1
|
Shou F, Li G, Morshedi M. Long Non-coding RNA ANRIL and Its Role in the Development of Age-Related Diseases. Mol Neurobiol 2024; 61:7919-7929. [PMID: 38443729 DOI: 10.1007/s12035-024-04074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
ANRIL is known as a lncRNA that has many linear and circular isoforms and its polymorphisms are observed to be associated with the pathogenesis of many diseases including age-related diseases. Age-related diseases including atherosclerosis, ischemic heart disease, and Alzheimer's and Parkinson's disease are the most common cause of mortality in both developed and undeveloped countries and that is why a better understanding of their pathogenesis and underlying mechanisms is necessary for controlling their healthcare burden.In this review, we aim to gather the data of researches which have investigated the role of ANRIL in aging and its related diseases. The conclusions of this paper might give a new insight for decreasing the mortality rate of these diseases.
Collapse
Affiliation(s)
- Feiyan Shou
- Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Gang Li
- Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| | - Mohammadamin Morshedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Taheri Bajgan E, Zahedmehr A, Shakerian F, Maleki M, Bakhshandeh H, Mowla SJ, Malakootian M. Associations between low serum levels of ANRIL and some common gene SNPs in Iranian patients with premature coronary artery disease. Sci Rep 2024; 14:1244. [PMID: 38218954 PMCID: PMC10787829 DOI: 10.1038/s41598-024-51715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Coronary artery disease (CAD) is the major cause of mortality in the world. Premature development of CAD can be attributed to women under 55 and men under 45. Many genetic factors play a part in premature CAD. Among them, ANRIL, a long noncoding RNA is located at the 9p21 risk locus, and its expression seems to be correlated with CAD. In the current study, premature CAD and control blood samples, with and without Type 2 Diabetes (T2D), were genotyped for six SNPs at the 9p21 locus. Additionally, ANRIL serum expression was assessed in both groups using real-time PCR. It was performed using different primers targeting exons 1, 5-6, and 19. The χ2 test for association, along with t-tests and ANOVA, was employed for statistical analysis. In this study, we did not find any significant correlation between premature coronary artery disease and rs10757274, rs2383206, rs2383207, rs496892, rs10757278 and rs10738605. However, a lower ANRIL expression was correlated with each SNP risk genotype. Despite the correlation between lower ANRIL expression and CAD, Type 2 diabetes was associated with higher ANRIL expression. Altogether, the correlation between ANRIL expression and the genotypes of the studied SNPs indicated that genetic variants, even those in intronic regions, affect long noncoding RNA expression levels. In conclusion, we recommend combining genetic variants with expression analysis when developing screening strategies for families with premature CAD. To prevent the devastating outcomes of CAD in young adults, it is crucial to discover noninvasive genetic-based screening tests.
Collapse
Affiliation(s)
- Elham Taheri Bajgan
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Zahedmehr
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad Shakerian
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hooman Bakhshandeh
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Sanchez A, Lhuillier J, Grosjean G, Ayadi L, Maenner S. The Long Non-Coding RNA ANRIL in Cancers. Cancers (Basel) 2023; 15:4160. [PMID: 37627188 PMCID: PMC10453084 DOI: 10.3390/cancers15164160] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
ANRIL (Antisense Noncoding RNA in the INK4 Locus), a long non-coding RNA encoded in the human chromosome 9p21 region, is a critical factor for regulating gene expression by interacting with multiple proteins and miRNAs. It has been found to play important roles in various cellular processes, including cell cycle control and proliferation. Dysregulation of ANRIL has been associated with several diseases like cancers and cardiovascular diseases, for instance. Understanding the oncogenic role of ANRIL and its potential as a diagnostic and prognostic biomarker in cancer is crucial. This review provides insights into the regulatory mechanisms and oncogenic significance of the 9p21 locus and ANRIL in cancer.
Collapse
Affiliation(s)
| | | | | | - Lilia Ayadi
- CNRS, Université de Lorraine, IMoPA, F-54000 Nancy, France
| | | |
Collapse
|
4
|
Du Z, Zhang F, Liu L, Shen H, Liu T, Jin J, Yu N, Wan Z, Wang H, Hu X, Chen Y, Cai J. LncRNA ANRIL promotes HR repair through regulating PARP1 expression by sponging miR-7-5p in lung cancer. BMC Cancer 2023; 23:130. [PMID: 36755223 PMCID: PMC9906921 DOI: 10.1186/s12885-023-10593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Radiotherapy is an important treatment for lung cancer, mainly by triggering DNA double-strand breaks to induce cell death. Blocking DNA damage repair can increase the radiosensitivity of tumor cells. Recent studies have identified long noncoding RNAs as key regulators in DNA damage repair. The lncRNA ANRIL was previously shown to be involved in homologous recombination (HR) repair, but its specific mechanism has not been fully elucidated. METHODS The downstream interacting miRNAs of ANRIL were predicted according to miRanda software. Fluorescence quantitative PCR was used to detect the expression levels of ANRIL and candidate miRNAs. Clone formation experiment and cell viability assays detect cell viability after ionizing radiation. Apoptosis assay was used to detect the apoptosis of cells after 8 h of ionizing radiation. Western blot analysis and immunofluorescence assays verified the protein expression levels of the downstream target molecule PARP1 of miR-7-5p and key molecules in the HR pathway. Fluorescent reporter gene experiments were used to verify the interaction between ANRIL and miR-7-5p and between miR-7-5p and PARP1. RESULTS Bioinformatics analysis and qPCR validation suggested that miR-7-5p might be a downstream molecule of ANRIL. The expression of miR-7-5p was up-regulated after knockdown of ANRIL, and the expression of miR-7-5p was down-regulated after overexpression of ANRIL. Meanwhile, there was a negative correlation between ANRIL and miR-7-5p expression changes before and after ionizing radiation. The luciferase reporter gene assay confirmed the existence of ANRIL binding site with miR-7-5p, and found that transfection of miR-7-5p inhibitor can reduce the radiation sensitivity of ANRIL-KD cells. A downstream target molecule of miR-7-5p related to HR repair, PARP1, was screened through website prediction. Subsequently, it was confirmed by Western blot and luciferase reporter assays that miR-7-5p could down-regulate the expression of PARP1, and there was a miR-7-5p binding site on the 3'UTR of PARP1 mRNA. This suggests that ANRIL may act as a competitive endogenous RNA to bind miR-7-5p and upregulate the expression of PARP1. Western blot and immunofluorescence staining were used to detect the expression changes of HR repair factors in ANRIL-KD cells after ionizing radiation, and it was found that knockdown of ANRIL can inhibit the expression of PARP1, BRCA1 and Rad51, hinder radiation-induced HR repair, and eventually result in resensitizing ANRIL-KD cells to ionizing radiation. CONCLUSIONS Our findings provide evidence that ANRIL targets the miR-7-5p/PARP1 axis to exert its regulatory effect on HR repair, suggesting that altering ANRIL expression may be a promising strategy to overcome radiation resistance.
