1
|
Yanagi T, Phen SF, Ayala J, Aydin DE, Jaramillo S, Truong DM. Termination sequence between an inducible promoter and ubiquitous chromatin opening element (UCOE) reduces gene expression leakage and silencing. J Biol Eng 2025; 19:29. [PMID: 40205378 PMCID: PMC11983960 DOI: 10.1186/s13036-025-00499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Inducible gene expression circuits enable precise control over target gene activation and are widely used in direct reprogramming. However, their usability is often compromised by DNA methylation-induced silencing, especially in iPSCs. This deactivates genetic circuits in engineered iPSCs preventing them from being used for long-term scalable expansion of desired cell types. A2-ubiquitous chromatin opening elements (A2UCOE) have been recognized for their anti-silencing properties, but they have not been used in human iPSCs with inducible systems for direct reprogramming. This study investigates the role of A2UCOE in inducible systems and identifies strategies to eliminate associated gene leakage enabling long-term use of engineered human iPSCs. RESULTS We developed a compact all-in-one gene circuit - containing a doxycycline-inducible Tet-On system, 863 bp of A2UCOE, and FOXN1, a transcription factor critical for thymic epithelial cell (TEC) differentiation - easily deployed to new genomic sites. However, we observed significant FOXN1 gene leakage even without doxycycline, which is a novel limitation of A2UCOE. This leakage resulted in premature differentiation of iPSCs into TECs, limiting its continued use. To further investigate the relationship between A2UCOE and gene leakage, we generated A2UCOE fragments of varying lengths (1337 bp, 749 bp, and 547 bp) and found that all fragments, regardless of length, caused significant gene leakage. To solve this issue, we tested different spacer sequences between A2UCOE and the inducible promoter and found that the SV40 poly-A terminator fully eliminated FOXN1 leakage, and we show this effect is not due to AT- or GC-content. Unexpectedly, this architecture further enhanced anti-silencing effects > 60% providing prolonged stability for at least 30 days. CONCLUSIONS This study reveals a novel limitation of A2UCOE in inducible systems, specifically its contribution to gene leakage, which compromise sensitive systems like direct reprogramming of iPSCs. The inclusion of an SV40 poly-A sequence provides a practical solution and genomic architecture to improve the functionality of A2UCOE-based circuits. It also suggests investigating how termination of transcription modulates gene silencing as a novel design parameter. These findings have significant implications for the design of robust gene circuits, particularly in applications involving iPSCs, regenerative medicine, and cell therapy.
Collapse
Affiliation(s)
- Tomoki Yanagi
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
| | - Shean Fu Phen
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
- Department of Biology, New York University (NYU) Graduate School of Arts and Sciences, New York, NY, USA
| | - Jonah Ayala
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
| | - Deniz Ece Aydin
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
| | - Susanna Jaramillo
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
| | - David M Truong
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
He X, Dutta S, Liang J, Paul C, Huang W, Xu M, Chang V, Ao I, Wang Y. Direct cellular reprogramming techniques for cardiovascular regenerative therapeutics. Can J Physiol Pharmacol 2024; 102:1-13. [PMID: 37903419 DOI: 10.1139/cjpp-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Cardiovascular diseases remain a leading cause of hospitalization affecting approximately 38 million people worldwide. While pharmacological and revascularization techniques can improve the patient's survival and quality of life, they cannot help reversing myocardial infarction injury and heart failure. Direct reprogramming of somatic cells to cardiomyocyte and cardiac progenitor cells offers a new approach to cellular reprogramming and paves the way for translational regenerative medicine. Direct reprogramming can bypass the pluripotent stage with the potential advantage of non-immunogenic cell products, reduced carcinogenic risk, and no requirement for embryonic tissue. The process of directly reprogramming cardiac cells was first achieved through the overexpression of transcription factors such as GATA4, MEF2C, and TBX5. However, over the past decade, significant work has been focused on enhancing direct reprogramming using a mixture of transcription factors, microRNAs, and small molecules to achieve cardiac cell fate. This review discusses the evolution of direct reprogramming, recent progress in achieving efficient cardiac cell fate conversion, and describes the reprogramming mechanisms at a molecular level. We also explore various viral and non-viral delivery methods currently being used to aid in the delivery of reprogramming factors to improve efficiency. However, further studies will be needed to overcome molecular and epigenetic barriers to successfully achieve translational cardiac regenerative therapeutics.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Suchandrima Dutta
- Department of Internal MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Jialiang Liang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Christian Paul
