1
|
Nuñez R, Sidlowski PFW, Steen EA, Wynia-Smith SL, Sprague DJ, Keyes RF, Smith BC. The TRIM33 Bromodomain Recognizes Histone Lysine Lactylation. ACS Chem Biol 2024; 19:2418-2428. [PMID: 39556662 PMCID: PMC11706526 DOI: 10.1021/acschembio.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Histone lysine lactylation (Kla) regulates inflammatory gene expression in activated macrophages and mediates the polarization of inflammatory (M1) to reparative (M2) macrophages. However, the molecular mechanisms and key protein players involved in Kla-mediated transcriptional changes are unknown. As Kla is structurally similar to lysine acetylation (Kac), which is bound by bromodomains, we hypothesized that bromodomain-containing proteins bind histone Kla. Here, we screened 28 recombinantly expressed bromodomains for binding to histone Kla peptides via AlphaScreen assays. TRIM33 was the sole bromodomain tested that bound histone Kla peptides. TRIM33 attenuates inflammatory genes during late-stage macrophage activation; thus, TRIM33 provides a potential link between histone Kla and macrophage polarization. Orthogonal biophysical techniques, including isothermal titration calorimetry and protein-detected nuclear magnetic resonance, confirmed the submicromolar binding affinity of the TRIM33 bromodomain to both Kla and Kac histone post-translational modifications. Sequence alignments of human bromodomains revealed a unique glutamic acid residue within the TRIM33 binding pocket that we found confers TRIM33 specificity for binding Kla compared with other bromodomains. Molecular modeling of interactions of Kla with the TRIM33 bromodomain binding pocket and site-directed mutagenesis of glutamic acid confirmed the critical role of this residue in the selective recognition of Kla by TRIM33. Collectively, our findings implicate TRIM33, a bromodomain-containing protein, as a novel reader of histone Kla, potentially bridging the gap between histone Kla and macrophage polarization. This study enhances our understanding of the regulatory role of histone Kla in macrophage-mediated inflammation and offers insights into the underlying structural and biophysical mechanisms.
Collapse
Affiliation(s)
- Raymundo Nuñez
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Paul F W Sidlowski
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Erica A Steen
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Daniel J Sprague
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Robert F Keyes
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brian C Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
2
|
Boon K, Vanalken N, Szpakowska M, Chevigné A, Schols D, Van Loy T. High-affinity ELR+ chemokine ligands show G protein bias over β-arrestin recruitment and receptor internalization in CXCR1 signaling. J Biol Chem 2024; 301:108044. [PMID: 39615686 PMCID: PMC11732455 DOI: 10.1016/j.jbc.2024.108044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
The human CXC chemokine receptor 1 (CXCR1), a G protein-coupled receptor (GPCR), plays significant roles in inflammatory diseases and cancer. While CXCL8 is a well-established high-affinity ligand for CXCR1, there is no consensus regarding the binding ability of the other ELR+ chemokines (CXCL1-3 and CXCL5-8). Since research has predominantly focused on CXCL8-mediated CXCR1 signaling, insight into potential signaling bias induced by different CXCR1 ligands is lacking. Therefore, in this study we first compared and clarified the binding ability of all ELR+ chemokines using a competition binding assay. In this assay CXCL1-3 and CXCL5 behaved as low-affinity ligands while CXCL6-8 were high affinity ligands. We further investigated potential ligand bias within the CXCR1 signaling system. Using NanoBRET-based assays heterotrimeric G protein dissociation, β-arrestin recruitment and receptor internalization induced by chemokine binding to CXCR1 were investigated. A quantitative and qualitative investigation of ligand bias showed that the high-affinity ELR+ chemokines were biased towards G protein activation over β-arrestin recruitment and receptor internalization, when CXCL8 was used as a reference ligand.
Collapse
Affiliation(s)
- Katrijn Boon
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Structural and Translational Virology Research Group, Leuven, Belgium
| | - Nathan Vanalken
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Structural and Translational Virology Research Group, Leuven, Belgium
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Structural and Translational Virology Research Group, Leuven, Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Structural and Translational Virology Research Group, Leuven, Belgium.
