1
|
Chen S, Wang B, Wang X, Shi K, Cui W, Liu Y, Zhang X, Wang Q. Study on health education methods based on rural residents' infectious disease-specific health literacy in Shandong, China. Medicine (Baltimore) 2024; 103:e39292. [PMID: 39121244 PMCID: PMC11315526 DOI: 10.1097/md.0000000000039292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/23/2024] [Indexed: 08/11/2024] Open
Abstract
Adequate infectious disease-specific health literacy (IDSHL) is of benefit to residents in dealing with infectious diseases. This study aimed to investigate the methods by which residents acquire knowledge about infectious disease prevention and control (IDPC knowledge) so as to find effective health education methods used to improve residents' IDSHL level. In 2022, a cross-sectional study was conducted in Shandong Province, China. Participants were recruited from rural areas by multistage sampling. The IDPC knowledge cognitive questionnaire, as a reliable and valid tool, was applied to data collection and to investigate the participants' IDPC knowledge. Chi-square analysis was utilized to analyze the differences in possession level of IDSHL between different subgroups. The relationship between demographic factors and methods to acquire IDPC knowledge was also examined by chi-square analysis. The possession rate of adequate IDSHL among the total 2283 participants was 31.80%. There was a significant association between IDSHL level and socio-demographic factors, including age (P < .001), sex (P = .02), education (P < .001), occupation (P < .001), annual family income (P < .001), whether to use smartphones (P < .001), whether to browse WeChat on smartphones (P < .001), and whether to browse apps on smartphones except WeChat (P < .001). Univariate analysis showed that whether to adopt specific methods, including television (P = .02), WeChat on smartphones (P < .001), propaganda of infectious disease prevention and control (P < .001), and doctor's advice (P < .001) to acquire IDPC knowledge had significant associations with IDSHL level. Age (P < .001), education (P < .05), occupation (P < .05), and annual family income (P < .01) were associated with methods to acquire IDPC knowledge. The rural residents' adequate IDSHL in Shandong Province, China, was not optimistic. The combination of traditional methods and Internet publicity platforms should take greater responsibility for IDSHL health education among rural populations.
Collapse
Affiliation(s)
- Shuyu Chen
- College of Public Health, Shandong Second Medical University, Weifang, Shandong, China
| | - Bin Wang
- Dezhou Hospital of Traditional Chinese Medicine, Dezhou, Shandong, China
| | - Xin Wang
- College of Public Health, Shandong Second Medical University, Weifang, Shandong, China
| | - Keqing Shi
- College of Public Health, Shandong Second Medical University, Weifang, Shandong, China
| | - Wenhui Cui
- College of Public Health, Shandong Second Medical University, Weifang, Shandong, China
| | - Yuwei Liu
- College of Public Health, Shandong Second Medical University, Weifang, Shandong, China
| | - Xueli Zhang
- Department of Histology and Embryology, Shandong Second Medical University, Weifang, Shandong, China
| | - Qiang Wang
- Department of Epidemiology, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
2
|
Yao H, Zhang X. A comprehensive review for machine learning based human papillomavirus detection in forensic identification with multiple medical samples. Front Microbiol 2023; 14:1232295. [PMID: 37529327 PMCID: PMC10387549 DOI: 10.3389/fmicb.2023.1232295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Human papillomavirus (HPV) is a sexually transmitted virus. Cervical cancer is one of the highest incidences of cancer, almost all patients are accompanied by HPV infection. In addition, the occurrence of a variety of cancers is also associated with HPV infection. HPV vaccination has gained widespread popularity in recent years with the increase in public health awareness. In this context, HPV testing not only needs to be sensitive and specific but also needs to trace the source of HPV infection. Through machine learning and deep learning, information from medical examinations can be used more effectively. In this review, we discuss recent advances in HPV testing in combination with machine learning and deep learning.