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Wei Huang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Meifeng Xu
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Vivian Chang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Ian Ao
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Yigang Wang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| |
Collapse
|
3
|
Garry GA, Olson EN. Reprogramming of cardiac cell fate as a therapeutic strategy for ischemic heart disease. J Mol Cell Cardiol 2023; 179:2-6. [PMID: 36997058 DOI: 10.1016/j.yjmcc.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023]
Abstract
Direct reprogramming of resident cardiac fibroblasts to induced cardiomyocytes is an attractive therapeutic strategy to restore function and remuscularize the injured heart. The cardiac transcription factors Gata4, Mef2c, and Tbx5 have been the mainstay of direct cardiac reprogramming strategies for the past decade. Yet, recent discoveries have identified alternative epigenetic factors capable of reprogramming human cells in the absence of these canonical factors. Further, single-cell genomics evaluating cellular maturation and epigenetics in the setting of injury and heart failure models following reprogramming have continued to inform the mechanistic underpinnings of this process and point toward future areas of discovery for the field. These discoveries and others covered in this review have provided complementary approaches that further enhance the effectiveness of reprogramming as a means of promoting cardiac regeneration following myocardial infarction and heart failure.
Collapse
Affiliation(s)
- Glynnis A Garry
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Eric N Olson
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Zhang Z, Zhang W, Blakes R, Sundby LJ, Shi Z, Rockey DC, Ervasti JM, Nam YJ. Fibroblast fate determination during cardiac reprogramming by remodeling of actin filaments. Stem Cell Reports 2022; 17:1604-1619. [PMID: 35688153 PMCID: PMC9287671 DOI: 10.1016/j.stemcr.2022.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022] Open
Abstract
Fibroblasts can be reprogrammed into induced cardiomyocyte-like cells (iCMs) by forced expression of cardiogenic transcription factors. However, it remains unknown how fibroblasts adopt a cardiomyocyte (CM) fate during their spontaneous ongoing transdifferentiation toward myofibroblasts (MFs). By tracing fibroblast lineages following cardiac reprogramming in vitro, we found that most mature iCMs are derived directly from fibroblasts without transition through the MF state. This direct conversion is attributable to mutually exclusive induction of cardiac sarcomeres and MF cytoskeletal structures in the cytoplasm of fibroblasts during reprogramming. For direct fate switch from fibroblasts to iCMs, significant remodeling of actin isoforms occurs in fibroblasts, including induction of α-cardiac actin and decrease of the actin isoforms predominant in MFs. Accordingly, genetic or pharmacological ablation of MF-enriched actin isoforms significantly enhances cardiac reprogramming. Our results demonstrate that remodeling of actin isoforms is required for fibroblast to CM fate conversion by cardiac reprogramming.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Wenhui Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Robert Blakes
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Lauren J Sundby
- Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Zengdun Shi
- Department of Internal Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Don C Rockey
- Department of Internal Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA; Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Young-Jae Nam
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Garry GA, Bassel-Duby R, Olson EN. Direct reprogramming as a route to cardiac repair. Semin Cell Dev Biol 2022; 122:3-13. [PMID: 34246567 PMCID: PMC8738780 DOI: 10.1016/j.semcdb.2021.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 02/03/2023]
Abstract
Ischemic heart disease is the leading cause of morbidity, mortality, and healthcare expenditure worldwide due to an inability of the heart to regenerate following injury. Thus, novel heart failure therapies aimed at promoting cardiomyocyte regeneration are desperately needed. In recent years, direct reprogramming of resident cardiac fibroblasts to induced cardiac-like myocytes (iCMs) has emerged as a promising therapeutic strategy to repurpose the fibrotic response of the injured heart toward a functional myocardium. Direct cardiac reprogramming was initially achieved through the overexpression of the transcription factors (TFs) Gata4, Mef2c, and Tbx5 (GMT). However, this combination of TFs and other subsequent cocktails demonstrated limited success in reprogramming adult human and mouse fibroblasts, constraining the clinical translation of this therapy. Over the past decade, significant effort has been dedicated to optimizing reprogramming cocktails comprised of cardiac TFs, epigenetic factors, microRNAs, or small molecules to yield efficient cardiac cell fate conversion. Yet, efficient reprogramming of adult human fibroblasts remains a significant challenge. Underlying mechanisms identified to accelerate this process have been centered on epigenetic remodeling at cardiac gene regulatory regions. Further studies to achieve a refined understanding and directed means of overcoming epigenetic barriers are merited to more rapidly translate these promising therapies to the clinic.