| |
Collapse
|
3
|
Chang TT, Li SY, Tsai MT, Chiang CH, Chen C, Chen JW. CXCL5 inhibition ameliorates acute kidney injury and prevents the progression from acute kidney injury to chronic kidney disease. Clin Sci (Lond) 2024; 138:1451-1466. [PMID: 39503534 DOI: 10.1042/cs20241713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/08/2024]
Abstract
Acute kidney injury (AKI) increases the risk of chronic kidney disease (CKD). CXC motif chemokine ligand 5 (CXCL5) is up-regulated in kidney diseases. We aimed to investigate the direct effect of CXCL5 on the pathology of AKI. Serum and renal expression of CXCL5 were increased in animals with renal ischemia-reperfusion injury or unilateral ureteral obstruction. CXCL5-knockout mice exhibited reduced systemic oxidative stress and preserved renal function in the acute and chronic phases of AKI, as evidenced by reductions in serum BUN and creatinine levels, the urinary albumin-to-creatinine ratio, and the kidney-to-body weight ratio. CXCL5-knockout mice improved AKI-induced tubular injury and fibrosis, reduced renal macrophage infiltration, and reduced expression of NADPH oxidase and inflammatory and fibrotic proteins. CXCL5 activated p47 to up-regulate ROS generation and induce cellular damages through CXCR2. CXCL5 knockdown exerted antioxidative, anti-inflammatory, anti-fibrotic, and anti-apoptotic effects on hypoxia-reoxygenation-stimulated renal proximal tubular epithelial cells. Clinical data indicated elevated circulating and renal CXCL5 in CKD patients, and renal CXCL5 was correlated with increased renal fibrosis and decreased estimated glomerular filtration rate. Altogether, CXCL5 levels increased in experimental AKI and clinical CKD, and in vivo and in vitro CXCL5 inhibition may reduce acute tubular injury and prevent the subsequent progression from AKI to CKD.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Szu-Yuan Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Tsun Tsai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Hung Chiang
- Division of Urology, Department of Surgery and Department of Research and Development, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Division of Cardiology, Taipei Medical University Hospital, Taipei, Taiwan
- Faucalty of Medicine, Colleague of Medicine, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Chen C, Lin LY, Wu YW, Chen JW, Chang TT. CXCL5 inhibition improves kidney function by protecting renal tubular epithelial cells in diabetic kidney disease. Clin Immunol 2024; 268:110369. [PMID: 39326648 DOI: 10.1016/j.clim.2024.110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Inflammation is one of exacerbating factors of diabetic kidney disease (DKD). Upregulated CXCL5 is found in clinical and experimental diabetes studies. This study aimed to investigate the impact and mechanism of CXCL5 on DKD. DKD patients with different levels of urine albumin-to-creatinine ratio were enrolled. Leprdb/db mice and CXCL5-knockout diabetic mice were used as mouse models for DKD. Human renal tubular epithelial cells were used for in vitro experiments. Circulating CXCL5 were increased in DKD patients compared to the non-DKD subjects. CXCL5 inhibition through CXCL5-neutralizing antibodies or genetic knockout improved kidney function and ameliorated tubular injury and renal fibrosis. In high-glucose-stimulated tubular epithelial cells, administration of CXCL5-neutralizing antibodies or siRNA resulted in reduced phospho-JNK/c-JUN/p65 and the downstream inflammatory, fibrotic, and apoptotic protein expressions. Administration of CXCR2 and JNK inhibitors impeded the CXCL5-induced tubular epithelial cell damages. In conclusion, these findings indicated that anti-CXCL5 strategies may be potential treatments for DKD.
Collapse
Affiliation(s)
- Ching Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Liang-Yu Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Wen Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Faucalty of Medicine, Colleague of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Taipei Medical University Hospital, Taipei, Taiwan; Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Ting Chang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Kweon HK, Kong AT, Hersberger KE, Huang S, Nesvizhskii AI, Wang Y, Hakansson K, Andrews PC. Sulfoproteomics Workflow with Precursor Ion Accurate Mass Shift Analysis Reveals Novel Tyrosine Sulfoproteins in the Golgi. J Proteome Res 2024; 23:71-83. [PMID: 38112105 PMCID: PMC11218929 DOI: 10.1021/acs.jproteome.3c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Tyrosine sulfation in the Golgi of secreted and membrane proteins is an important post-translational modification (PTM). However, its labile nature has limited analysis by mass spectrometry (MS), a major reason why no sulfoproteome studies have been previously reported. Here, we show that a phosphoproteomics experimental workflow, which includes serial enrichment followed by high resolution, high mass accuracy MS, and tandem MS (MS/MS) analysis, enables sulfopeptide coenrichment and identification via accurate precursor ion mass shift open MSFragger database search. This approach, supported by manual validation, allows the confident identification of sulfotyrosine-containing peptides in the presence of high levels of phosphorylated peptides, thus enabling these two sterically and ionically similar isobaric PTMs to be distinguished and annotated in a single proteomic analysis. We applied this approach to isolated interphase and mitotic rat liver Golgi membranes and identified 67 tyrosine sulfopeptides, corresponding to 26 different proteins. This work discovered 23 new sulfoproteins with functions related to, for example, Ca2+-binding, glycan biosynthesis, and exocytosis. In addition, we report the first preliminary evidence for crosstalk between sulfation and phosphorylation in the Golgi, with implications for functional control.
