1
|
Nguyen TTA, Mohanty V, Yan Y, Francis KR, Cologna SM. Comparative Hippocampal Proteome and Phosphoproteome in a Niemann-Pick, Type C1 Mouse Model Reveal Insights into Disease Mechanisms. J Proteome Res 2024; 23:84-94. [PMID: 37999680 DOI: 10.1021/acs.jproteome.3c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Niemann-Pick disease, type C (NPC) is a neurodegenerative, lysosomal storage disorder in individuals carrying two mutated copies of either the NPC1 or NPC2 gene. Consequently, impaired cholesterol recycling and an array of downstream events occur. Interestingly, in NPC, the hippocampus displays lysosomal lipid storage but does not succumb to progressive neurodegeneration as significantly as other brain regions. Since defining the neurodegeneration mechanisms in this disease is still an active area of research, we use mass spectrometry to analyze the overall proteome and phosphorylation pattern changes in the hippocampal region of a murine model of NPC. Using 3 week old mice representing an early disease time point, we observed changes in the expression of 47 proteins, many of which are consistent with the previous literature. New to this study, changes in members of the SNARE complex, including STX7, VTI1B, and VAMP7, were identified. Furthermore, we identified that phosphorylation of T286 on CaMKIIα and S1303 on NR2B increased in mutant animals, even at the late stage of the disease. These phosphosites are crucial to learning and memory and can trigger neuronal death by altering protein-protein interactions.
Collapse
Affiliation(s)
- Thu T A Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Varshasnata Mohanty
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Ying Yan
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Kevin R Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, South Dakota 57104, United States
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota 57105, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Laboratory of Integrated Neuroscience, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
2
|
Organ Weights in NPC1 Mutant Mice Partly Normalized by Various Pharmacological Treatment Approaches. Int J Mol Sci 2022; 24:ijms24010573. [PMID: 36614015 PMCID: PMC9820376 DOI: 10.3390/ijms24010573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick Type C1 (NPC1, MIM 257220) is a rare, progressive, lethal, inherited autosomal-recessive endolysosomal storage disease caused by mutations in the NPC1 leading to intracellular lipid storage. We analyzed mostly not jet known alterations of the weights of 14 different organs in the BALB/cNctr-Npc1m1N/-J Jackson Npc1 mice in female and male Npc1+/+ and Npc1-/- mice under various treatment strategies. Mice were treated with (i) no therapy, (ii) vehicle injection, (iii) a combination of miglustat, allopregnanolone, and 2-hydroxypropyl-ß-cyclodextrin (HPßCD), (iv) miglustat, and (v) HPßCD alone starting at P7 and repeated weekly throughout life. The 12 respective male and female wild-type mice groups were evaluated in parallel. In total, 351 mice (176 Npc1+/+, 175 Npc1-/-) were dissected at P65. In both sexes, the body weights of None and Sham Npc1-/- mice were lower than those of respective Npc1+/+ mice. The influence of the Npc1 mutation and/or sex on the weights of various organs, however, differed considerably. In males, Npc1+/+ and Npc1-/- mice had comparable absolute weights of lungs, spleen, and adrenal glands. In Npc1-/- mice, smaller weights of hearts, livers, kidneys, testes, vesicular, and scent glands were found. In female Npc1-/- mice, ovaries, and uteri were significantly smaller. In Npc1-/- mice, relative organ weights, i.e., normalized with body weights, were sex-specifically altered to different extents by the different therapies. The combination of miglustat, allopregnanolone, and the sterol chelator HPßCD partly normalized the weights of more organs than miglustat or HPßCD mono-therapies.