Collapse
Affiliation(s)
- Glynnis A. Garry
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX,Correspondence: Eric N. Olson, Ph.D. 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9148, Tel: 214-648-1187,
| |
Collapse
|
6
|
Liu L, Guo Y, Li Z, Wang Z. Improving Cardiac Reprogramming for Heart Regeneration in Translational Medicine. Cells 2021; 10:cells10123297. [PMID: 34943805 PMCID: PMC8699771 DOI: 10.3390/cells10123297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
Direct reprogramming of fibroblasts into CM-like cells has emerged as an attractive strategy to generate induced CMs (iCMs) in heart regeneration. However, low conversion rate, poor purity, and the lack of precise conversion of iCMs are still present as significant challenges. In this review, we summarize the recent development in understanding the molecular mechanisms of cardiac reprogramming with various strategies to achieve more efficient iCMs. reprogramming. Specifically, we focus on the identified critical roles of transcriptional regulation, epigenetic modification, signaling pathways from the cellular microenvironment, and cell cycling regulation in cardiac reprogramming. We also discuss the progress in delivery system optimization and cardiac reprogramming in human cells related to preclinical applications. We anticipate that this will translate cardiac reprogramming-based heart therapy into clinical applications. In addition to optimizing the cardiogenesis related transcriptional regulation and signaling pathways, an important strategy is to modulate the pathological microenvironment associated with heart injury, including inflammation, pro-fibrotic signaling pathways, and the mechanical properties of the damaged myocardium. We are optimistic that cardiac reprogramming will provide a powerful therapy in heart regenerative medicine.
Collapse
Affiliation(s)
- Liu Liu
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; (L.L.); (Y.G.); (Z.L.)
| | - Yijing Guo
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; (L.L.); (Y.G.); (Z.L.)
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Zhaokai Li
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; (L.L.); (Y.G.); (Z.L.)
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; (L.L.); (Y.G.); (Z.L.)
- Correspondence:
| |
Collapse
|
7
|
Orimoto A, Takahashi K, Imai M, Kiyono T, Kawaoka Y, Fukuda T. Establishment of human airway epithelial cells with doxycycline-inducible cell growth and fluorescence reporters. Cytotechnology 2021; 73:555-569. [PMID: 34349346 DOI: 10.1007/s10616-021-00477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022] Open
Abstract
We previously reported the successful establishment of multiple immortalized cell lines that preserved the original nature of the primary cells via co-expression of R24C mutant cyclin-dependent kinase 4 (CDK4R24C), Cyclin D1, and telomerase reverse transcriptase (TERT). However, as these genes are kind of oncogenes, tools to control their expression levels are favorable. In this study, we describe a new polycistronic lentiviral vector expressing proliferation factors, CDK4R24C and Cyclin D1 along with enhanced green fluorescence protein (EGFP) under the control of doxycycline (Dox)-dependent transactivator (rtTA) and tetracycline response element (TRE). By introducing the Dox-inducible lentiviral vector into human airway epithelial cells, we established a novel human airway epithelial cell line harboring polycistronic Dox-inducible CDK4R24C and Cyclin D1, referred to as Tet-on K4D cells. We showed that the cell growth of Tet-on K4D cells could be controlled by Dox. Furthermore, expression of K4D genes and rtTA gene can be independently monitored by fluorescent imaging. Cultured airway epithelial cells are useful as a tool for studying the pathogenesis of lung disorders. Altogether, our established human airway epithelial cells could be used for a variety of studies such as lung pathology and biology underlying the differentiation process to form the complex pseudostratified multicellular layers. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00477-0.