Collapse
Affiliation(s)
- Zhipeng Du
- grid.268099.c0000 0001 0348 3990School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, Zhejiang P. R. China
| | - Fangxiao Zhang
- grid.268099.c0000 0001 0348 3990School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, Zhejiang P. R. China
| | - Lei Liu
- grid.417279.eDepartment of Oncology, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, Hubei P. R. China
| | - Hui Shen
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, P. R. China
| | - Tingting Liu
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, P. R. China
| | - Jing Jin
- grid.216417.70000 0001 0379 7164Department of Occupational and Environment Health, Xiangya School of Public Health, Central South University, Changsha, Hunan P. R. China
| | - Nanxi Yu
- grid.268099.c0000 0001 0348 3990School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, Zhejiang P. R. China
| | - Zhijie Wan
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, P. R. China
| | - Hang Wang
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, P. R. China
| | - Xuguang Hu
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai, P. R. China.
| | - Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, P. R. China. .,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang, P. R. China.
| | - Jianming Cai
- School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, P. R. China. .,Department of Oncology, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, Hubei, P. R. China. .,Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, P. R. China.
| |
Collapse
|
5
|
Potemkin N, Clarkson AN. Non-coding RNAs in stroke pathology, diagnostics, and therapeutics. Neurochem Int 2023; 162:105467. [PMID: 36572063 DOI: 10.1016/j.neuint.2022.105467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Methods to alleviate functional deficits after ischemic stroke focus on restoration of cerebral blood flow to the affected area. However, pharmacological or surgical methods such as thrombolysis and thrombectomy have a narrow effective window. Harnessing and manipulating neurochemical processes of recovery may provide an alternative to these methods. Recently, non-coding RNA (ncRNA) have been increasingly investigated for their contributions to the pathology of diseases and potential for diagnostic and therapeutic applications. Here we will review several ncRNA - H19, MALAT1, ANRIL, NEAT1, pseudogenes, small nucleolar RNA, piwi-interacting RNA and circular RNA - and their involvement in stroke pathology. We also examine these ncRNA as potential diagnostic biomarkers, particularly in circulating blood, and as targets for therapeutic interventions. An important aspect of this is a discussion of potential methods of treatment delivery to allow for targeting of interventions past the blood-brain barrier, including lipid nanoparticles, polymer nanoparticles, and viral and non-viral vectors. Overall, several long non-coding RNA (lncRNA) discussed here have strong implications for the development of pathology and functional recovery after ischemic stroke. LncRNAs H19 and ANRIL show potential as diagnostic biomarkers, while H19 and MALAT1 may prove to be effective therapeutics for both minimising damage as well as promoting recovery. Other ncRNA have also been implicated in ischemic stroke but are currently too poorly understood to make inferences for diagnosis or treatment. Whilst the field of ncRNAs is relatively new, significant work has already highlighted that ncRNAs represent a promising novel investigative tool for understanding stroke pathology, could be used as diagnostic biomarkers, and as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Nikita Potemkin
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, 9054, New Zealand.
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
6
|
Ma J, Zhao W, Zhang H, Chu Z, Liu H, Fang X, Tang D. Long non-coding RNA ANRIL promotes chemoresistance in triple-negative breast cancer via enhancing aerobic glycolysis. Life Sci 2022; 306:120810. [PMID: 35850243 DOI: 10.1016/j.lfs.2022.120810] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
AIMS lncRNA ANRIL expression is dysregulated in many human cancers and is thus a useful prognostic marker for cancer patients. However, whether ANRIL is involved in drug resistance in triple-negative breast cancer (TNBC) has not yet been investigated. MAIN METHODS A luciferase reporter assay was conducted to verify the binding between miR-125a and ANRIL. RT-PCR and western blotting were performed to detect the expression of miR-125a, ANRIL, and ENO1. Glycolysis stress was assessed using the Seahorse extracellular flux analyzer. Functional studies were performed using both in vitro and in vivo xenograft models. KEY FINDINGS ANRIL was markedly upregulated in both patients with TNBC and TNBC cell lines. Knockdown of ANRIL increased the cytotoxic effect of ADR and repressed cellular glycolytic activity in TNBC cells. Mechanistic analysis showed that ANRIL may act as a competing endogenous RNA of miR-125a to relieve the repressive effect of miR-125a on its target glycolytic enzyme enolase (ENO1). Notably, 2-deoxy-glucose attenuated ANRIL-induced increase in drug resistance in TNBC cells. SIGNIFICANCE These results indicate that knockdown of ANRIL plays an active role in overcoming drug resistance in TNBC by inhibiting glycolysis through the miR-125a/ENO1 pathway, which may be useful for the development of novel therapeutic targets for treating patients with TNBC, especially those with drug resistance.
Collapse
Affiliation(s)
- Jianli Ma
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Haping Road NO. 150, Nangang district, Harbin 150000, Heilongjiang Province, China
| | - Wenhui Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road NO. 150, Nangang district, Harbin 150000, Heilongjiang Province, China
| | - Han Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road NO. 150, Nangang district, Harbin 150000, Heilongjiang Province, China
| | - Zhong Chu
- Department of Translational Medicine& Clinical Research, Sir Run Run Shaw Hospital of Zhejiang University, East Qingchun Road, NO. 3, Shangcheng district, Hangzhou 310000, Zhejiang Province, China
| | - Huili Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road NO. 150, Nangang district, Harbin 150000, Heilongjiang Province, China
| | - Xue Fang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road NO. 150, Nangang district, Harbin 150000, Heilongjiang Province, China
| | - Dabei Tang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road NO. 150, Nangang district, Harbin 150000, Heilongjiang Province, China.
| |
Collapse
|
7
|
MacMillan HJ, Kong Y, Calvo-Roitberg E, Alonso LC, Pai AA. High-throughput analysis of ANRIL circRNA isoforms in human pancreatic islets. Sci Rep 2022; 12:7745. [PMID: 35546161 PMCID: PMC9095874 DOI: 10.1038/s41598-022-11668-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/20/2022] [Indexed: 01/05/2023] Open
Abstract
The antisense non-coding RNA in the INK locus (ANRIL) is a hotspot for genetic variants associated with cardiometabolic disease. We recently found increased ANRIL abundance in human pancreatic islets from donors with certain Type II Diabetes (T2D) risk-SNPs, including a T2D risk-SNP located within ANRIL exon 2 associated with beta cell proliferation. Recent studies have found that expression of circular species of ANRIL is linked to the regulation of cardiovascular phenotypes. Less is known about how the abundance of circular ANRIL may influence T2D phenotypes. Herein, we sequence circular RNA in pancreatic islets to characterize circular isoforms of ANRIL. We identify several consistently expressed circular ANRIL isoforms whose expression is correlated across dozens of individuals and characterize ANRIL splice sites that are commonly involved in back-splicing. We find that samples with the T2D risk allele in ANRIL exon 2 had higher ratios of circular to linear ANRIL compared to protective-allele carriers, and that higher circular:linear ANRIL was associated with decreased beta cell proliferation. Our study points to a combined involvement of both linear and circular ANRIL species in T2D phenotypes and opens the door for future studies of the molecular mechanisms by which ANRIL impacts cellular function in pancreatic islets.