Collapse
|
3
|
Mochizuki A, Oda Y, Miwa Y. Comparative study on water structures of poly(tetrahydrofurfuryl acrylate) and poly(2-hydroxyethyl methacrylate) by nuclear magnetic resonance spectroscopy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1754-1769. [PMID: 34075853 DOI: 10.1080/09205063.2021.1938356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It is well known that poly(2-methoxyethyl acrylate) (PMEA) has good blood compatibility and its performance is attributed to its water structure. Recently, we applied solution nuclear magnetic resonance spectroscopy (solution-NMR) for analyzing the water structure in PMEA at ambient temperature and concluded that this method is useful because of the clear observation of the resonance peaks at low and high magnetic field (downfield and upfield, respectively) areas indicating the existence of more than two types of water. The present study was performed to compare the water structure of poly(tetrahydrofurfuryl acrylate) (PTHFA) and poly(2-hydroxyethyl methacrylate) (PHEMA) using solution 2H-NMR and deuterium oxide as water at the temperature range 15-45 °C. It was found that PTHFA has a different water structure from that of PHEMA. Water in PTHFA clearly showed two resonance peaks at downfield and upfield areas, with different spin-lattice relaxation times, T12H (high and low values, respectively). These observations are similar to those of PMEA. In contrast, PHEMA showed only one broad resonance peak (at downfield) with a low T12H value. Based on these observations, this study discusses the effect of water structures on the blood compatibility of these polymers.
Collapse
Affiliation(s)
- Akira Mochizuki
- Department of Bio-Medical Engineering, School of Engineering, Tokai University, Isehara, Kanagawa, Japan
| | - Yoshiki Oda
- Technology Joint Management Office of Tokai University, Hiratsuka, Kanagawa, Japan
| | - Yuko Miwa
- Toray Research Center Inc., Otsu, Shiga, Japan
| |
Collapse
|
4
|
Cariati I, Masuelli L, Bei R, Tancredi V, Frank C, D’Arcangelo G. Neurodegeneration in Niemann-Pick Type C Disease: An Updated Review on Pharmacological and Non-Pharmacological Approaches to Counteract Brain and Cognitive Impairment. Int J Mol Sci 2021; 22:ijms22126600. [PMID: 34202978 PMCID: PMC8234817 DOI: 10.3390/ijms22126600] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Niemann–Pick type C (NPC) disease is an autosomal recessive storage disorder, characterized by abnormal sequestration of unesterified cholesterol in the late endo-lysosomal system of cells. Progressive neurological deterioration and the onset of symptoms, such as ataxia, seizures, cognitive decline, and severe dementia, are pathognomonic features of the disease. In addition, different pathological similarities, including degeneration of hippocampal and cortical neurons, hyperphosphorylated tau, and neurofibrillary tangle formation, have been identified between NPC disease and other neurodegenerative pathologies. However, the underlying pathophysiological mechanisms are not yet well understood, and even a real cure to counteract neurodegeneration has not been identified. Therefore, the combination of current pharmacological therapies, represented by miglustat and cyclodextrin, and non-pharmacological approaches, such as physical exercise and appropriate diet, could represent a strategy to improve the quality of life of NPC patients. Based on this evidence, in our review we focused on the neurodegenerative aspects of NPC disease, summarizing the current knowledge on the molecular and biochemical mechanisms responsible for cognitive impairment, and suggesting physical exercise and nutritional treatments as additional non-pharmacologic approaches to reduce the progression and neurodegenerative course of NPC disease.
Collapse
Affiliation(s)
- Ida Cariati
- Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
5
|
Holzmann C, Witt M, Rolfs A, Antipova V, Wree A. Gender-Specific Effects of Two Treatment Strategies in a Mouse Model of Niemann-Pick Disease Type C1. Int J Mol Sci 2021; 22:ijms22052539. [PMID: 33802605 PMCID: PMC7962008 DOI: 10.3390/ijms22052539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
In a mouse model of Niemann-Pick disease type C1 (NPC1), a combination therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPßCD) has previously resulted in, among other things, significantly improved motor function. The present study was designed to compare the therapeutic effects of the COMBI therapy with that of MIGLU or HPßCD alone on body and brain weight and the behavior of NPC1−/− mice in a larger cohort, with special reference to gender differences. A total of 117 NPC1−/− and 123 NPC1+/+ mice underwent either COMBI, MIGLU only, HPßCD only, or vehicle treatment (Sham), or received no treatment at all (None). In male and female NPC1−/− mice, all treatments led to decreased loss of body weight and, partly, brain weight. Concerning motor coordination, as revealed by the accelerod test, male NPC1−/− mice benefited from COMBI treatment, whereas female mice benefited from COMBI, MIGLU, and HPßCD treatment. As seen in the open field test, the reduced locomotor activity of male and female NPC1−/− mice was not significantly ameliorated in either treatment group. Our results suggest that in NPC1−/− mice, each drug treatment scheme had a beneficial effect on at least some of the parameters evaluated compared with Sham-treated mice. Only in COMBI-treated male and female NPC+/+ mice were drug effects seen in reduced body and brain weights. Upon COMBI treatment, the increased dosage of drugs necessary for anesthesia in Sham-treated male and female NPC1−/− mice was almost completely reduced only in the female groups.