Collapse
Affiliation(s)
- Ai Orimoto
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate Japan
| | - Kohei Takahashi
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate Japan
| | - Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate Japan
| |
Collapse
|
8
|
Riching AS, Song K. Cardiac Regeneration: New Insights Into the Frontier of Ischemic Heart Failure Therapy. Front Bioeng Biotechnol 2021; 8:637538. [PMID: 33585427 PMCID: PMC7873479 DOI: 10.3389/fbioe.2020.637538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022] Open
Abstract
Ischemic heart disease is the leading cause of morbidity and mortality in the world. While pharmacological and surgical interventions developed in the late twentieth century drastically improved patient outcomes, mortality rates over the last two decades have begun to plateau. Following ischemic injury, pathological remodeling leads to cardiomyocyte loss and fibrosis leading to impaired heart function. Cardiomyocyte turnover rate in the adult heart is limited, and no clinical therapies currently exist to regenerate cardiomyocytes lost following ischemic injury. In this review, we summarize the progress of therapeutic strategies including revascularization and cell-based interventions to regenerate the heart: transiently inducing cardiomyocyte proliferation and direct reprogramming of fibroblasts into cardiomyocytes. Moreover, we highlight recent mechanistic insights governing these strategies to promote heart regeneration and identify current challenges in translating these approaches to human patients.
Collapse
Affiliation(s)
- Andrew S. Riching
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
9
|
Zhang Z, Nam YJ. Assessing Cardiac Reprogramming using High Content Imaging Analysis. J Vis Exp 2020. [PMID: 33165328 DOI: 10.3791/61859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The goal of this protocol is to describe a method for quantifying induced cardiomyocyte-like cells (iCMs), which are directly reprogrammed in vitro by a reprogramming technique. Cardiac reprogramming provides a strategy to generate new cardiomyocytes. By introducing core cardiogenic transcription factors into fibroblasts; fibroblasts can be converted to iCMs without transition through the pluripotent stem cell state. However, the conversion rate of fibroblasts to iCMs still remains low. Accordingly, there have been numerous additional approaches to enhance cardiac reprogramming efficiency. Most of these studies assessed cardiac reprogramming efficiency using flow cytometry, while at the same time performed immunocytochemistry to visualize iCMs. Thus, at least two separate sets of reprogramming experiments are required to demonstrate the success of iCM reprogramming. In contrast, automated high content imaging analysis will provide both quantification and qualification of iCM reprogramming with a relatively small number of cells. With this method, it is possible to directly assess the quantity and quality of iCMs with a single reprogramming experiment. This approach will be able to facilitate future cardiac reprogramming studies that require large-scale reprogramming experiments such as screening genetic or pharmacological factors for enhancing reprogramming efficiency. In addition, the application of high content imaging analysis protocol is not limited to cardiac reprogramming. It can be applied to reprogramming of other cell lineages as well as any immunostaining experiments which need both quantification and visualization of immunostained cells.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center; Department of Cell and Developmental Biology, Vanderbilt University; Vanderbilt Center for Stem Cell Biology, Vanderbilt University
| | - Young-Jae Nam
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center; Department of Cell and Developmental Biology, Vanderbilt University; Vanderbilt Center for Stem Cell Biology, Vanderbilt University;
| |
Collapse
|
10
|