Collapse
Affiliation(s)
- Huanchun Yao
- Department of Cancer, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinglong Zhang
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Chen GY, Thorup NR, Miller AJ, Li YC, Ayres JS. Cooperation between physiological defenses and immune resistance produces asymptomatic carriage of a lethal bacterial pathogen. SCIENCE ADVANCES 2023; 9:eadg8719. [PMID: 37352357 PMCID: PMC10289649 DOI: 10.1126/sciadv.adg8719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/18/2023] [Indexed: 06/25/2023]
Abstract
Animals evolved two defense strategies to survive infections. Antagonistic strategies include immune resistance mechanisms that operate to kill invading pathogens. Cooperative or physiological defenses mediate host adaptation to the infected state, limiting physiological damage and disease, without killing the pathogen, and have been shown to cause asymptomatic carriage and transmission of lethal pathogens. Here, we demonstrate that physiological defenses cooperate with the adaptive immune response to generate long-term asymptomatic carriage of the lethal enteric murine pathogen, Citrobacter rodentium. Asymptomatic carriage of genetically virulent C. rodentium provided immune resistance against subsequent infections. Immune protection was dependent on systemic antibody responses and pathogen virulence behavior rather than the recognition of specific virulent antigens. Last, we demonstrate that an avirulent strain of C. rodentium in the field has background mutations in genes that are important for LPS structure. Our work reveals insight into how asymptomatic infections can arise mechanistically with immune resistance, mediating exclusion of phenotypically virulent enteric pathogen to promote asymptomatic carriage.
Collapse
Affiliation(s)
- Grischa Y. Chen
- Molecular and Systems Physiology Lab, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Natalia R. Thorup
- Molecular and Systems Physiology Lab, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Abigail J. Miller
- Molecular and Systems Physiology Lab, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yao-Cheng Li
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Janelle S. Ayres
- Molecular and Systems Physiology Lab, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Almeida Furquim de Camargo B, Fonseca-Santos B, Gonçalves Carvalho S, Corrêa Carvalho G, Delello Di Filippo L, Sousa Araújo VH, Lobato Duarte J, Polli Silvestre AL, Bauab TM, Chorilli M. Functionalized lipid-based drug delivery nanosystems for the treatment of human infectious diseases. Crit Rev Microbiol 2023; 49:214-230. [PMID: 35634703 DOI: 10.1080/1040841x.2022.2047007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases are still public health problems. Microorganisms such as fungi, bacteria, viruses, and parasites are the main causing agents related to these diseases. In this context, the search for new effective strategies in prevention and/or treatment is considered essential, since current drugs often have side effects or end up, causing microbial resistance, making it a serious health problem. As an alternative to these limitations, nanotechnology has been widely used. The use of lipid-based drug delivery nanosystems (DDNs) has some advantages, such as biocompatibility, low toxicity, controlled release, the ability to carry both hydrophilic and lipophilic drugs, in addition to be easel scalable. Besides, as an improvement, studies involving the conjugation of signalling molecules on the surfaces of these nanocarriers can allow the target of certain tissues or cells. Thus, this review summarizes the performance of functionalized lipid-based DDNs for the treatment of infectious diseases caused by viruses, including SARS-CoV-2, bacteria, fungi, and parasites.
Collapse
Affiliation(s)
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, Campinas State University (UNICAMP), Campinas, Brazil
| | | | | | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Taís Maria Bauab
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
5
|
Chen GY, Thorup NR, Miller AJ, Li YC, Ayres JS. Cooperation between physiological defenses and immune resistance produces asymptomatic carriage of a lethal bacterial pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525099. [PMID: 36711884 PMCID: PMC9882269 DOI: 10.1101/2023.01.22.525099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Animals have evolved two defense strategies to survive infections. Antagonistic strategies include mechanisms of immune resistance that operate to sense and kill invading pathogens. Cooperative or physiological defenses mediate host adaptation to the infected state, limiting physiological damage and disease, without killing the pathogen, and have been shown to cause asymptomatic carriage and transmission of lethal pathogens. Here we demonstrate that physiological defenses cooperate with the adaptive immune response to generate long-term asymptomatic carriage of the lethal enteric murine pathogen, Citrobacter rodentium. Asymptomatic carriage of genetically virulent C. rodentium provided immune resistance against subsequent infections. Host immune protection was dependent on systemic antibody responses and pathogen virulence behavior, rather than the recognition of specific virulent factor antigens. Finally, we demonstrate that an avirulent strain of C. rodentium in the field has background mutations in two genes that are important for LPS structure. Our work reveals novel insight into how asymptomatic infections can arise mechanistically with immune resistance, mediating exclusion of phenotypically virulent enteric pathogen to promote asymptomatic carriage.