Collapse
Affiliation(s)
- Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, D-18057 Rostock, Germany;
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
| | - Martin Witt
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
| | - Arndt Rolfs
- Centogene AG, Rostock, Am Strande 7, 18055 Rostock, Germany;
- University of Rostock, 18055 Rostock, Germany
| | - Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Macroscopic and Clinical Anatomy, Medical University of Graz, A-8010 Graz, Austria
| | - Andreas Wree
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
- Correspondence: ; Tel.: +49-381-494-8429
| |
Collapse
|
6
|
Imbriani P, D'Angelo V, Platania P, Di Lazzaro G, Scalise S, Salimei C, El Atiallah I, Colona VL, Mercuri NB, Bonsi P, Pisani A, Schirinzi T, Martella G. Ischemic injury precipitates neuronal vulnerability in Parkinson's disease: Insights from PINK1 mouse model study and clinical retrospective data. Parkinsonism Relat Disord 2020; 74:57-63. [PMID: 32335490 DOI: 10.1016/j.parkreldis.2020.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Increasing evidence demonstrates the relevant association between Parkinson's disease (PD) and vascular diseases/risk factors, as well as a worse clinico-pathological progression in those patients with vascular comorbidity. The mechanisms underlying this relationship have not been clarified yet, although their comprehension is critical in a perspective of disease-modifying treatments development or prevention. METHODS We performed an experimental protocol of ischemic injury (glucose-oxygen deprivation, OGD) on PTEN-induced kinase 1 knockout (PINK1-/-) mice, a well-established PD model, looking at both electrophysiological and morphological changes in basal ganglia. In addition, 253 PD patients were retrospectively analysed, to estimate the prevalence of vascular risk factors. RESULTS In PINK1-/- mice, the OGD protocol induced electrophysiological (prolonged depolarization) and morphological alterations (picnotic cells, cellular loss and swelling, thickening of nuclear chromatin) in striatal medium spiny neurons and nigral dopaminergic neurons. Vascular comorbidity occurred in 75% of PD patients. CONCLUSIONS The ischemic injury precipitates neuronal vulnerability in basal ganglia of PINK1-/- mice, probably through an impairment of mitochondrial metabolism and higher oxidative stress. These experimental data may provide a potential mechanistic explanation for both the association between vascular diseases and PD and their reciprocal interactions in determining the clinico-pathological burden of PD patients.
Collapse
Affiliation(s)
- Paola Imbriani
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Vincenza D'Angelo
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Paola Platania
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Giulia Di Lazzaro
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Simona Scalise
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Chiara Salimei
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Ilham El Atiallah
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Vito Luigi Colona
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Antonio Pisani
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Giuseppina Martella
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
7
|
Mochizuki A, Miwa Y, Yahata C, Ono D, Oda Y, Kawaguchi T. Water structure of poly(2-methoxyethyl acrylate) observed by nuclear magnetic resonance spectroscopy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1024-1040. [DOI: 10.1080/09205063.2020.1738042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Akira Mochizuki
- Department of Bio-Medical Engineering, School of Engineering, Tokai University, Isehara, Kanagawa, Japan
| | - Yuko Miwa
- Material Science Laboratories, Toray Research Center, Otsu, Shiga, Japan
| | - Chie Yahata
- Department of Bio-Medical Engineering, School of Engineering, Tokai University, Isehara, Kanagawa, Japan
| | - Dai Ono
- Department of Bio-Medical Engineering, School of Engineering, Tokai University, Isehara, Kanagawa, Japan
| | - Yoshinobu Oda
- Technology Joint Management Office of Tokai University, Hiratsuka, Kanagawa, Japan
| | - Tsubasa Kawaguchi