Collapse
Affiliation(s)
- Hannah J MacMillan
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yahui Kong
- UMass Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Curia Global, Inc., Hopkinton, MA, 01748, USA
| | - Ezequiel Calvo-Roitberg
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Laura C Alonso
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, NY, 10021, USA.
- Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Athma A Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
8
|
Qin Q, Zheng P, Tu R, Huang J, Cao X. Integrated bioinformatics analysis for the identification of hub genes and signaling pathways related to circANRIL. PeerJ 2022; 10:e13135. [PMID: 35497183 PMCID: PMC9048645 DOI: 10.7717/peerj.13135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/27/2022] [Indexed: 01/12/2023] Open
Abstract
Background Antisense noncoding RNA in the INK4 locus (ANRIL) is located on human chromosome 9p21, and modulation of ANRIL expression mediates susceptibility to some important human disease, including atherosclerosis (AS) and tumors, by affecting the cell cycle circANRIL and linear ANRIL are isoforms of ANRIL. However, it remains unclear whether these isoforms have distinct functions. In our research, we constructed a circANRIL overexpression plasmid, transfected it into HEK-293T cell line, and explored potential core genes and signaling pathways related to the important differential mechanisms between the circANRIL-overexpressing cell line and control cells through bioinformatics analysis. Methods Stable circANRIL-overexpressing (circANRIL-OE) HEK-293T cells and control cells were generated by infection with the circANRIL-OE lentiviral vector or a negative control vector, and successful transfection was confirmed by conventional flurescence microscopy and quantitative real-time PCR (qRT-PCR). Next, differentially expressed genes (DEGs) between circANRIL-OE cells and control cells were detected. Subsequently, Gene Ontology (GO) biological process (BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to explore the principal functions of the significant DEGs. A protein-protein interaction (PPI) network and competing endogenous RNA (ceRNA) network were constructed in Cytoscape to determine circularRNA (circRNA)- microRNA(miRNA)-messenger RNA (mRNA) interactions and hub genes, and qRT-PCR was used to verify changes in the expression of these identified target genes. Results The successful construction of circANRIL-OE cells was confirmed by plasmid sequencing, visualization with fluorescence microscopy and qRT-PCR. A total of 1745 DEGs between the circANRIL-OE group and control were identified, GO BP analysis showed that these genes were mostly related to RNA biosynthesis and processing, regulation of transcription and signal transduction. The KEGG pathway analysis showed that the up regulated DEGs were mainly enriched in the MAPK signaling pathway. Five associated target genes were identified in the ceRNA network and biological function analyses. The mRNA levels of these five genes and ANRIL were detected by qRT-PCR, but only COL5A2 and WDR3 showed significantly different expression in circANRIL-OE cells.
Collapse
Affiliation(s)
- Qiuyan Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Pengfei Zheng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ronghui Tu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiegang Huang
- The School of Public Health, Guangxi medical university, Nanning, Guangxi, China
| | - Xiaoli Cao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
9
|
The Role of ANRIL in Atherosclerosis. DISEASE MARKERS 2022; 2022:8859677. [PMID: 35186169 PMCID: PMC8849964 DOI: 10.1155/2022/8859677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/10/2021] [Accepted: 01/19/2022] [Indexed: 12/25/2022]
Abstract
There is a huge number of noncoding RNA (ncRNA) transcripts in the cell with important roles in modulation of different mechanisms. ANRIL is a long ncRNA with 3.8 kb length that is transcribed in the opposite direction of the INK4/ARF locus in chromosome 9p21. It was shown that polymorphisms within this locus are associated with vascular disorders, notably coronary artery disease (CAD), which is considered as a risk factor for life-threatening events like myocardial infarction and stroke. ANRIL is subjected to a variety of splicing patterns producing multiple isoforms. Linear isoforms could be further transformed into circular ones by back-splicing. ANRIL regulates genes in atherogenic network in a positive or negative manner. This regulation is implemented both locally and remotely. While CAD is known as a proliferative disorder and cell proliferation plays a crucial role in the progression of atherosclerosis, the functions of ANRIL and CAD development are intertwined remarkably. This makes ANRIL a suitable target for diagnostic, prognostic, and even therapeutic aims. In this review, we tried to present a comprehensive appraisal on different aspects of ANRIL including its location, structure, isoforms, expression, and functions. In each step, the contribution of ANRIL to atherosclerosis is discussed.
Collapse
|
10
|
Montico B, Giurato G, Pecoraro G, Salvati A, Covre A, Colizzi F, Steffan A, Weisz A, Maio M, Sigalotti L, Fratta E. The pleiotropic roles of circular and long noncoding RNAs in cutaneous melanoma. Mol Oncol 2022; 16:565-593. [PMID: 34080276 PMCID: PMC8807361 DOI: 10.1002/1878-0261.13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma (CM) is a very aggressive disease, often characterized by unresponsiveness to conventional therapies and high mortality rates worldwide. The identification of the activating BRAFV600 mutations in approximately 50% of CM patients has recently fueled the development of novel small-molecule inhibitors that specifically target BRAFV600 -mutant CM. In addition, a major progress in CM treatment has been made by monoclonal antibodies that regulate the immune checkpoint inhibitors. However, although target-based therapies and immunotherapeutic strategies have yielded promising results, CM treatment remains a major challenge. In the last decade, accumulating evidence points to the aberrant expression of different types of noncoding RNAs (ncRNAs) in CM. While studies on microRNAs have grown exponentially leading to significant insights on CM biology, the role of circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) in this tumor is less understood, and much remains to be discovered. Here, we summarize and critically review the available evidence on the molecular functions of circRNAs and lncRNAs in BRAFV600 -mutant CM and CM immunogenicity, providing recent updates on their functional role in targeted therapy and immunotherapy resistance. In addition, we also include an evaluation of several algorithms and databases for prediction and validation of circRNA and lncRNA functional interactions.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
| | - Alessia Covre
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
| | - Francesca Colizzi
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Agostino Steffan
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Michele Maio
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
- NIBIT Foundation OnlusSienaItaly
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Elisabetta Fratta
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| |
Collapse
|
11
|
Non-coding RNA dysregulation in skin cancers. Essays Biochem 2021; 65:641-655. [PMID: 34414406 DOI: 10.1042/ebc20200048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Skin cancers are the most common cancers worldwide. They can be classified in melanoma and non-melanoma skin cancer (NMSC), the latter includes squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and merkel cell carcinoma (MCC). In recent years, the crucial role of non-coding RNAs (ncRNAs) in skin cancer pathogenesis has become increasingly evident. NcRNAs are functional RNA molecules that lack any protein-coding activity. These ncRNAs are classified based on their length: small, medium-size, and long ncRNAs. Among the most studied ncRNAs there are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNA (circRNAs). ncRNAs have the ability to regulate gene expression at transcriptional and post-transcriptional levels and are involved in skin cancer cell proliferation, angiogenesis, invasion, and metastasis. Many ncRNAs exhibit tissue- or cell-specific expression while others have been correlated to tumor staging, drug resistance, and prognosis. For these reasons, ncRNAs have both a diagnostic and prognostic significance in skin cancers. Our review summarizes the functional role of ncRNAs in skin cancers and their potential clinical application as biomarkers.