Collapse
Affiliation(s)
- Grischa Y Chen
- Molecular and Systems Physiology Lab, The Salk Institute for Biological Studies, La Jolla, CA 92037
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Natalia R Thorup
- Molecular and Systems Physiology Lab, The Salk Institute for Biological Studies, La Jolla, CA 92037
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Abigail J Miller
- Molecular and Systems Physiology Lab, The Salk Institute for Biological Studies, La Jolla, CA 92037
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Yao-Cheng Li
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Janelle S Ayres
- Molecular and Systems Physiology Lab, The Salk Institute for Biological Studies, La Jolla, CA 92037
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037
| |
Collapse
|
6
|
Interactions of Microbiota and Mucosal Immunity in the Ceca of Broiler Chickens Infected with Eimeria tenella. Vaccines (Basel) 2022; 10:vaccines10111941. [PMID: 36423036 PMCID: PMC9693493 DOI: 10.3390/vaccines10111941] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The purpose of the study was to investigate the effects of Eimeria tenella infection on the cecal microbiome, the protein concentration of cecal content, cecal mucosal immunity, and serum endotoxin levels in broilers. Three hundred sixty 14-day-old broilers were allocated to five infection doses with six replicates. The five infection doses were: ID0: 0, ID1: 6250, ID2: 12,500, ID3: 25,000, and ID4: 50,000 Eimeria tenella oocysts. Eimeria tenella infection significantly increased the relative abundance of the phylum Proteobacteria, which includes diverse pathogenic bacteria, and significantly decreased the relative abundance of the phylum Firmicutes. Protein concentration of the cecal content was linearly increased (p < 0.05), and the concentration of secretory immunoglobulin A (sIgA) in the cecal content was linearly decreased by Eimeria tenella infection (p < 0.05). Goblet cell density was linearly reduced in the ceca by Eimeria tenella infection (p < 0.05). Eimeria tenella infection tended to linearly decrease the relative mRNA expression of antimicrobial peptide genes such as avian beta-defensin 9 (AvBD9; p = 0.10) and liver-expressed antimicrobial peptide 2 (LEAP2; p = 0.08) in the cecal tissue. Therefore, Eimeria tenella infection negatively modulated cecal microbiota via impairing cecal mucosal immunity and increasing protein concentration in the cecal content in broilers.
Collapse
|
7
|
Rea IM, Alexander HD. Triple jeopardy in ageing: COVID-19, co-morbidities and inflamm-ageing. Ageing Res Rev 2022; 73:101494. [PMID: 34688926 PMCID: PMC8530779 DOI: 10.1016/j.arr.2021.101494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Covid-19 endangers lives, has disrupted normal life, changed the way medicine is practised and is likely to alter our world for the foreseeable future. Almost two years on since the presumptive first diagnosis of COVID-19 in China, more than two hundred and fifty million cases have been confirmed and more than five million people have died globally, with the figures rising daily. One of the most striking aspects of COVID-19 illness is the marked difference in individuals' experiences of the disease. Some, most often younger groups, are asymptomatic, whereas others become severely ill with acute respiratory distress syndrome (ARDS), pneumonia or proceed to fatal organ disease. The highest death rates are in the older and oldest age groups and in people with co-morbidities such as diabetes, heart disease and obesity. Three major questions seem important to consider. What do we understand about changes in the immune system that might contribute to the older person's risk of developing severe COVID-19? What factors contribute to the higher morbidity and mortality in older people with COVID-19? How could immunocompetence in the older and the frailest individuals and populations be supported and enhanced to give protection from serious COVID-19 illness?