Collapse
Affiliation(s)
- Hye Kyong Kweon
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
| | - Andy T Kong
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109-5602, United States
| | - Katherine E Hersberger
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Shijiao Huang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109-5602, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109-2218, United States
| | - Yanzhuang Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - Kristina Hakansson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Philip C Andrews
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109-2218, United States
| |
Collapse
|
6
|
Guo C, Sharp A, Gurel B, Crespo M, Figueiredo I, Jain S, Vogl U, Rekowski J, Rouhifard M, Gallagher L, Yuan W, Carreira S, Chandran K, Paschalis A, Colombo I, Stathis A, Bertan C, Seed G, Goodall J, Raynaud F, Ruddle R, Swales KE, Malia J, Bogdan D, Tiu C, Caldwell R, Aversa C, Ferreira A, Neeb A, Tunariu N, Westaby D, Carmichael J, Fenor de la Maza MD, Yap C, Matthews R, Badham H, Prout T, Turner A, Parmar M, Tovey H, Riisnaes R, Flohr P, Gil J, Waugh D, Decordova S, Schlag A, Calì B, Alimonti A, de Bono JS. Targeting myeloid chemotaxis to reverse prostate cancer therapy resistance. Nature 2023; 623:1053-1061. [PMID: 37844613 PMCID: PMC10686834 DOI: 10.1038/s41586-023-06696-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Inflammation is a hallmark of cancer1. In patients with cancer, peripheral blood myeloid expansion, indicated by a high neutrophil-to-lymphocyte ratio, associates with shorter survival and treatment resistance across malignancies and therapeutic modalities2-5. Whether myeloid inflammation drives progression of prostate cancer in humans remain unclear. Here we show that inhibition of myeloid chemotaxis can reduce tumour-elicited myeloid inflammation and reverse therapy resistance in a subset of patients with metastatic castration-resistant prostate cancer (CRPC). We show that a higher blood neutrophil-to-lymphocyte ratio reflects tumour myeloid infiltration and tumour expression of senescence-associated mRNA species, including those that encode myeloid-chemoattracting CXCR2 ligands. To determine whether myeloid cells fuel resistance to androgen receptor signalling inhibitors, and whether inhibiting CXCR2 to block myeloid chemotaxis reverses this, we conducted an investigator-initiated, proof-of-concept clinical trial of a CXCR2 inhibitor (AZD5069) plus enzalutamide in patients with metastatic CRPC that is resistant to androgen receptor signalling inhibitors. This combination was well tolerated without dose-limiting toxicity and it decreased circulating neutrophil levels, reduced intratumour CD11b+HLA-DRloCD15+CD14- myeloid cell infiltration and imparted durable clinical benefit with biochemical and radiological responses in a subset of patients with metastatic CRPC. This study provides clinical evidence that senescence-associated myeloid inflammation can fuel metastatic CRPC progression and resistance to androgen receptor blockade. Targeting myeloid chemotaxis merits broader evaluation in other cancers.
Collapse
Affiliation(s)
- Christina Guo
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Adam Sharp
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | | | | | - Suneil Jain
- Northern Ireland Cancer Centre, Belfast, UK
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | | | | | | | - Wei Yuan
- The Institute of Cancer Research, London, UK
| | | | - Khobe Chandran
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Alec Paschalis
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Ilaria Colombo
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | | | - George Seed
- The Institute of Cancer Research, London, UK
| | | | | | - Ruth Ruddle
- The Institute of Cancer Research, London, UK
| | | | - Jason Malia
- The Institute of Cancer Research, London, UK
| | | | - Crescens Tiu
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | | | - Antje Neeb
- The Institute of Cancer Research, London, UK
| | - Nina Tunariu
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Daniel Westaby
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Juliet Carmichael
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | | | | | - Toby Prout
- The Institute of Cancer Research, London, UK
| | | | - Mona Parmar
- The Institute of Cancer Research, London, UK
| | - Holly Tovey
- The Institute of Cancer Research, London, UK
| | | | - Penny Flohr
- The Institute of Cancer Research, London, UK
| | - Jesus Gil
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - David Waugh
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia, Australia
| | | | - Anna Schlag
- The Institute of Cancer Research, London, UK
| | - Bianca Calì
- Institute of Oncology Research, Bellinzona, Switzerland
| | - Andrea Alimonti
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Institute of Oncology Research, Bellinzona, Switzerland
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland
- Department of Medicine, Veneto Institute of Molecular Medicine, University of Padova, Padua, Italy
| | - Johann S de Bono
- The Institute of Cancer Research, London, UK.