Collapse
|
12
|
Wozniak M, Czyz M. The Functional Role of Long Non-Coding RNAs in Melanoma. Cancers (Basel) 2021; 13:cancers13194848. [PMID: 34638331 PMCID: PMC8508152 DOI: 10.3390/cancers13194848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the most lethal skin cancer, with increasing incidence worldwide. The molecular events that drive melanoma development and progression have been extensively studied, resulting in significant improvements in diagnostics and therapeutic approaches. However, a high drug resistance to targeted therapies and adverse effects of immunotherapies are still a major challenge in melanoma treatment. Therefore, the elucidation of molecular mechanisms of melanomagenesis and cancer response to treatment is of great importance. Recently, many studies have revealed the close association of long noncoding RNAs (lncRNAs) with the development of many cancers, including melanoma. These RNA molecules are able to regulate a plethora of crucial cellular processes including proliferation, differentiation, migration, invasion and apoptosis through diverse mechanisms, and even slight dysregulation of their expression may lead to tumorigenesis. lncRNAs are able to bind to protein complexes, DNA and RNAs, affecting their stability, activity, and localization. They can also regulate gene expression in the nucleus. Several functions of lncRNAs are context-dependent. This review summarizes current knowledge regarding the involvement of lncRNAs in melanoma. Their possible role as prognostic markers of melanoma response to treatment and in resistance to therapy is also discussed.
Collapse
|
13
|
Alfeghaly C, Sanchez A, Rouget R, Thuillier Q, Igel-Bourguignon V, Marchand V, Branlant C, Motorin Y, Behm-Ansmant I, Maenner S. Implication of repeat insertion domains in the trans-activity of the long non-coding RNA ANRIL. Nucleic Acids Res 2021; 49:4954-4970. [PMID: 33872355 PMCID: PMC8136789 DOI: 10.1093/nar/gkab245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 11/14/2022] Open
Abstract
Long non-coding RNAs have emerged as critical regulators of cell homeostasis by modulating gene expression at chromatin level for instance. Here, we report that the lncRNA ANRIL, associated with several pathologies, binds to thousands of loci dispersed throughout the mammalian genome sharing a 21-bp motif enriched in G/A residues. By combining ANRIL genomic occupancy with transcriptomic analysis, we established a list of 65 and 123 genes potentially directly activated and silenced by ANRIL in trans, respectively. We also found that Exon8 of ANRIL, mainly made of transposable elements, contributes to ANRIL genomic association and consequently to its trans-activity. Furthermore, we showed that Exon8 favors ANRIL's association with the FIRRE, TPD52L1 and IGFBP3 loci to modulate their expression through H3K27me3 deposition. We also investigated the mechanisms engaged by Exon8 to favor ANRIL's association with the genome. Our data refine ANRIL's trans-activity and highlight the functional importance of TEs on ANRIL's activity.
Collapse
Affiliation(s)
| | | | - Raphael Rouget
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | - Valérie Igel-Bourguignon
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, F-54000 Nancy, France
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, F-54000 Nancy, France
| | | | - Yuri Motorin
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | | |
Collapse
|
14
|
Muniz L, Lazorthes S, Delmas M, Ouvrard J, Aguirrebengoa M, Trouche D, Nicolas E. Circular ANRIL isoforms switch from repressors to activators of p15/CDKN2B expression during RAF1 oncogene-induced senescence. RNA Biol 2020; 18:404-420. [PMID: 32862732 PMCID: PMC7951966 DOI: 10.1080/15476286.2020.1812910] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Long non-coding RNAs (ncRNAs) are major regulators of gene expression and cell fate. The INK4 locus encodes the tumour suppressor proteins p15INK4b, p16INK4a and p14ARF required for cell cycle arrest and whose expression increases during senescence. ANRIL is a ncRNA antisense to the p15 gene. In proliferative cells, ANRIL prevents senescence by repressing INK4 genes through the recruitment of Polycomb-group proteins. In models of replicative and RASval12 oncogene-induced senescence (OIS), the expression of ANRIL and Polycomb proteins decreases, thus allowing INK4 derepression. Here, we found in a model of RAF1 OIS that ANRIL expression rather increases, due in particular to an increased stability. This led us to search for circular ANRIL isoforms, as circular RNAs are rather stable species. We found that the expression of two circular ANRIL increases in several OIS models (RAF1, MEK1 and BRAF). In proliferative cells, they repress p15 expression, while in RAF1 OIS, they promote full induction of p15, p16 and p14ARF expression. Further analysis of one of these circular ANRIL shows that it interacts with Polycomb proteins and decreases EZH2 Polycomb protein localization and H3K27me3 at the p15 and p16 promoters, respectively. We propose that changes in the ratio between Polycomb proteins and circular ANRIL isoforms allow these isoforms to switch from repressors of p15 gene to activators of all INK4 genes in RAF1 OIS. Our data reveal that regulation of ANRIL expression depends on the senescence inducer and underline the importance of circular ANRIL in the regulation of INK4 gene expression and senescence.