The Future of Direct Cardiac Reprogramming: Any GMT Cocktail Variety? Int J Mol Sci 2020; 21:ijms21217950. [PMID: 33114756 PMCID: PMC7663133 DOI: 10.3390/ijms21217950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Direct cardiac reprogramming has emerged as a novel therapeutic approach to treat and regenerate injured hearts through the direct conversion of fibroblasts into cardiac cells. Most studies have focused on the reprogramming of fibroblasts into induced cardiomyocytes (iCMs). The first study in which this technology was described, showed that at least a combination of three transcription factors, GATA4, MEF2C and TBX5 (GMT cocktail), was required for the reprogramming into iCMs in vitro using mouse cells. However, this was later demonstrated to be insufficient for the reprogramming of human cells and additional factors were required. Thereafter, most studies have focused on implementing reprogramming efficiency and obtaining fully reprogrammed and functional iCMs, by the incorporation of other transcription factors, microRNAs or small molecules to the original GMT cocktail. In this respect, great advances have been made in recent years. However, there is still no consensus on which of these GMT-based varieties is best, and robust and highly reproducible protocols are still urgently required, especially in the case of human cells. On the other hand, apart from CMs, other cells such as endothelial and smooth muscle cells to form new blood vessels will be fundamental for the correct reconstruction of damaged cardiac tissue. With this aim, several studies have centered on the direct reprogramming of fibroblasts into induced cardiac progenitor cells (iCPCs) able to give rise to all myocardial cell lineages. Especially interesting are reports in which multipotent and highly expandable mouse iCPCs have been obtained, suggesting that clinically relevant amounts of these cells could be created. However, as of yet, this has not been achieved with human iCPCs, and exactly what stage of maturity is appropriate for a cell therapy product remains an open question. Nonetheless, the major concern in regenerative medicine is the poor retention, survival, and engraftment of transplanted cells in the cardiac tissue. To circumvent this issue, several cell pre-conditioning approaches are currently being explored. As an alternative to cell injection, in vivo reprogramming may face fewer barriers for its translation to the clinic. This approach has achieved better results in terms of efficiency and iCMs maturity in mouse models, indicating that the heart environment can favor this process. In this context, in recent years some studies have focused on the development of safer delivery systems such as Sendai virus, Adenovirus, chemical cocktails or nanoparticles. This article provides an in-depth review of the in vitro and in vivo cardiac reprograming technology used in mouse and human cells to obtain iCMs and iCPCs, and discusses what challenges still lie ahead and what hurdles are to be overcome before results from this field can be transferred to the clinical settings.
Collapse
|
11
|
Isoform Specific Effects of Mef2C during Direct Cardiac Reprogramming. Cells 2020; 9:cells9020268. [PMID: 31979018 PMCID: PMC7072587 DOI: 10.3390/cells9020268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 01/14/2023] Open
Abstract
Direct conversion of cardiac fibroblasts into induced cardiomyocytes (iCMs) by forced expression of defined factors holds great potential for regenerative medicine by offering an alternative strategy for treatment of heart disease. Successful iCM conversion can be achieved by minimally using three transcription factors, Mef2c (M), Gata4(G), and Tbx5 (T). Despite increasing interest in iCM mechanistic studies using MGT(polycistronic construct with optimal expression of M,G and T), the reprogramming efficiency varies among different laboratories. Two main Mef2c isoforms (isoform2, Mi2 and isoform4, Mi4) are present in heart and are used separately by different labs, for iCM reprogramming. It is currently unknown if differently spliced isoform of Mef2c contributes to varied reprogramming efficiency. Here, we used Mi2 and Mi4 together with Gata4 and Tbx5 in separate vectors or polycistronic vector, to convert fibroblasts to iCMs. We found that Mi2 can induce higher reprogramming efficiency than Mi4 in MEFs. Addition of Hand2 to MGT retroviral cocktail or polycistronic Mi2-GT retroviruses further enhanced the iCM conversion. Overall, this study demonstrated the isoform specific effects of Mef2c, during iCM reprogramming, clarified some discrepancy about varied efficiency among labs and might lead to future research into the role of alternative splicing and the consequent variants in cell fate determination.