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, United Kingdom; Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom; Meadowlands Ambulatory Care Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom.
| | - H Denis Alexander
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| |
Collapse
|
8
|
Yates-Alston S, Sarkar S, Cochran M, Kuthirummal N, Levi N. Hybrid donor-acceptor polymer nanoparticles and combination antibiotic for mitigation of pathogenic bacteria and biofilms. J Microbiol Methods 2021; 190:106328. [PMID: 34536464 DOI: 10.1016/j.mimet.2021.106328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/19/2022]
Abstract
Biofilms pose a significant clinical problem in skin and soft tissue infections. Their resistance to antibiotics has spurred investigations into alternative treatments, such as nanoparticle-mediated photothermal ablation. Non-toxic Hybrid Donor- Acceptor (DA) Polymer nanoParticles (H-DAPPs) were developed for fluorescence imaging (using poly(3-hexylthiophene-2,5 diyl) (P3HT)) and rapid, near-infrared photothermal ablation (NIR- PTA) (using poly[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-b;3,4-b']dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl] (PCPDTBSe)). H-DAPPs were evaluated alone, and in combination with antibiotics, against planktonic S. aureus and S. pyogenes, and S. aureus biofilms. H-DAPPs NIR-PTA (15-700 μg/ mL) can generate rapid temperature changes of 27.6-73.1 °C, which can eradicate planktonic bacterial populations and reduce biofilm bacterial viability by more than 4- log (> 99.99%) with exposure to 60 s of 800 nm light. Reductions were confirmed via confocal analysis, which suggested that H-DAPPs PTA caused bacterial inactivation within the biofilms, but did not significantly reduce biofilm polysaccharides. SEM imaging revealed structural changes in biofilms after H-DAPPs PTA. S. aureus biofilms challenged with 100 μg/mL of H-DAPPs (H-DAPPs-100) to induce an average temperature of 55.1 °C, and the minimum biofilm eradication concentration (MBEC) of clindamycin, resulted in up to ~3- log decrease in bacterial viability compared to untreated biofilms and those administered H-DAPPs-100 PTA only, and up to ~2- log compared to biofilms administered only clindamycin. This study demonstrates that polymer nanoparticle PTA can mitigate biofilm infection and may improve antimicrobial efficacy.
Collapse
Affiliation(s)
- Shaina Yates-Alston
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Santu Sarkar
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Matthew Cochran
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | | | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA.
| |
Collapse
|
9
|
Ziegler AC, Müller T, Gräler MH. Sphingosine 1-phosphate in sepsis and beyond: Its role in disease tolerance and host defense and the impact of carrier molecules. Cell Signal 2020; 78:109849. [PMID: 33249088 DOI: 10.1016/j.cellsig.2020.109849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022]
Abstract
Sphingosine 1-phosphate (S1P) is an important immune modulator responsible for physiological cellular responses like lymphocyte development and function, positioning and emigration of T and B cells and cytokine secretion. Recent reports indicate that S1P does not only regulate immunity, but can also protect the function of organs by inducing disease tolerance. S1P also influences the replication of certain pathogens, and sphingolipids are also involved in pathogen recognition and killing. Certain carrier molecules for S1P like serum albumin and high density lipoproteins contribute to the regulation of S1P effects. They are able to associate with S1P and modulate its signaling properties. Similar to S1P, both carrier molecules are also decreased in sepsis patients and likely contribute to sepsis pathology and severity. In this review, we will introduce the concept of disease tolerance and the involvement of S1P. We will also discuss the contribution of S1P and its precursor sphingosine to host defense mechanisms against pathogens. Finally, we will summarize current data demonstrating the influence of carrier molecules for differential S1P signaling. The presented data may lead to new strategies for the prevention and containment of sepsis.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Tina Müller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07740 Jena, Germany.
| |
Collapse
|
10
|
Abstract
Human health is intimately linked to the ecology and diversity of the human microbiome. Together, the human organism and the human microbiome work as a complex super-organism throughout the human life cycle. Microbiome science provides direct evidence and substantiation of the fundamental principles of homeopathy, including holism, psychosomatics, direction of cure, the Law of Similars, individuality and susceptibility, minimum dose, and homeostasis. Whilst many conventional (allopathic) medical treatments irreversibly damage the ecology of the microbiome and trigger chronic immune dysfunction and inflammation, the future sustainability of the entire field of medicine depends on the ability to recognize these inconvenient biological truths and to embrace a safer approach based on this evidence. Fortunately, one of the oldest forms of clinically verifiable, evidence-based, and ecologically sustainable medicine, that does not harm the microbiome, already exists in the form of homeopathy.