- Technology Joint Management Office of Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
8
|
Inhibition of LOX-1 prevents inflammation and photoreceptor cell death in retinal degeneration. Int Immunopharmacol 2020; 80:106190. [PMID: 31945611 DOI: 10.1016/j.intimp.2020.106190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 11/21/2022]
Abstract
PURPOSE To explore the expression and role of lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) in retinal degeneration. METHODS The retinal degeneration of BALB/c mice was induced by light exposure. BV2 cells were activated by LPS stimulation. Retinas or BV2 cells were pretreated with LOX-1 neutralizing antibody or Polyinosinic acid (PolyI) (the inhibitor of LOX-1) before light damage (LD) or LPS stimulation. LOX-1, TNF-α, IL-1β, CCL2 and NF-κB expression were detected in retinas or BV2 cells by real-time RT-PCR, western blot or ELISA. Histological analyses of retinas were performed. Photoreceptor cell death was assessed by TUNEL assay in retinas or by flow cytometry in 661W cells cultured in microglia-conditioned medium. RESULTS Photoreceptor cell death and elevated expression of LOX-1 were induced by LD in retinas of BALB/c mice. LOX-1 neutralizing antibody or PolyI pretreatment significantly reduced the elevated expression of LOX-1, TNF-α, IL-1β, CCL2 and p-NF-κB caused by LD in retinas. Inhibition of LOX-1 by LOX-1 neutralizing antibody or PolyI significantly reduced photoreceptor cell death induced by LD in retinas. Elevated levels of TNF-α, IL-1β and CCL2 caused by LPS were down-regulated by inhibition of LOX-1 in BV2 cells. Inhibition of LOX-1 reduces microglial neurotoxicity on photoreceptors. CONCLUSIONS LOX-1 expression is increased in light induced retinal degeneration, what's more, inhibition of LOX-1 prevents inflammation and photoreceptor cell death in retinal degeneration and reduces microglial neurotoxicity on photoreceptors. Therefore, LOX-1 can be used as a potential therapeutic target for such retinal degeneration diseases.
Collapse
|
9
|
Conte C, Arcuri C, Cataldi S, Mecca C, Codini M, Ceccarini MR, Patria FF, Beccari T, Albi E. Niemann-Pick Type A Disease: Behavior of Neutral Sphingomyelinase and Vitamin D Receptor. Int J Mol Sci 2019; 20:ijms20092365. [PMID: 31086057 PMCID: PMC6539364 DOI: 10.3390/ijms20092365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022] Open
Abstract
Sphingomyelinase (SMase) is responsible for the breakdown of sphingomyelin (SM) with production of ceramide. The absence of acid sphingomyelinase (aSMase) causes abnormal synapse formation in Niemann-Pick type A (NPA) disease. Because high levels of ceramide in the NPA brain were demonstrated, the involvement of other SMases were supposed. In the present study we focused the attention on the neurogenic niches in the hippocampal gyrus dentatus (GD), a brain structure essential for forming cohesive memory. We demonstrated for the first time the increase of (Sex determining region Y)-box 2 (SOX2), and the down-regulation of glial fibrillary acidic protein (GFAP) NPA mice GD. Moreover, we found that the expression of Toll like receptors (TLRs), was increased in NPA mice, particularly TLR2, TLR7, TLR8 and TLR9 members. Although no significant change in neutral sphingomyelinase (nSMase) gene expression was detected in the NPA mice hippocampus of, protein levels were enhanced, probably because of the slower protein degradation rate in this area. Many studies demonstrated that vitamin D receptor (VDR) is expressed in the hippocampus GD. Unexpectedly, we showed that NPA mice exhibited VDR gene and protein expression up-regulation. In summary, our study suggests a relation between hippocampal cell differentiation defect, nSMase and VDR increase in NPA mice.
Collapse
Affiliation(s)
- Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Cataldo Arcuri
- Department of Experimental Medicine, University of Perugia, 06123 Perugia, Italy.
| | - Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Carmen Mecca
- Department of Experimental Medicine, University of Perugia, 06123 Perugia, Italy.
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | | | | | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| |
Collapse
|