Collapse
|
12
|
Zhang Z, Zhang W, Nam YJ. Stoichiometric optimization of Gata4, Hand2, Mef2c, and Tbx5 expression for contractile cardiomyocyte reprogramming. Sci Rep 2019; 9:14970. [PMID: 31628386 PMCID: PMC6800441 DOI: 10.1038/s41598-019-51536-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/03/2019] [Indexed: 01/10/2023] Open
Abstract
Reprogramming of fibroblasts to induced cardiomyocyte-like cells (iCMs) offers potential strategies for new cardiomyocyte generation. However, a major challenge of this approach remains its low efficiency for contractile iCMs. Here, we showed that controlled stoichiometric expression of Gata4 (G), Hand2 (H), Mef2c (M), and Tbx5 (T) significantly enhanced contractile cardiomyocyte reprogramming over previously defined stoichiometric expression of GMT or uncontrolled expression of GHMT. We generated quad-cistronic vectors expressing distinct relative protein levels of GHMT within the context of a previously defined splicing order of M-G-T with high Mef2c level. Transduction of the quad-cistronic vector with a splicing order of M-G-T-H (referred to as M-G-T-H) inducing relatively low Hand2 and high Mef2c protein levels not only increased sarcomeric protein induction, but also markedly promoted the development of contractile structures and functions in fibroblasts. The expressed Gata4 and Tbx5 protein levels by M-G-T-H transduction were relatively higher than those by transductions of other quad-cistronic vectors, but lower than those by previously defined M-G-T tri-cistronic vector transduction. Taken together, our results demonstrate the stoichiometric requirement of GHMT expression for structural and functional progresses of cardiomyocyte reprogramming and provide a new basic tool-set for future studies.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Wenhui Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Young-Jae Nam
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. .,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA. .,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
13
|
Ieda M. Key Regulators of Cardiovascular Differentiation and Regeneration: Harnessing the Potential of Direct Reprogramming to Treat Heart Failure. J Card Fail 2019; 26:80-84. [PMID: 31541743 DOI: 10.1016/j.cardfail.2019.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/29/2022]
Abstract
Cardiovascular diseases remain a leading cause of death worldwide, with the number of patients with heart failure increasing rapidly in aging societies. As adult cardiomyocytes are terminally differentiated cells and opportunities for heart transplantation are very limited, regenerative medicine may become a game changer in heart failure treatment. To develop strategies for generating cardiomyocytes, vascular cells, and other supporting cells, it is necessary to understand the mechanism of cardiovascular differentiation during development and from pluripotent stem cells. Master regulators for cardiovascular differentiation can generate new cardiomyocytes and vascular cells directly from other differentiated cells such as fibroblasts. Fibroblasts can be directly reprogrammed into cardiomyocytes by overexpressing a combination of 3 cardiac-specific transcription factors (Gata4, Mef2c, Tbx5) both in vitro and in vivo, which restores cardiac function after myocardial infarction in mice. Moreover, a direct reprogramming-based approach can be used to identify new key regulators of the cardiovascular mesoderm, which can differentiate into all 3 types of cardiovascular cells including cardiomyocytes, endothelial cells, and smooth muscle cells. This review provides a perspective on how key regulators for cardiovascular differentiation and regeneration can be identified and used to develop new treatments for heart failure.
