1
|
Matsoukas JM, Ligielli I, Chasapis CT, Kelaidonis K, Apostolopoulos V, Mavromoustakos T. Novel Approaches in the Immunotherapy of Multiple Sclerosis: Cyclization of Myelin Epitope Peptides and Conjugation with Mannan. Brain Sci 2021; 11:1583. [PMID: 34942885 PMCID: PMC8699547 DOI: 10.3390/brainsci11121583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023] Open
Abstract
Multiple Sclerosis (MS) is a serious autoimmune disease. The patient in an advanced state of the disease has restrained mobility and remains handicapped. It is therefore understandable that there is a great need for novel drugs and vaccines for the treatment of MS. Herein we summarise two major approaches applied for the treatment of the disease using peptide molecules alone or conjugated with mannan. The first approach focuses on selective myelin epitope peptide or peptide mimetic therapy alone or conjugated with mannan, and the second on immune-therapy by preventing or controlling disease through the release of appropriate cytokines. In both approaches the use of cyclic peptides offers the advantage of increased stability from proteolytic enzymes. In these approaches, the synthesis of myelin epitope peptides conjugated to mannan is of particular interest as this was found to protect mice against experimental autoimmune encephalomyelitis, an animal model of MS, in prophylactic and therapeutic protocols. Protection was peptide-specific and associated with reduced antigen-specific T cell proliferation. The aim of the studies of these peptide epitope analogs is to understand their molecular basis of interactions with human autoimmune T-cell receptor and a MS-associated human leucocyte antigen (HLA)-DR2b. This knowledge will lead the rational design to new beneficial non-peptide mimetic analogs for the treatment of MS. Some issues of the use of nanotechnology will also be addressed as a future trend to tackle the disease. We highlight novel immunomodulation and vaccine-based research against MS based on myelin epitope peptides and strategies developed in our laboratories.
Collapse
Affiliation(s)
- John M. Matsoukas
- NewDrug PC, Patras Science Park, 265 04 Platani, Greece;
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Irene Ligielli
- Department of Chemistry, University of Athens, 157 72 Athens, Greece;
| | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, Institute of Chemical, School of Natural Sciences, University of Patras, 265 04 Patras, Greece;
- Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 265 04 Patra, Greece
| | | | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Australian Institute for Musculoskeletal Science (AIMSS), Immunology Program, Melbourne, VIC 3021, Australia
| | | |
Collapse
|
2
|
Immune Modulatory Effects of Probiotic Streptococcus thermophilus on Human Monocytes. BIOLOGICS 2021. [DOI: 10.3390/biologics1030023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ingesting probiotics contributes to the development of a healthy microflora in the GIT with established benefits to human health. Some of these beneficial effects may be through the modulation of the immune system. In addition, probiotics have become more common in the treatment of many inflammatory and immune disorders. Here, we demonstrate a range of immune modulating effects of Streptococcus thermophilus by human monocytes, including decreased mRNA expression of IL-1R, IL-18, IFNαR1, IFNγR1, CCL2, CCR5, TLR-1, TLR-2, TLR-4, TLR-5, TLR-6, TLR-8, CD14, CD86, CD4, ITGAM, LYZ, TYK2, IFNR1, IRAK-1, NOD2, MYD88, SLC11A1, and increased expression of IL-1α, IL-1β, IL-2, IL-6, IL-8, IL-23, IFNγ, TNFα, CSF-2. The routine administration of Streptococcus thermophilus in fermented dairy products and their consumption may be beneficial to the treatment/management of inflammatory and autoimmune diseases.