Collapse
Affiliation(s)
- Ronald D Whitmont
- Department of Family and Community Medicine, New York Medical College, Rhinebeck, New York, United States
| |
Collapse
|
11
|
Abstract
The hormesis concept demonstrates that in contrast to the toxic effect of high doses of materials, irradiation, etc., low doses of them are beneficial and, in addition, help to eliminate (prevent) the deleterious effect of high doses given after it. By this effect, it is an important factor of (human) evolution protecting man from harmful impacts, similarly to the role of immunity. However, immunity is also continuously influenced by hormetic effects of environmental [chemical (pollutions), physical (background irradiations and heat), etc.] and medical (drugs and therapeutic irradiations) and food interactions. In contrast to earlier beliefs, the no-threshold irradiation dogma is not valid in low-dose domains and here the hormesis concept is valid. Low-dose therapeutic irradiation, as well as background irradiations (by radon spas or moderately far from the epicenter of atomic bomb or nuclear facilities), is rather beneficial than destructive and the fear from them seems to be unreasonable from immunological point of view. Practically, all immune parameters are beneficially influenced by all forms of low-dose radiations.
Collapse
Affiliation(s)
- György Csaba
- 1 Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Zhang M, Moalin M, Vervoort L, Li ZW, Wu WB, Haenen G. Connecting Western and Eastern Medicine from an Energy Perspective. Int J Mol Sci 2019; 20:E1512. [PMID: 30917563 PMCID: PMC6470590 DOI: 10.3390/ijms20061512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
Although Western medicine and Eastern medicine are worlds apart, there is a striking overlap in the basic principle of these types of medicine when we look at them from the perspective of energy. In both worlds, opposing forces provide the energy that flows through networks in an organism, which fuels life. In this concept, health is the ability of an organism to maintain the balance between these opposing forces, i.e., homeostasis (West) and harmony (East), which creates resilience. Moreover, strategies used to treat diseases are strikingly alike, namely adjusting the flow of energy by changing the connections in the network. The energy perspective provides a basis to integrate Eastern and Western medicine, and opens new directions for research to get the best of both worlds.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Mohamed Moalin
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands.
- Research Centre Material Sciences, Zuyd University of Applied Science, 6400 AN Heerlen, The Netherlands.
| | - Lily Vervoort
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Zheng Wen Li
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Wen Bo Wu
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Guido Haenen
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
13
|
Raasch M, Fritsche E, Kurtz A, Bauer M, Mosig AS. Microphysiological systems meet hiPSC technology - New tools for disease modeling of liver infections in basic research and drug development. Adv Drug Deliv Rev 2019; 140:51-67. [PMID: 29908880 DOI: 10.1016/j.addr.2018.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023]
Abstract
Complex cell culture models such as microphysiological models (MPS) mimicking human liver functionality in vitro are in the spotlight as alternative to conventional cell culture and animal models. Promising techniques like microfluidic cell culture or micropatterning by 3D bioprinting are gaining increasing importance for the development of MPS to address the needs for more predictivity and cost efficiency. In this context, human induced pluripotent stem cells (hiPSCs) offer new perspectives for the development of advanced liver-on-chip systems by recreating an in vivo like microenvironment that supports the reliable differentiation of hiPSCs to hepatocyte-like cells (HLC). In this review we will summarize current protocols of HLC generation and highlight recently established MPS suitable to resemble physiological hepatocyte function in vitro. In addition, we are discussing potential applications of liver MPS for disease modeling related to systemic or direct liver infections and the use of MPS in testing of new drug candidates.