Collapse
Affiliation(s)
- Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
14
|
Guo Y, Lei I, Tian S, Gao W, Hacer K, Li Y, Wang S, Liu L, Wang Z. Chemical suppression of specific C-C chemokine signaling pathways enhances cardiac reprogramming. J Biol Chem 2019; 294:9134-9146. [PMID: 31023824 DOI: 10.1074/jbc.ra118.006000] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/25/2019] [Indexed: 01/02/2023] Open
Abstract
Reprogramming of fibroblasts into induced cardiomyocytes (iCMs) is a potentially promising strategy for regenerating a damaged heart. However, low fibroblast-cardiomyocyte conversion rates remain a major challenge in this reprogramming. To this end, here we conducted a chemical screen and identified four agents, insulin-like growth factor-1, Mll1 inhibitor MM589, transforming growth factor-β inhibitor A83-01, and Bmi1 inhibitor PTC-209, termed IMAP, which coordinately enhanced reprogramming efficiency. Using α-muscle heavy chain-GFP-tagged mouse embryo fibroblasts as a starting cell type, we observed that the IMAP treatment increases iCM formation 6-fold. IMAP stimulated higher cardiac troponin T and α-actinin expression and increased sarcomere formation, coinciding with up-regulated expression of many cardiac genes and down-regulated fibroblast gene expression. Furthermore, IMAP promoted higher spontaneous beating and calcium transient activities of iCMs derived from neonatal cardiac fibroblasts. Intriguingly, we also observed that the IMAP treatment repressed many genes involved in immune responses, particularly those in specific C-C chemokine signaling pathways. We therefore investigated the roles of C-C motif chemokine ligand 3 (CCL3), CCL6, and CCL17 in cardiac reprogramming and observed that they inhibited iCM formation, whereas inhibitors of C-C motif chemokine receptor 1 (CCR1), CCR4, and CCR5 had the opposite effect. These results indicated that the IMAP treatment directly suppresses specific C-C chemokine signaling pathways and thereby enhances cardiac reprogramming. In conclusion, a combination of four chemicals, named here IMAP, suppresses specific C-C chemokine signaling pathways and facilitates Mef2c/Gata4/Tbx5 (MGT)-induced cardiac reprogramming, providing a potential means for iCM formation in clinical applications.
Collapse
Affiliation(s)
- Yijing Guo
- From the Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan 48109.,Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ienglam Lei
- From the Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan 48109.,Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
| | - Shuo Tian
- From the Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan 48109
| | - Wenbin Gao
- From the Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan 48109.,First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Karatas Hacer
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109.,Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, and.,Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109
| | - Yangbing Li
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109.,Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, and.,Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109.,Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, and.,Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109
| | - Liu Liu
- From the Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan 48109,
| | - Zhong Wang
- From the Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan 48109,
| |
Collapse
|
15
|
Klose K, Gossen M, Stamm C. Turning fibroblasts into cardiomyocytes: technological review of cardiac transdifferentiation strategies. FASEB J 2018; 33:49-70. [DOI: 10.1096/fj.201800712r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kristin Klose
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT) Berlin Germany
- Charité–Universitätsmedizin Berlin Berlin Germany
| | - Manfred Gossen
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany
- Helmholtz‐Zentrum Geesthacht (HZG)Institute of Biomaterial Science Teltow Germany
| | - Christof Stamm
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT) Berlin Germany
- Charité–Universitätsmedizin Berlin Berlin Germany
- German Centre for Cardiovascular Research (DZHK)Partner Site Berlin Berlin Germany
- Department of Cardiothoracic and Vascular SurgeryDeutsches Herzzentrum Berlin (DHZB) Berlin Germany
| |
Collapse
|
16
|
Direct Cardiac Reprogramming: A Novel Approach for Heart Regeneration. Int J Mol Sci 2018; 19:ijms19092629. [PMID: 30189626 PMCID: PMC6165160 DOI: 10.3390/ijms19092629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/01/2018] [Accepted: 09/01/2018] [Indexed: 12/12/2022] Open
Abstract
Cardiac diseases are among the most common causes of death globally. Cardiac muscle has limited proliferative capacity, and regenerative therapies are highly in demand as a new treatment strategy. Although pluripotent reprogramming has been developed, it has obstacles, such as a potential risk of tumor formation, poor survival of the transplanted cells, and high cost. We previously reported that fibroblasts can be directly reprogrammed to cardiomyocytes by overexpressing a combination of three cardiac-specific transcription factors (Gata4, Mef2c, Tbx5 (together, GMT)). We and other groups have promoted cardiac reprogramming by the addition of certain miRNAs, cytokines, and epigenetic factors, and unraveled new molecular mechanisms of cardiac reprogramming. More recently, we discovered that Sendai virus (SeV) vector expressing GMT could efficiently and rapidly reprogram fibroblasts into integration-free cardiomyocytes in vitro via robust transgene expression. Gene delivery of SeV-GMT also improves cardiac function and reduces fibrosis after myocardial infarction in mice. Through direct cardiac reprogramming, new cardiomyocytes can be generated and scar tissue reduced to restore cardiac function, and, thus, direct cardiac reprogramming may serve as a powerful strategy for cardiac regeneration. Here, we provide an overview of the previous reports and current challenges in this field.