Collapse
Affiliation(s)
- Lisa Muniz
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sandra Lazorthes
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Maxime Delmas
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Ouvrard
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marion Aguirrebengoa
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Didier Trouche
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Estelle Nicolas
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
15
|
Lou N, Liu G, Pan Y. Long noncoding RNA ANRIL as a novel biomarker in human cancer. Future Oncol 2020; 16:2981-2995. [PMID: 32986472 DOI: 10.2217/fon-2020-0470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The long noncoding RNA ANRIL, located in the human chromosome 9p21 region, has been reported to be involved in tumor progression. ANRIL regulates gene expression via recruiting PRC2 or titrating miRNA; it also participates in signaling pathways. Evidence has indicated that ANRIL is overexpressed in many cancer types and is capable of enhancing cell proliferation and cell cycle progression and inhibiting apoptosis and senescence. ANRIL has the potential to serve as a biomarker for diagnosis and prognosis in cancer. In this article we focus on recent advances in studies of the oncogenic role of ANRIL and its potential role in cancer medicine.
Collapse
Affiliation(s)
- Ning Lou
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China
| |
Collapse
|
16
|
Wang J, Wang X, Bhat A, Chen Y, Xu K, Mo YY, Yi SS, Zhou Y. Comprehensive Network Analysis Reveals Alternative Splicing-Related lncRNAs in Hepatocellular Carcinoma. Front Genet 2020; 11:659. [PMID: 32760422 PMCID: PMC7373802 DOI: 10.3389/fgene.2020.00659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/29/2020] [Indexed: 01/18/2023] Open
Abstract
It is increasingly appreciated that long non-coding RNAs (lncRNAs) associated with alternative splicing (AS) could be involved in aggressive hepatocellular carcinoma. Although many recent studies show the alteration of RNA alternative splicing by deregulated lncRNAs in cancer, the extent to which and how lncRNAs impact alternative splicing at the genome scale remains largely elusive. We analyzed RNA-seq data obtained from 369 hepatocellular carcinomas (HCCs) and 160 normal liver tissues, quantified 198,619 isoform transcripts, and identified a total of 1,375 significant AS events in liver cancer. In order to predict novel AS-associated lncRNAs, we performed an integration of co-expression, protein-protein interaction (PPI) and epigenetic interaction networks that links lncRNA modulators (such as splicing factors, transcript factors, and miRNAs) along with their targeted AS genes in HCC. We developed a random walk-based multi-graphic (RWMG) model algorithm that prioritizes functional lncRNAs with their associated AS targets to computationally model the heterogeneous networks in HCC. RWMG shows a good performance evaluated by the ROC curve based on cross-validation and bootstrapping strategies. As a conclusion, our robust network-based framework has derived 31 AS-related lncRNAs that not only validates known cancer-associated cases MALAT1 and HOXA11-AS, but also reveals new players such as DNM1P35 and DLX6-AS1with potential functional implications. Survival analysis further provides insights into the clinical significance of identified lncRNAs.
Collapse
Affiliation(s)
- Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuquan Wang
- Department of Mathematics and Computer Science, Tougaloo College, Jackson, MS, United States
| | - Akshay Bhat
- Department of Oncology and Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Yixin Chen
- Department of Computer and Information Science, University of Mississippi, Oxford, MS, United States
| | - Keli Xu
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yin-yuan Mo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Song Stephen Yi
- Department of Oncology and Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Yunyun Zhou
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
17
|
Cho H, Li Y, Archacki S, Wang F, Yu G, Chakrabarti S, Guo Y, Chen Q, Wang QK. Splice variants of lncRNA RNA ANRIL exert opposing effects on endothelial cell activities associated with coronary artery disease. RNA Biol 2020; 17:1391-1401. [PMID: 32602777 DOI: 10.1080/15476286.2020.1771519] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Each gene typically has multiple alternatively spliced transcripts. Different transcripts are assumed to play a similar biological role; however, some transcripts may simply lose their function due to loss of important functional domains. Here, we show that two different transcripts of lncRNA gene ANRIL associated with coronary artery disease (CAD) play antagonizing roles against each other. We previously reported that DQ485454, the short transcript, is downregulated in coronary arteries from CAD patients, and reduces monocyte adhesion to endothelial cells (ECs) and transendothelial monocyte migration (TEM). Interestingly, the longest transcript NR_003529 is significantly upregulated in coronary arteries from CAD patients. Overexpression of ANRIL transcript NR_003529 increases monocyte adhesion to ECs and TEM, whereas knockdown of NR_003529 expression reduces monocyte adhesion to ECs and TEM. Much more dramatic effects were observed for the combination of overexpression of NR_003529 and knockdown of DQ485454 or the combination of knockdown of NR_003529 and overexpression of DQ485454. The antagonizing effects of ANRIL transcripts NR_003529 and DQ485454 were associated with their opposite effects on expression of downstream target genes EZR, CXCL11 or TMEM106B. Our results demonstrate that different transcripts of lncRNA can exert antagonizing effects on biological functions, thereby providing important insights into the biology of lncRNA. The data further support the hypothesis that ANRIL is the causative gene at the 9p21 CAD susceptibility locus.
Collapse
Affiliation(s)
- Hyosuk Cho
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine , Cleveland, OH, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Yabo Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Stephen Archacki
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Fan Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Gang Yu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology , Wuhan, P. R. China
| | - Susmita Chakrabarti
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Yang Guo
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Qing Kenneth Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine , Cleveland, OH, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| |
Collapse
|
18
|
Ma W, Qiao J, Zhou J, Gu L, Deng D. Characterization of novel LncRNA P14AS as a protector of ANRIL through AUF1 binding in human cells. Mol Cancer 2020; 19:42. [PMID: 32106863 PMCID: PMC7045492 DOI: 10.1186/s12943-020-01150-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background The CDKN2A/B locus contains crucial tumor suppressors and a lncRNA gene ANRIL. However, the mechanisms that coordinately regulate their expression levels are not clear. Methods Novel RNAs transcribed from the CDKN2A gene were screened by CDKN2A-specific RNA capture deep-sequencing and confirmed by Northern blotting and clone-sequencing. Long non-coding RNA (lncRNA) binding proteins were characterized by RNA pull-down combined with mass spectrometry and RNA immunoprecipitation. LncRNA functions in human cells were studied using a set of biological assays in vitro and in vivo. Results We characterized a novel lncRNA, P14AS with its promoter in the antisense strand of the fragment near CDKN2A exon 1b in human cells. The mature P14AS is a three-exon linear cytoplasmic lncRNA (1043-nt), including an AU-rich element (ARE) in exon 1. P14AS decreases AUF1-ANRIL/P16 RNA interaction and then increases ANRIL/P16 expression by competitively binding to AUF1 P37 and P40 isoforms. Interestingly, P14AS significantly promoted the proliferation of cancer cells and tumor formation in NOD-SCID mice in a P16-independent pattern. Moreover, in human colon cancer tissues, the expression levels of P14AS and ANRIL lncRNAs were significantly upregulated compared with the paired normal tissues. Conclusion A novel lncRNA, P14AS, transcribed from the antisense strand of the CDKN2A/P14 gene, promotes colon cancer development by cis upregulating the expression of oncogenic ANRIL.