Collapse
|
14
|
Floris I, Appel K, Rose T, Lejeune B. 2LARTH ®, a micro-immunotherapy medicine, exerts anti-inflammatory effects in vitro and reduces TNF-α and IL-1β secretion. J Inflamm Res 2018; 11:397-405. [PMID: 30464572 PMCID: PMC6211308 DOI: 10.2147/jir.s174326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Tumor necrosis factor-α (TNF-α) and IL-1β are 2 pro-inflammatory cytokines known to be involved in rheumatic diseases. The therapeutic strategy used in micro-immunotherapy (MI) to reduce chronic inflammation and attenuate pain consists in mainly targeting these 2 cytokines. 2LARTH® is a sublingually administered medicine consisting of lactose-saccharose globules impregnated with ethanolic preparations of immune mediators and nucleic acids at ultra-low doses. Purpose The aim of the study is to explore the effect of the MI medicine on TNF-α and IL-1β secretion in human primary enriched monocytes exposed to lipopolysaccharide (LPS). Materials and methods Placebo and active globules were diluted in culture medium to test 5 lactose-saccharose globules concentrations (from 1.75 to 22 mM). Freshly isolated enriched monocytes from 6 healthy donors were treated with or without LPS (10 ng/mL), LPS+ placebo, or LPS+ 2LARTH® for 24 hours. IL-1β, TNF-α, and IL-6 release were evaluated by ELISA. Results The medicine has significantly decreased the level of IL-1β secretion compared with placebo at these concentrations: 22 mM (P<0.0001), 11 mM (P=0.0086), 5.5 mM (P= 0.0254), and compared with untreated LPS control at these concentrations: 22 mM, 11 mM (P=0.0008), and 5.5 mM (P=0.002). The effect of active globules on the reduction of TNF-α release is significant compared with placebo at these concentrations: 22 mM (P=0.0018), 11 mM (P=0.0005), 5.5 mM (P=0.0136), and compared with untreated LPS control at these concentrations: 22 mM (P=0.0021), 11 mM (P=0.0017), 5.5 mM (P=0.0052) and 2.25 mM (P=0.0196). Besides, IL-6 secretion decreased compared with placebo at 22 mM (P=0.0177) and 11 mM (P=0.0031). Conclusion The results indicate that the tested product exerts significant anti-inflammatory effects on human LPS-stimulated monocytes.
Collapse
Affiliation(s)
- Ilaria Floris
- Clinical Affairs, Labo'Life France, Moutiers-Sous-Chantemerle, France,
| | - Kurt Appel
- VivaCell Biotechnology GmbH, Denzlingen, Germany
| | | | | |
Collapse
|
15
|
Bauer M, Coldewey SM, Leitner M, Löffler B, Weis S, Wetzker R. Deterioration of Organ Function As a Hallmark in Sepsis: The Cellular Perspective. Front Immunol 2018; 9:1460. [PMID: 29997622 PMCID: PMC6028602 DOI: 10.3389/fimmu.2018.01460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/12/2018] [Indexed: 01/12/2023] Open
Abstract
Development of organ dysfunction discriminates sepsis from uncomplicated infection. The paradigm shift implicated by the new sepsis-3 definition holds that initial impairment of any organ can pave the way for multiple organ dysfunction and death. Moreover, the role of the systemic inflammatory response, central element in previous sepsis definitions, has been questioned. Most strikingly, a so far largely underestimated defense mechanism of the host, i.e., "disease tolerance," which aims at maintaining host vitality without reducing pathogen load, has gained increasing attention. Here, we summarize evidence that a dysregulation of critical cellular signaling events, also in non-immune cells, might provide a conceptual framework for sepsis-induced dysfunction of parenchymal organs in the absence of significant cell death. We suggest that key signaling mediators, such as phosphoinositide 3-kinase, mechanistic target of rapamycin, and AMP-activated protein kinase, control the balance of damage and repair processes and thus determine the fate of affected organs and ultimately the host. Therapeutic targeting of these multifunctional signaling mediators requires cell-, tissue-, or organ-specific approaches. These novel strategies might allow stopping the domino-like damage to further organ systems and offer alternatives beyond the currently available strictly supportive therapeutic options.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Sina M Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Margit Leitner
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Bettina Löffler
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Center for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
16
|
Rattan SIS. Biogerontology: research status, challenges and opportunities. ACTA BIO-MEDICA : ATENEI PARMENSIS 2018; 89:291-301. [PMID: 29957767 PMCID: PMC6179011 DOI: 10.23750/abm.v89i2.7403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 03/29/2018] [Indexed: 01/09/2023]
Abstract
Biogerontology is the study of the biological basis of ageing and age-related diseases. The phenomenon and the process of ageing are well understood in evolutionary and biological terms; and a conceptual framework has been established within which general principles of ageing and longevity can be formulated. The phenotype of ageing in terms of progressive loss of physical function and fitness is best seen during the period of survival after the evolution-determined essential lifespan (ELS) of a species. However, the ageing phenotype is highly heterogenous and individualistic at all levels from the whole body to the molecular one. Most significantly, the process and the progression of ageing are not determined by any specific gerontogenes. Ageing is the result of imperfect maintenance and repair systems that allow a progressive shrinkage of the homeodynamic space of an individual. The challenge is to develop and apply wholistic approaches to the complex trait of ageing for maintaining and/or improving health. One such approach is that of mild stress-induced physiological hormesis by physical, mental and nutritional hormetins. Biogerontological research offers numerous opportunities for developing evidence-based novel biomedical technologies for maintaining and improving health, for preventing the onset of age-related diseases, and for extending the health-span.