Collapse
|
3
|
He Q, Chen B, Chen S, Zhang M, Duan L, Feng X, Chen J, Zhou L, Chen L, Duan Y. MBP-activated autoimmunity plays a role in arsenic-induced peripheral neuropathy and the potential protective effect of mecobalamin. ENVIRONMENTAL TOXICOLOGY 2021; 36:1243-1253. [PMID: 33739591 DOI: 10.1002/tox.23122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Intake excessive arsenic (As) is related to the occurrence of peripheral neuropathy. However, both the underlying mechanism and the preventive approach remain largely unknown. In the present study, As treatment significantly decreased the mechanical withdrawal threshold and increased the titer of anti-myelin basic protein antibody in rats, accompanied with damaged BNB. The levels of inflammatory cytokines and proteolytic enzymes were also significantly upregulated. However, administration of MeCbl in As-treated rats significantly reversed the decline in hindfoot mechanical withdrawal threshold, as well as BNB failure and sciatic nerve inflammation. Repeated As treatment in athymic nude mice indicated that sciatic nerve inflammation and mechanical hyperalgesia were T cell-dependent. These data implicated that MBP-activated autoimmunity and the related neuroinflammation probably contributed to As-induced mechanical hyperalgesia and MeCbl exerted a protective role probably via maintenance the integrity of BNB and inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Qican He
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Bingzhi Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shaoyi Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Muyang Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lidan Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiangling Feng
- Experimental Center for Preventive Medicine, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jihua Chen
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lezhou Zhou
- Central Laboratory, Occupational Disease Prevention and Control Hospital of Hunan Province, Changsha, China
| | - Lv Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
4
|
Androutsou ME, Nteli A, Gkika A, Avloniti M, Dagkonaki A, Probert L, Tselios T, Golič Grdadolnik S. Characterization of Asparagine Deamidation in Immunodominant Myelin Oligodendrocyte Glycoprotein Peptide Potential Immunotherapy for the Treatment of Multiple Sclerosis. Int J Mol Sci 2020; 21:E7566. [PMID: 33066323 PMCID: PMC7593956 DOI: 10.3390/ijms21207566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022] Open
Abstract
Mannan (polysaccharide) conjugated with a myelin oligodendrocyte glycoprotein (MOG) peptide, namely (KG)5MOG35-55, represents a potent and promising new approach for the immunotherapy of Multiple Sclerosis (MS). The MOG35-55 epitope conjugated with the oxidized form of mannan (poly-mannose) via a (KG)5 linker was found to inhibit the symptoms of MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) in mice using prophylactic and therapeutic vaccinated protocols. Deamidation is a common modification in peptide and protein sequences, especially for Gln and Asn residues. In this study, the structural solution motif of deaminated peptides and their functional effects in an animal model for MS were explored. Several peptides based on the MOG35-55 epitope have been synthesized in which the Asn53 was replaced with Ala, Asp, or isoAsp. Our results demonstrate that the synthesized MOG peptides were formed to the deaminated products in basic conditions, and the Asn53 was mainly modified to Asp. Moreover, both peptides (wild type and deaminated derivative) conjugated with mannan (from Saccharomyces cerevisiae) independently inhibited the development of neurological symptoms and inflammatory demyelinating spinal cord lesions in MOG35-55-induced EAE. To conclude, mannan conjugated with a deamidated product did not affect the efficacy of the parent peptide.
Collapse
Affiliation(s)
| | - Agathi Nteli
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (A.N.); (A.G.)
| | - Areti Gkika
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (A.N.); (A.G.)
| | - Maria Avloniti
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave., 11521 Athens, Greece; (M.A.); (A.D.); (L.P.)
| | - Anastasia Dagkonaki
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave., 11521 Athens, Greece; (M.A.); (A.D.); (L.P.)
| | - Lesley Probert
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave., 11521 Athens, Greece; (M.A.); (A.D.); (L.P.)
| | - Theodore Tselios
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (A.N.); (A.G.)
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| |
Collapse
|
5
|
A Journey to the Conformational Analysis of T-Cell Epitope Peptides Involved in Multiple Sclerosis. Brain Sci 2020; 10:brainsci10060356. [PMID: 32521758 PMCID: PMC7349157 DOI: 10.3390/brainsci10060356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/22/2023] Open
Abstract
Multiple sclerosis (MS) is a serious central nervous system (CNS) disease responsible for disability problems and deterioration of the quality of life. Several approaches have been applied to medications entering the market to treat this disease. However, no effective therapy currently exists, and the available drugs simply ameliorate the destructive disability effects of the disease. In this review article, we report on the efforts that have been conducted towards establishing the conformational properties of wild-type myelin basic protein (MBP), myelin proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG) epitopes or altered peptide ligands (ALPs). These efforts have led to the aim of discovering some non-peptide mimetics possessing considerable activity against the disease. These efforts have contributed also to unveiling the molecular basis of the molecular interactions implicated in the trimolecular complex, T-cell receptor (TCR)–peptide–major histocompatibility complex (MHC) or human leucocyte antigen (HLA).