Collapse
|
17
|
Direct Reprograming to Regenerate Myocardium and Repair Its Pacemaker and Conduction System. MEDICINES 2018; 5:medicines5020048. [PMID: 29867004 PMCID: PMC6023490 DOI: 10.3390/medicines5020048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/14/2023]
Abstract
The regenerative medicine field has been revolutionized by the direct conversion of one cell type to another by ectopic expression of lineage-specific transcription factors. The direct reprogramming of fibroblasts to induced cardiac myocytes (iCMs) by core cardiac transcription factors (Gata4, Mef2c, Tbx5) both in vitro and in vivo has paved the way in cardiac regeneration and repair. Several independent research groups have successfully reported the direct reprogramming of fibroblasts in injured myocardium to cardiac myocytes employing a variety of approaches that rely on transcription factors, small molecules, and micro RNAs (miRNAs). Recently, this technology has been considered for local repair of the pacemaker and the cardiac conduction system. To address this, we will first discuss the direct reprograming advancements in the setting of working myocardium regeneration, and then elaborate on how this technology can be applied to repair the cardiac pacemaker and the conduction system.
Collapse
|
18
|
Chemical compound-based direct reprogramming for future clinical applications. Biosci Rep 2018; 38:BSR20171650. [PMID: 29739872 PMCID: PMC5938430 DOI: 10.1042/bsr20171650] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Recent studies have revealed that a combination of chemical compounds enables direct reprogramming from one somatic cell type into another without the use of transgenes by regulating cellular signaling pathways and epigenetic modifications. The generation of induced pluripotent stem (iPS) cells generally requires virus vector-mediated expression of multiple transcription factors, which might disrupt genomic integrity and proper cell functions. The direct reprogramming is a promising alternative to rapidly prepare different cell types by bypassing the pluripotent state. Because the strategy also depends on forced expression of exogenous lineage-specific transcription factors, the direct reprogramming in a chemical compound-based manner is an ideal approach to further reduce the risk for tumorigenesis. So far, a number of reported research efforts have revealed that combinations of chemical compounds and cell-type specific medium transdifferentiate somatic cells into desired cell types including neuronal cells, glial cells, neural stem cells, brown adipocytes, cardiomyocytes, somatic progenitor cells, and pluripotent stem cells. These desired cells rapidly converted from patient-derived autologous fibroblasts can be applied for their own transplantation therapy to avoid immune rejection. However, complete chemical compound-induced conversions remain challenging particularly in adult human-derived fibroblasts compared with mouse embryonic fibroblasts (MEFs). This review summarizes up-to-date progress in each specific cell type and discusses prospects for future clinical application toward cell transplantation therapy.
Collapse
|
19
|
Direct Cardiac Reprogramming: Progress and Promise. Stem Cells Int 2018; 2018:1435746. [PMID: 29731772 PMCID: PMC5872587 DOI: 10.1155/2018/1435746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/15/2017] [Accepted: 01/09/2018] [Indexed: 01/14/2023] Open
Abstract
The human adult heart lacks a robust endogenous repair mechanism to fully restore cardiac function after insult; thus, the ability to regenerate and repair the injured myocardium remains a top priority in treating heart failure. The ability to efficiently generate a large number of functioning cardiomyocytes capable of functional integration within the injured heart has been difficult. However, the ability to directly convert fibroblasts into cardiomyocyte-like cells both in vitro and in vivo offers great promise in overcoming this problem. In this review, we describe the insights and progress that have been gained from the investigation of direct cardiac reprogramming. We focus on the use of key transcription factors and cardiogenic genes as well as on the use of other biological molecules such as small molecules, cytokines, noncoding RNAs, and epigenetic modifiers to improve the efficiency of cardiac reprogramming. Finally, we discuss the development of safer reprogramming approaches for future clinical application.
Collapse
|