Imaging, RIkagaku KENkyusho/Institute of Physical and Chemical Research (RIKEN) Center for Systems Dynamics Research, Kobe, Japan
| | - Haiyan Zeng
- Department of Psychiatry, Mental Health Center of Shantou University, Shantou, China
- Mental Health Center, Xianyue Hospital, Xiamen, China
| | - Zeman Fang
- Department of Psychiatry, Mental Health Center of Shantou University, Shantou, China
| | - Zerui Zhuang
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Haiyun Xu
- Department of Psychiatry, Mental Health Center of Shantou University, Shantou, China
- School of Psychiatry, Wenzhou Medical University, Wenzhou, China
| | - Qingjun Huang
- Department of Psychiatry, Mental Health Center of Shantou University, Shantou, China
| | - Yilong Cui
- Mental Health Center, Xianyue Hospital, Xiamen, China
| | - Handi Zhang
- Department of Psychiatry, Mental Health Center of Shantou University, Shantou, China
- *Correspondence: Handi Zhang
| |
Collapse
|
38
|
Extracellular RNAs as Biomarkers of Sporadic Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20133148. [PMID: 31252669 PMCID: PMC6651127 DOI: 10.3390/ijms20133148] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Recent progress in the research for underlying mechanisms in neurodegenerative diseases, including Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) has led to the development of potentially effective treatment, and hence increased the need for useful biomarkers that may enable early diagnosis and therapeutic monitoring. The deposition of abnormal proteins is a pathological hallmark of neurodegenerative diseases, including β-amyloid in AD, α-synuclein in PD, and the transactive response DNA/RNA binding protein of 43kDa (TDP-43) in ALS. Furthermore, progression of the disease process accompanies the spreading of abnormal proteins. Extracellular proteins and RNAs, including mRNA, micro RNA, and circular RNA, which are present as a composite of exosomes or other forms, play a role in cell–cell communication, and the role of extracellular molecules in the cell-to-cell spreading of pathological processes in neurodegenerative diseases is now in the spotlight. Therefore, extracellular proteins and RNAs are considered potential biomarkers of neurodegenerative diseases, in particular ALS, in which RNA dysregulation has been shown to be involved in the pathogenesis. Here, we review extracellular proteins and RNAs that have been scrutinized as potential biomarkers of neurodegenerative diseases, and discuss the possibility of extracellular RNAs as diagnostic and therapeutic monitoring biomarkers of sporadic ALS.
Collapse
|
39
|
Tüzün E. Immunopathological Factors Associated with Disability in Multiple Sclerosis. ACTA ACUST UNITED AC 2019; 55:S26-S30. [PMID: 30692851 DOI: 10.29399/npa.23303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In multiple sclerosis (MS), disability occurs as a result of complex interactions between glial cells and diverse components of acquired immunity. Microglial cells significantly contribute to disability progression by re-activating infiltrating lymphocytes, releasing neuro- and oligodendrocytotoxic mediators, inducing oxidative stress, and interfering with neuroplasticity. Recent research has emphasized the significance of meningeal B cell infiltrates in development of cognitive decline and disability. B cells are also involved in disability progression by way of production of neurotoxic antibodies directed against axoglial antigens. Among several immunological factors, neurofilament light chain antibodies, IgM-type oligoclonal bands, complement factor C3, and microglia-derived mediators stick out as potential reliable predictors of disability progression in MS patients. Better understanding of the interactions between innate immunity and neuroaxonal degeneration may result in development of novel and effective therapeutics for progressive types of MS.