Collapse
|
6
|
Recent Advances in Antigen-Specific Immunotherapies for the Treatment of Multiple Sclerosis. Brain Sci 2020; 10:brainsci10060333. [PMID: 32486045 PMCID: PMC7348736 DOI: 10.3390/brainsci10060333] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system and is considered to be the leading non-traumatic cause of neurological disability in young adults. Current treatments for MS comprise long-term immunosuppressant drugs and disease-modifying therapies (DMTs) designed to alter its progress with the enhanced risk of severe side effects. The Holy Grail for the treatment of MS is to specifically suppress the disease while at the same time allow the immune system to be functionally active against infectious diseases and malignancy. This could be achieved via the development of immunotherapies designed to specifically suppress immune responses to self-antigens (e.g., myelin antigens). The present study attempts to highlight the various antigen-specific immunotherapies developed so far for the treatment of multiple sclerosis (e.g., vaccination with myelin-derived peptides/proteins, plasmid DNA encoding myelin epitopes, tolerogenic dendritic cells pulsed with encephalitogenic epitopes of myelin proteins, attenuated autologous T cells specific for myelin antigens, T cell receptor peptides, carriers loaded/conjugated with myelin immunodominant peptides, etc), focusing on the outcome of their recent preclinical and clinical evaluation, and to shed light on the mechanisms involved in the immunopathogenesis and treatment of multiple sclerosis.
Collapse
|
7
|
Dargahi N, Matsoukas J, Apostolopoulos V. Streptococcus thermophilus ST285 Alters Pro-Inflammatory to Anti-Inflammatory Cytokine Secretion against Multiple Sclerosis Peptide in Mice. Brain Sci 2020; 10:brainsci10020126. [PMID: 32102262 PMCID: PMC7071487 DOI: 10.3390/brainsci10020126] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/05/2023] Open
Abstract
Probiotic bacteria have beneficial effects to the development and maintenance of a healthy microflora that subsequently has health benefits to humans. Some of the health benefits attributed to probiotics have been noted to be via their immune modulatory properties suppressing inflammatory conditions. Hence, probiotics have become prominent in recent years of investigation with regard to their health benefits. As such, in the current study, we determined the effects of Streptococcus thermophilus to agonist MBP83-99 peptide immunized mouse spleen cells. It was noted that Streptococcus thermophilus induced a significant increase in the expression of anti-inflammatory IL-4, IL-5, IL-10 cytokines, and decreased the secretion of pro-inflammatory IL-1β and IFN-γ Regular consumption of Streptococcus thermophilus may therefore be beneficial in the management and treatment of autoimmune diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Narges Dargahi
- Institute for Health and Sport, Victoria University, Melbourne VIC 3030, Australia;
| | | | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne VIC 3030, Australia;
- Correspondence: ; Tel.: +613-9919-2025
| |
Collapse
|
8
|
From biomedicinal to in silico models and back to therapeutics: a review on the advancement of peptidic modeling. Future Med Chem 2019; 11:2313-2331. [PMID: 31581914 DOI: 10.4155/fmc-2018-0365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bioactive peptides participate in numerous metabolic functions of living organisms and have emerged as potential therapeutics on a diverse range of diseases. Albeit peptide design does not go without challenges, overwhelming advancements on in silico methodologies have increased the scope of peptide-based drug design and discovery to an unprecedented amount. Within an in silico model versus an experimental validation scenario, this review aims to summarize and discuss how different in silico techniques contribute at present to the design of peptide-based molecules. Published in silico results from 2014 to 2018 were selected and discriminated in major methodological groups, allowing a transversal analysis, promoting a landscape vision and asserting its increasing value in drug design.
Collapse
|
9
|
Identification of New Inhibitors with Potential Antitumor Activity from Polypeptide Structures via Hierarchical Virtual Screening. Molecules 2019; 24:molecules24162943. [PMID: 31416180 PMCID: PMC6720962 DOI: 10.3390/molecules24162943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022] Open
Abstract
Leukemias are neoplasms that affect hematopoietic cells, which are developed by genetic alterations (mutations) that lead to the loss of proliferation control mechanisms (maturation and/or cell death). The α4β1 integrin receptor is a therapeutic target for inflammation, autoimmune diseases and lymphoid tumors. This study was carried out to search through the antagonists-based virtual screening for α4β1 receptor. Initially, seventeen (17) structures were selected (based on the inhibitory activity values, IC50) and the structure with the best value was chosen as the pivot. The pharmacophoric pattern was determined from the online PharmaGist server and resulted in a model of score value equal to 97.940 with 15 pharmacophoric characteristics that were statistically evaluated via Pearson correlations, principal component analysis (PCA) and hierarchical clustering analysis (HCA). A refined model generated four pharmacophoric hypotheses totaling 1.478 structures set of Zinc_database. After, the pharmacokinetic, toxicological and biological activity predictions were realized comparing with pivot structure that resulted in five (ZINC72088291, ZINC68842860, ZINC14365931, ZINC09588345 and ZINC91247798) structures with optimal in silico predictions. Therefore, future studies are needed to confirm antitumor potential activity of molecules selected this work with in vitro and in vivo assays.