Collapse
Affiliation(s)
- Suresh I S Rattan
- Laboratory of Cellular Ageing, Department of Molecular Biology and Genetics, Aarhus University, Denmark.
| |
Collapse
|
17
|
Lee W, Lee D, Lee Y, Lee T, Song KS, Yang EJ, Bae JS. Isolation, Synthesis, and Antisepsis Effects of a C-Methylcoumarinochromone Isolated from Abronia nana Cell Culture. JOURNAL OF NATURAL PRODUCTS 2018; 81:1173-1182. [PMID: 29762033 DOI: 10.1021/acs.jnatprod.7b00826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Only a few isoflavones have been isolated from plants of the genus Abronia. The biological properties of compounds isolated from Abronia species have not been well established, and their antisepsis effects have not been reported yet. In the present study, a new C-methylcoumarinochromone, was isolated from Abronia nana suspension cultures. Its structure was deduced as 9,11-dihydroxy-10-methylcoumarinochromone (boeravinone Y, 1) by spectroscopic data analysis and verified by chemical synthesis. The potential inhibitory effects of 1 against high mobility group box 1 (HMGB1)-mediated septic responses were investigated. Results showed that 1 effectively inhibited lipopolysaccharide-induced release of HMGB1 and suppressed HMGB1-mediated septic responses, in terms of reduction of hyperpermeability, leukocyte adhesion and migration, and cell adhesion molecule expression. In addition, 1 increased the phagocytic activity of macrophages and exhibited bacterial clearance effects in the peritoneal fluid and blood of mice with cecal ligation and puncture-induced sepsis. Collectively, these results suggested that 1 might have potential therapeutic activity against various severe vascular inflammatory diseases via inhibition of the HMGB1 signaling pathway.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team , Kyungpook National University , Daegu 41566 , Republic of Korea
- Aging Research Center , Korea Research Institute of Bioscience and Biotechnology , Daejeon 34141 , Republic of Korea
| | - Doohyun Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Yuri Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Taeho Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Kyung-Sik Song
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Eun-Ju Yang
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team , Kyungpook National University , Daegu 41566 , Republic of Korea
| |
Collapse
|
18
|
Abstract
Monitoring response to treatment is a key element in the management of infectious diseases, yet controversies still persist on reliable biomarkers for noninvasive response evaluation. Considering the limitations of invasiveness of most diagnostic procedures and the issue of expression heterogeneity of pathology, molecular imaging is better able to assay in vivo biologic processes noninvasively and quantitatively. The usefulness of 18F-FDG-PET/CT in assessing treatment response in infectious diseases is more promising than for conventional imaging. However, there are currently no clinical criteria or recommended imaging modalities to objectively evaluate the effectiveness of antimicrobial treatment. Therapeutic effectiveness is currently gauged by the patient's subjective clinical response. In this review, we present the current studies for monitoring treatment response, with a focus on Mycobacterium tuberculosis, as it remains a major worldwide cause of morbidity and mortality. The role of molecular imaging in monitoring other infections including spondylodiscitis, infected prosthetic vascular grafts, invasive fungal infections, and a parasitic disease is highlighted. The role of functional imaging in monitoring lipodystrophy associated with highly active antiretroviral therapy for human immunodeficiency virus is considered. We also discuss the key challenges and emerging data in optimizing noninvasive response evaluation.
Collapse
Affiliation(s)
- Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa..
| | - Alfred O Ankrah
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa.; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Ismaheel Lawal
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa
| |
Collapse
|