Collapse
Affiliation(s)
| | | | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China.
| |
Collapse
|
19
|
Navarro E, Mallén A, Cruzado JM, Torras J, Hueso M. Unveiling ncRNA regulatory axes in atherosclerosis progression. Clin Transl Med 2020; 9:5. [PMID: 32009226 PMCID: PMC6995802 DOI: 10.1186/s40169-020-0256-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Completion of the human genome sequencing project highlighted the richness of the cellular RNA world, and opened the door to the discovery of a plethora of short and long non-coding RNAs (the dark transcriptome) with regulatory or structural potential, which shifted the balance of pathological gene alterations from coding to non-coding RNAs. Thus, disease risk assessment currently has to also evaluate the expression of new RNAs such as small micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), competing endogenous RNAs (ceRNAs), retrogressed elements, 3'UTRs of mRNAs, etc. We are interested in the pathogenic mechanisms of atherosclerosis (ATH) progression in patients suffering Chronic Kidney Disease, and in this review, we will focus in the role of the dark transcriptome (non-coding RNAs) in ATH progression. We will focus in miRNAs and in the formation of regulatory axes or networks with their mRNA targets and with the lncRNAs that function as miRNA sponges or competitive inhibitors of miRNA activity. In this sense, we will pay special attention to retrogressed genomic elements, such as processed pseudogenes and Alu repeated elements, that have been recently seen to also function as miRNA sponges, as well as to the use or miRNA derivatives in gene silencing, anti-ATH therapies. Along the review, we will discuss technical developments associated to research in lncRNAs, from sequencing technologies to databases, repositories and algorithms to predict miRNA targets, as well as new approaches to miRNA function, such as integrative or enrichment analysis and their potential to unveil RNA regulatory networks.
Collapse
Affiliation(s)
- Estanislao Navarro
- Independent Researcher, Barcelona, Spain. .,Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| | - Adrian Mallén
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Josep M Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Joan Torras
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Miguel Hueso
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
20
|
Liu J, Li D, Luo H, Zhu X. Circular RNAs: The star molecules in cancer. Mol Aspects Med 2019; 70:141-152. [PMID: 31676107 DOI: 10.1016/j.mam.2019.10.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs with a closed loop structure. These RNAs are produced by pre-mRNA through variable shear processing and are highly conserved. Such highly conserved molecules play an important role in biology, especially in cancer biology. With the development of experimental techniques such as circRNA microarray screening and high-throughput sequencing technologies, the mystery of circRNAs has gradually been unveiled and the values of function and application have gradually emerged. Among them, cancer-related circRNAs are the most eye-catching. Numerous studies have shown that some circRNAs were involved in the pathogenesis of cancer. This review systematically introduced the cancer-related circRNAs and their origin, formation mechanisms, functions, and applications in the diagnosis and treatment of sixteen kinds of tumors.
Collapse
Affiliation(s)
- Jianhong Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China; Cancer Center, The Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023, China
| | - Dongpei Li
- Medical College of Georgia, Augusta University, Augusta, GA, 30901, USA
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China; Cancer Center, The Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
21
|
Mehta-Mujoo PM, Cunliffe HE, Hung NA, Slatter TL. Long Non-coding RNA ANRIL in the Nucleus Associates With Periostin Expression in Breast Cancer. Front Oncol 2019; 9:885. [PMID: 31572679 PMCID: PMC6749148 DOI: 10.3389/fonc.2019.00885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/27/2019] [Indexed: 11/17/2022] Open
Abstract
The long non-coding RNA (LncRNA) antisense RNA in the INK4 locus (ANRIL) is overexpressed in several cancers including breast cancer. To better understand the role of ANRIL in breast cancer this study investigated where ANRIL was expressed in breast tumors using in situ hybridization by RNAscope. Additional RNAscope assays for IL6, CCL2, and POSTN were used to establish whether ANRIL correlated with increased tumor promoting cytokines. Breast tumors with ANRIL over expressed from real-time quantitative (RT-q) PCR assays were selected for analysis using RNAscope. All tumors showed ANRIL expression in malignant cells, but amongst tumors ANRIL showed different subcellular locations with 56% of tumors with ANRIL only in the nucleus, 16% with ANRIL only in the cytoplasm and 28% with ANRIL in both the nucleus and cytoplasm. Cases with nuclear ANRIL were positively correlated with POSTN expression in malignant cells (ρ = 0.57, P = 0.0086), and no correlation was found between ANRIL and IL6 or CCL2. Reduced POSTN was also found using siRNA to ANRIL in MDA-MB-231 and MCF7 breast cancer cells. These data indicate that ANRIL is expressed in malignant breast cells, and suggest its subcellular location may indicate its function in cancer progression.
Collapse
Affiliation(s)
- Paulomi M Mehta-Mujoo
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Heather E Cunliffe
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Noelyn A Hung
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
22
|
Abi A, Farahani N, Molavi G, Gheibi Hayat SM. Circular RNAs: epigenetic regulators in cancerous and noncancerous skin diseases. Cancer Gene Ther 2019; 27:280-293. [PMID: 31477805 DOI: 10.1038/s41417-019-0130-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/25/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022]
Abstract
The most frequent kind of malignancy in the universe is skin cancer, which has been categorized into non-melanoma and melanoma skin cancer. There are no complete information of the skin carcinogenesis process. A variety of external and internal agents contribute to the non-melanoma and melanoma skin cancer pathogenesis. These factors are epigenetic changes, X-rays, genetic, arsenic compounds, UV rays, and additional chemical products. It was found that there could be a relationship between the appearing novel and more suitable therapies for participants in this class of diseases and detection of basic molecular paths. A covalently closed loop structure bond connecting the 5' and 3' ends characterizes a new group of extensively expressed endogenous regulatory RNAs, which are called circular RNAs (circRNAs). Mammals commonly express circRNAs. They are of high importance in tumorigenesis. Multiple lines evidence indicated that a variety of circular RNAs are associated with initiation and development of skin-related diseases such as skin cancers. Given that different circular RNAs (hsa_circ_0025039, hsa_circRNA006612, circRNA005537, and circANRIL) via targeting various cellular and molecular targets (e.g., CDK4, DAB2IP, ZEB1, miR-889, and let-7c-3p) exert their effects on skin cancers progression. Herein, for first time, we summarized different circular RNAs in skin cancers and noncancerous diseases. Moreover, we highlighted crosstalk between circular RNAs and ceRNAs in cancerous conditions.