Collapse
Affiliation(s)
- Erdem Tüzün
- İstanbul University, Istanbul Faculty of Medicine, Department of Neuroscience, İstanbul, Turkey
| |
Collapse
|
40
|
Kuzmina US, Zainullina LF, Vakhitov VA, Bakhtiyarova KZ, Vakhitova YV. The role of glutamate in the pathogenesis of multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:160-167. [DOI: 10.17116/jnevro2019119081160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Blatteau JE, Gaillard S, De Maistre S, Richard S, Louges P, Gempp E, Druelles A, Lehot H, Morin J, Castagna O, Abraini JH, Risso JJ, Vallée N. Reduction in the Level of Plasma Mitochondrial DNA in Human Diving, Followed by an Increase in the Event of an Accident. Front Physiol 2018; 9:1695. [PMID: 30555340 PMCID: PMC6282000 DOI: 10.3389/fphys.2018.01695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/09/2018] [Indexed: 01/02/2023] Open
Abstract
Circulating mitochondrial DNA (mtDNA) is receiving increasing attention as a danger-associated molecular pattern in conditions such as autoimmunity or trauma. In the context of decompression sickness (DCS), the course of which is sometimes erratic, we hypothesize that mtDNA plays a not insignificant role particularly in neurological type accidents. This study is based on the comparison of circulating mtDNA levels in humans presenting with various types of diving accidents, and punctured upon their admission at the hyperbaric facility. One hundred and fourteen volunteers took part in the study. According to the clinical criteria there were 12 Cerebro DCS, 57 Medullary DCS, 15 Vestibular DCS, 8 Ctrl+ (accident-free divers), and 22 Ctrl- (non-divers). This work demonstrates that accident-free divers have less mtDNA than non-divers, which leads to the assumption that hyperbaric exposure degrades the mtDNA. mtDNA levels are on average greater in divers with DCS compared with accident-free divers. On another hand, the amount of double strand DNA (dsDNA) is neither significantly different between controls, nor between the different DCS types. Initially the increase in circulating oligonucleotides was attributed to the destruction of cells by bubble abrasion following necrotic phenomena. If there really is a significant difference between the Medullary DCS and the Ctrl-, this difference is not significant between these same DCS and the Ctrl+. This refutes the idea of massive degassing and suggests the need for new research in order to verify that oxidative stress could be a key element without necessarily being sufficient for the occurrence of a neurological type of accident.
Collapse
Affiliation(s)
- Jean-Eric Blatteau
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon, France
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | | | - Sébastien De Maistre
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Simone Richard
- Mediterranean Institute of Oceanography, Université de Toulon, Toulon, France
| | - Pierre Louges
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Emmanuel Gempp
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Arnaud Druelles
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Henri Lehot
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Jean Morin
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Olivier Castagna
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon, France
| | - Jacques H. Abraini
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon, France
| | - Nicolas Vallée
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon, France
| |
Collapse
|
42
|
Metabolic Dysfunction and Peroxisome Proliferator-Activated Receptors (PPAR) in Multiple Sclerosis. Int J Mol Sci 2018; 19:ijms19061639. [PMID: 29865151 PMCID: PMC6032172 DOI: 10.3390/ijms19061639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS) probably caused, in most cases, by the interaction of genetic and environmental factors. This review first summarizes some clinical, epidemiological and pathological characteristics of MS. Then, the involvement of biochemical pathways is discussed in the development and repair of the CNS lesions and the immune dysfunction in the disease. Finally, the potential roles of peroxisome proliferator-activated receptors (PPAR) in MS are discussed. It is suggested that metabolic mechanisms modulated by PPAR provide a window to integrate the systemic and neurological events underlying the pathogenesis of the disease. In conclusion, the reviewed data highlight molecular avenues of understanding MS that may open new targets for improved therapies and preventive strategies for the disease.
Collapse
|
43
|
Collina S, Rui M, Stotani S, Bignardi E, Rossi D, Curti D, Giordanetto F, Malacrida A, Scuteri A, Cavaletti G. Are sigma receptor modulators a weapon against multiple sclerosis disease? Future Med Chem 2017; 9:2029-2051. [PMID: 29076758 DOI: 10.4155/fmc-2017-0122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Effective therapies for multiple sclerosis (MS) are still missing. This neurological disease affects more than 2.5 million people worldwide. To date, biological immunomodulatory drugs are effective and safe during short-term treatment, but they are suitable only for parenteral administration and they are expensive. Accordingly, academic and industrial environments are still focusing their efforts toward the development of new MS drugs. Considering that neurodegeneration is a contributory factor in the onset of MS, herein we will focus on the crucial role played by sigma 1 receptors (S1Rs) in MS. A pilot study was performed, evaluating the effect of the S1R agonist (R)-RC33 on rat dorsal root ganglia experimental model. The encouraging results support the potential of S1R agonists for MS treatment.
Collapse
Affiliation(s)
- Simona Collina
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Marta Rui
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Silvia Stotani
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, Dortmund 44227, Germany
| | - Emanuele Bignardi
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Daniela Curti
- Department of Biology & Biotechnology 'L. Spallanzani', Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Via Ferrata 9, Pavia 27100, Italy
| | | | - Alessio Malacrida
- Experimental Neurology Unit, Department of Medicine & Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Arianna Scuteri
- Experimental Neurology Unit, Department of Medicine & Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, Department of Medicine & Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| |
Collapse
|