Collapse
|
10
|
Tzoupis H, Tselios T. In Silico Drug Design: Non-peptide Mimetics for the Immunotherapy of Multiple Sclerosis. Methods Mol Biol 2018; 1824:33-47. [PMID: 30039400 DOI: 10.1007/978-1-4939-8630-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Advances in theoretical chemistry have led to the development of various robust computational techniques employed in drug design. Pharmacophore modeling, molecular docking, and molecular dynamics (MD) simulations have been extensively applied, separately or in combination, in the design of potent molecules. The techniques involve the identification of a potential drug target (e.g., protein) and its subsequent characterization. The next step in the process comprises the development of a map describing the interaction patterns between the target molecule and its natural substrate. Once these key features are identified, it is possible to explore the map and screen large databases of molecules to identify potential drug candidates for further refinement.Multiple sclerosis (MS) is an autoimmune disease where the immune system attacks the myelin sheath of nerve cells. The process involves the activation of encephalitogenic T cells via the formation of the trimolecular complex between the human leukocyte antigen (HLA), an immunodominant epitope of myelin proteins, and the T-cell receptor (TCR). Herein, the process for rational design and development of altered peptide ligands (APLs) and non-peptide mimetics against MS is described through the utilization of computational methods.
Collapse
|
11
|
Lourbopoulos A, Matsoukas MT, Katsara M, Deraos G, Giannakopoulou A, Lagoudaki R, Grigoriadis N, Matsoukas J, Apostolopoulos V. Cyclization of PLP 139-151 peptide reduces its encephalitogenic potential in experimental autoimmune encephalomyelitis. Bioorg Med Chem 2017; 26:2221-2228. [PMID: 29681483 DOI: 10.1016/j.bmc.2017.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/10/2017] [Accepted: 12/18/2017] [Indexed: 12/29/2022]
Abstract
We report the novel synthesis of cyclic PLP139-151 (cPLP) and its application in SJL/J mice to study its encephalitogenic effects. Our results indicate that the cPLP analog is minimally encephalitogenic when administered to induce experimental autoimmune encephalomyelitis (low disease burden, minimal inflammatory, demyelinating and axonopathic pathology compared to its linear counterpart). Proliferation assays confirmed the low stimulatory potential of the cPLP compared to linPLP (2.5-fold lower proliferation) as well as inducing lower antibody responses. Molecular modeling showed a completely different TCR recognition profile of cPLP in regard to linPLP, where H147 replaces W144 and F151-K150 replace H147 as TCR contacts, which may explain the difference on each peptide's response.
Collapse
Affiliation(s)
- Athanasios Lourbopoulos
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Greece; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University (LMU), Munich 81377, Germany
| | | | - Maria Katsara
- Novartis (Hellas) SACI, Medical Department, National Road No1 (12th Km), GR-144 51, Metamorphosis, Athens, Greece
| | - George Deraos
- Department of Chemistry, University of Patras, Patras 26500, Greece; Eldrug, Patras Science Park, Patras, Greece
| | - Aggeliki Giannakopoulou
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Greece
| | - Roza Lagoudaki
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Greece
| | - Nikolaos Grigoriadis
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Greece
| | | | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, VIC 3030, Australia.
| |
Collapse
|
12
|
Affiliation(s)
- David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
13
|
Multiple Sclerosis: Immunopathology and Treatment Update. Brain Sci 2017; 7:brainsci7070078. [PMID: 28686222 PMCID: PMC5532591 DOI: 10.3390/brainsci7070078] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
The treatment of multiple sclerosis (MS) has changed over the last 20 years. All immunotherapeutic drugs target relapsing remitting MS (RRMS) and it still remains a medical challenge in MS to develop a treatment for progressive forms. The most common injectable disease-modifying therapies in RRMS include β-interferons 1a or 1b and glatiramer acetate. However, one of the major challenges of injectable disease-modifying therapies has been poor treatment adherence with approximately 50% of patients discontinuing the therapy within the first year. Herein, we go back to the basics to understand the immunopathophysiology of MS to gain insights in the development of new improved drug treatments. We present current disease-modifying therapies (interferons, glatiramer acetate, dimethyl fumarate, teriflunomide, fingolimod, mitoxantrone), humanized monoclonal antibodies (natalizumab, ofatumumb, ocrelizumab, alentuzumab, daclizumab) and emerging immune modulating approaches (stem cells, DNA vaccines, nanoparticles, altered peptide ligands) for the treatment of MS.
Collapse
|