Collapse
Affiliation(s)
- Abbas Abi
- Department of Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
23
|
Wang W, Wang Y, Piao H, Li B, Huang M, Zhu Z, Li D, Wang T, Xu R, Liu K. Circular RNAs as potential biomarkers and therapeutics for cardiovascular disease. PeerJ 2019; 7:e6831. [PMID: 31119072 PMCID: PMC6511224 DOI: 10.7717/peerj.6831] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are genetic regulators that were earlier considered as "junk". In contrast to linear RNAs, they have covalently linked ends with no polyadenylated tails. CircRNAs can act as RNA-binding proteins, sequestering agents, transcriptional regulators, as well as microRNA sponges. In addition, it is reported that some selected circRNAs are transformed into functional proteins. These RNA molecules always circularize through covalent bonds, and their presence has been demonstrated across species. They are usually abundant and stable as well as evolutionarily conserved in tissues (liver, lung, stomach), saliva, exosomes, and blood. Therefore, they have been proposed as the "next big thing" in molecular biomarkers for several diseases, particularly in cancer. Recently, circRNAs have been investigated in cardiovascular diseases (CVD) and reported to play important roles in heart failure, coronary artery disease, and myocardial infarction. Here, we review the recent literature and discuss the impact and the diagnostic and prognostic values of circRNAs in CVD.
Collapse
Affiliation(s)
- Weitie Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Yong Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Hulin Piao
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Maoxun Huang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Zhicheng Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Dan Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Tiance Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Rihao Xu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| |
Collapse
|
24
|
Abstract
Biomarker-driven personalized cancer therapy is a field of growing interest, and several molecular tests have been developed to detect biomarkers that predict, e.g., response of cancers to particular therapies. Identification of these molecules and understanding their molecular mechanisms is important for cancer prognosis and the development of therapeutics for late stage diseases. In the past, significant efforts have been placed on the discovery of protein or DNA-based biomarkers while only recently the class of long non-coding RNA (lncRNA) has emerged as a new category of biomarker. The mammalian genome is pervasively transcribed yielding a vast amount of non-protein-coding RNAs including lncRNAs. Hence, these transcripts represent a rich source of information that has the potential to significantly contribute to precision medicine in the future. Importantly, many lncRNAs are differentially expressed in carcinomas and they are emerging as potent regulators of tumor progression and metastasis. Here, we will highlight prime examples of lncRNAs that serve as marker for cancer progression or therapy response and which might represent promising therapeutic targets. Furthermore, we will introduce lncRNA targeting tools and strategies, and we will discuss potential pitfalls in translating these into clinical trials.
Collapse
|
25
|
Cardoso C, Serafim RB, Kawakami A, Gonçalves Pereira C, Vazquez VL, Valente V, Fisher DE, Espreafico EM. The lncRNA RMEL3 protects immortalized cells from serum withdrawal-induced growth arrest and promotes melanoma cell proliferation and tumor growth. Pigment Cell Melanoma Res 2019; 32:303-314. [PMID: 30457212 PMCID: PMC6613776 DOI: 10.1111/pcmr.12751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022]
Abstract
RMEL3 is a recently identified lncRNA associated with BRAFV600E mutation and melanoma cell survival. Here, we demonstrate strong and moderate RMEL3 upregulation in BRAF and NRAS mutant melanoma cells, respectively, compared to melanocytes. High expression is also more frequent in cutaneous than in acral/mucosal melanomas, and analysis of an ICGC melanoma dataset showed that mutations in RMEL3 locus are preponderantly C > T substitutions at dipyrimidine sites including CC > TT, typical of UV signature. RMEL3 mutation does not correlate with RMEL3 levels, but does with poor patient survival, in TCGA melanoma dataset. Accordingly, RMEL3 lncRNA levels were significantly reduced in BRAFV600E melanoma cells upon treatment with BRAF or MEK inhibitors, supporting the notion that BRAF-MEK-ERK pathway plays a role to activate RMEL3 gene transcription. RMEL3 overexpression, in immortalized fibroblasts and melanoma cells, increased proliferation and survival under serum starvation, clonogenic ability, and xenografted melanoma tumor growth. Although future studies will be needed to elucidate the mechanistic activities of RMEL3, our data demonstrate that its overexpression bypasses the need of mitogen activation to sustain proliferation/survival of non-transformed cells and suggest an oncogenic role for RMEL3.
Collapse
Affiliation(s)
- Cibele Cardoso
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rodolfo B. Serafim
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Akinori Kawakami
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristiano Gonçalves Pereira
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vinicius L. Vazquez
- Molecular Oncology Research Center (CPOM) and Melanoma/sarcoma Surgery Department, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Valeria Valente
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, SP, 14800-903, Brazil; Center for Cell-Based Therapy CEPID/FAPESP, Ribeirão Preto, Brazil
| | - David E. Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Enilza M. Espreafico
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
26
|
Riefolo M, Porcellini E, Dika E, Broseghini E, Ferracin M. Interplay between small and long non-coding RNAs in cutaneous melanoma: a complex jigsaw puzzle with missing pieces. Mol Oncol 2019; 13:74-98. [PMID: 30499222 PMCID: PMC6322194 DOI: 10.1002/1878-0261.12412] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The incidence of cutaneous melanoma (CM) has increased in the past few decades. The biology of melanoma is characterized by a complex interaction between genetic, environmental and phenotypic factors. A greater understanding of the molecular mechanisms that promote melanoma cell growth and dissemination is crucial to improve diagnosis, prognostication, and treatment of CM. Both small and long non-coding RNAs (lncRNAs) have been identified to play a role in melanoma biology; microRNA and lncRNA expression is altered in transformed melanocytes and this in turn has functional effects on cell proliferation, apoptosis, invasion, metastasis, and immune response. Moreover, specific dysregulated ncRNAs were shown to have a diagnostic or prognostic role in melanoma and to drive the establishment of drug resistance. Here, we review the current literature on small and lncRNAs with a role in melanoma, with the aim of putting into some order this complex jigsaw puzzle.
Collapse
Affiliation(s)
- Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| |
Collapse
|
27
|
Holdt LM, Teupser D. Long Noncoding RNA ANRIL: Lnc-ing Genetic Variation at the Chromosome 9p21 Locus to Molecular Mechanisms of Atherosclerosis. Front Cardiovasc Med 2018; 5:145. [PMID: 30460243 PMCID: PMC6232298 DOI: 10.3389/fcvm.2018.00145] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 10/01/2018] [Indexed: 12/24/2022] Open
Abstract
Ever since the first genome-wide association studies (GWAS) on coronary artery disease (CAD), the Chr9p21 risk locus has emerged as a top signal in GWAS of atherosclerotic cardiovascular disease, including stroke and peripheral artery disease. The CAD risk SNPs on Chr9p21 lie within a stretch of 58 kilobases of non-protein-coding DNA, containing the gene body of the long noncoding RNA (lncRNA) antisense non coding RNA in the INK4 locus (ANRIL). How risk is affected by the Chr9p21 locus in molecular detail is a matter of ongoing research. Here we will review recent advances in the understanding that ANRIL serves as a key risk effector molecule of atherogenesis at the locus. One focus of this review is the shift in understanding that genetic variation at Chr9p21 not only affects the abundance of ANRIL, and in some cases expression of the adjacent CDKN2A/B tumor suppressors, but also impacts ANRIL splicing, such that 3′-5′-linked circular noncoding ANRIL RNA species are produced. We describe how the balance of linear and circular ANRIL RNA, determined by the Chr9p21 genotype, regulates molecular pathways and cellular functions involved in atherogenesis. We end with an outlook on how manipulating circular ANRIL abundance may be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Lesca M Holdt
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
28
|
Kong Y, Hsieh CH, Alonso LC. ANRIL: A lncRNA at the CDKN2A/B Locus With Roles in Cancer and Metabolic Disease. Front Endocrinol (Lausanne) 2018; 9:405. [PMID: 30087655 PMCID: PMC6066557 DOI: 10.3389/fendo.2018.00405] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
The CDKN2A/B genomic locus is associated with risk of human cancers and metabolic disease. Although the locus contains several important protein-coding genes, studies suggest disease roles for a lesser-known antisense lncRNA encoded at this locus, called ANRIL. ANRIL is a complex gene containing at least 21 exons in simians, with many reported linear and circular isoforms. Like other genes, abundance of ANRIL is regulated by epigenetics, classic transcription regulation, splicing, and post-transcriptional influences such as RNA stability and microRNAs. Known molecular functions of ANRIL include in cis and in trans gene regulation through chromatin modification complexes, and influence over microRNA signaling networks. Polymorphisms at the ANRIL gene are linked to risk for many different cancers, as well as risk of atherosclerotic cardiovascular disease, bone mass, obesity and type 2 diabetes. A broad array of variable reported impacts of polymorphisms on ANRIL abundance, splicing and function suggests that ANRIL has cell-type and context-dependent regulation and actions. In cancer cells, ANRIL gain of function increases proliferation, metastasis, cell survival and epithelial-mesenchymal transformation, whereas ANRIL loss of function decreases tumor size and growth, invasion and metastasis, and increases apoptosis and senescence. In metabolic disease, polymorphisms at the ANRIL gene are linked to risk of type 2 diabetes, coronary artery disease, coronary artery calcium score, myocardial infarction, and stroke. Intriguingly, with the exception of one polymorphism in exon 2 of ANRIL, the single nucleotide polymorphisms (SNPs) associated with atherosclerosis and diabetes are non-overlapping. Evidence suggests that ANRIL gain of function increases atherosclerosis; in diabetes, a risk-SNP reduced the pancreatic beta cell proliferation index. Studies are limited by the uncertain relevance of rodent models to ANRIL studies, since most ANRIL exons do not exist in mouse. Diverse cell-type-dependent results suggest it is necessary to perform studies in the relevant primary human tissue for each disease. Much remains to be learned about the biology of ANRIL in human health and disease; this research area may lead to insight into disease mechanisms and therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Laura C. Alonso
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
29
|
Dragomir M, Calin GA. Circular RNAs in Cancer - Lessons Learned From microRNAs. Front Oncol 2018; 8:179. [PMID: 29911069 PMCID: PMC5992376 DOI: 10.3389/fonc.2018.00179] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/08/2018] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNA) are RNA molecules built from fragments of linear pre-messenger RNAs and other linear RNA species through a process termed "back-splicing" in which the 3' and 5' ends are joined together giving rise to a covalently uninterrupted loop. circRNAs are not new members of the RNA world; they were first discovered in the early 1990s. The novelty is their abundance in the mammalian cells, as recently thousands of circRNAs were discovered and annotated. The biogenesis of circRNAs is a partially characterized process, regulated by three different mechanisms: exon skipping, intron pairing, and RNA-binding proteins. On the other hand, the function of circRNAs remains largely unknown and only a handful of singular reports describe in detail the biological roles of some circular transcripts. In a very short period of time, numerous circRNAs were associated with various cancer types and were also identified in bodily fluids with the potential of being disease-specific biomarkers. In this review, we briefly describe the biogenesis and function of circRNAs and present the circular transcripts that were more than once reported in literature to be associated with cancer. Finally, we point out some of the difficulties encountered in the study of circRNAs in cancer, as we consider that taking these into account could accelerate and improve our understanding of the biologic and translational use of circRNAs in human diseases.
Collapse
Affiliation(s)
- Mihnea Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
30
|
Sarkar D, Oghabian A, Bodiyabadu PK, Joseph WR, Leung EY, Finlay GJ, Baguley BC, Askarian-Amiri ME. Correction: Sarkar, D., et al. Multiple Isoforms of ANRIL in Melanoma Cells: Structural Complexity Suggests Variations in Processing. Int. J. Mol. Sci. 2017, 18, 1378. Int J Mol Sci 2018; 19:ijms19051343. [PMID: 29724053 PMCID: PMC5983800 DOI: 10.3390/ijms19051343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 11/17/2022] Open
Affiliation(s)
- Debina Sarkar
- Auckland Cancer Society Research Centre, University of Auckland, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd. Grafton, 1023 Auckland, New Zealand.
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd. Grafton, 1023 Auckland, New Zealand.
| | - Ali Oghabian
- Institute of Biotechnology, P.O. Box 56 (Viikinkaari 5), University of Helsinki, FI-00014 Helsinki, Finland.
| | - Pasani K Bodiyabadu
- Auckland Cancer Society Research Centre, University of Auckland, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd. Grafton, 1023 Auckland, New Zealand.
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd. Grafton, 1023 Auckland, New Zealand.
| | - Wayne R Joseph
- Auckland Cancer Society Research Centre, University of Auckland, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd. Grafton, 1023 Auckland, New Zealand.
| | - Euphemia Y Leung
- Auckland Cancer Society Research Centre, University of Auckland, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd. Grafton, 1023 Auckland, New Zealand.
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd. Grafton, 1023 Auckland, New Zealand.
| | - Graeme J Finlay
- Auckland Cancer Society Research Centre, University of Auckland, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd. Grafton, 1023 Auckland, New Zealand.
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd. Grafton, 1023 Auckland, New Zealand.
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, University of Auckland, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd. Grafton, 1023 Auckland, New Zealand.
| | - Marjan E Askarian-Amiri
- Auckland Cancer Society Research Centre, University of Auckland, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd. Grafton, 1023 Auckland, New Zealand.
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd. Grafton, 1023 Auckland, New Zealand.
| |
Collapse
|