- The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
7
|
Chen C, Chang TT, Chen JW. Mechanistic role of CXCL5 in cardiovascular disease, diabetes mellitus, and kidney disease. Life Sci 2023; 330:122018. [PMID: 37567498 DOI: 10.1016/j.lfs.2023.122018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Chemokines, by modulating inflammation process, could contribute to the development of cardiovascular disease, diabetes mellitus (DM), and kidney disease. Chemokine CXC motif ligand 5 (CXCL5) is one of the inducible chemokines that may be involved in various inflammatory diseases. Given the bidirectional promiscuity characteristics of the chemokine system, the mechanistic roles of CXCL5 should be further explored in each specific disease. In this article, we sought to review the recent evidence on the differential effects of CXCL5 and their potential mechanisms in cardiovascular disease, DM, and renal disease individually. Future study is still required to verify if CXCL5 could be a novel therapeutic target in these diseases.
Collapse
Affiliation(s)
- Ching Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Ting Chang
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Cardiology, Department of Medicine and Department of Research, Taipei Medical University Hospital, Taipei, Taiwan; Cardiovascular Research Center, Taipei Medical University Hospital and Taipei Medical University, Taipei, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
8
|
He J, Yang X, Yang K, Xu H, Chen C, Wang J, Zeng J. TPST2-mediated receptor tyrosine sulfation enhances leukocidin cytotoxicity and S. aureus infection. Front Immunol 2023; 14:1242330. [PMID: 37671153 PMCID: PMC10476081 DOI: 10.3389/fimmu.2023.1242330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Background An essential fact underlying the severity of Staphylococcus aureus (S. aureus) infection is the bicomponent leukocidins released by the pathogen to target and lyse host phagocytes through specific binding cell membrane receptors. However, little is known about the impact of post-transcriptional modification of receptors on the leukocidin binding. Method In this study, we used small interfering RNA library (Horizon/Dharmacon) to screen potential genes that affect leukocidin binding on receptors. The cell permeability was investigated through flow cytometry measuring the internalization of 4',6-diamidino-2-phenylindole. Expression of C5a anaphylatoxin chemotactic receptor 1 (C5aR1), sulfated C5aR1 in, and binding of 6x-His-tagged Hemolysin C (HlgC) and Panton-Valentine leukocidin (PVL) slow-component to THP-1 cell lines was detected and analyzed via flow cytometry. Bacterial burden and Survival analysis experiment was conducted in WT and myeloid TPST-cko C57BL/6N mice. Results After short hairpin RNA (shRNA) knockdown of TPST2 gene in THP-1, HL-60, and RAW264.7, the cytotoxicity of HlgAB, HlgCB, and Panton-Valentine leukocidin on THP-1 or HL-60 cells was decreased significantly, and the cytotoxicity of HlgAB on RAW264.7 cells was also decreased significantly. Knockdown of TPST2 did not affect the C5aR1 expression but downregulated cell surface C5aR1 tyrosine sulfation on THP-1. In addition, we found that the binding of HlgC and LukS-PV on cell surface receptor C5aR1 was impaired in C5aR1+TPST2- and C5aR1-TPST2- cells. Phagocyte knockout of TPST2 protects mice from S. aureus infection and improves the survival of mice infected with S. aureus. Conclusion These results indicate that phagocyte TPST2 mediates the bicomponent leukocidin cytotoxicity by promoting cell membrane receptor sulfation modification that facilitates its binding to leukocidin S component.
Collapse
Affiliation(s)
- Jie He
- Division of Pulmonary and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xianggui Yang
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kai Yang
- Division of Pulmonary and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | | | | | | | - Jun Zeng
- Division of Pulmonary and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
9
|
Dai D, Zhu Z, Han H, Xu T, Feng S, Zhang W, Ding F, Zhang R, Zhu J. Enhanced tyrosine sulfation is associated with chronic kidney disease-related atherosclerosis. BMC Biol 2023; 21:151. [PMID: 37424015 DOI: 10.1186/s12915-023-01641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) accelerates atherosclerosis, but the mechanisms remain unclear. Tyrosine sulfation has been recognized as a key post-translational modification (PTM) in regulation of various cellular processes, and the sulfated adhesion molecules and chemokine receptors have been shown to participate in the pathogenesis of atherosclerosis via enhancement of monocyte/macrophage function. The levels of inorganic sulfate, the essential substrate for the sulfation reaction, are dramatically increased in patients with CKD, which indicates a change of sulfation status in CKD patients. Thus, in the present study, we detected the sulfation status in CKD patients and probed into the impact of sulfation on CKD-related atherosclerosis by targeting tyrosine sulfation function. RESULTS PBMCs from individuals with CKD showed higher amounts of total sulfotyrosine and tyrosylprotein sulfotransferase (TPST) type 1 and 2 protein levels. The plasma level of O-sulfotyrosine, the metabolic end product of tyrosine sulfation, increased significantly in CKD patients. Statistically, O-sulfotyrosine and the coronary atherosclerosis severity SYNTAX score positively correlated. Mechanically, more sulfate-positive nucleated cells in peripheral blood and more abundant infiltration of sulfated macrophages in deteriorated vascular plaques in CKD ApoE null mice were noted. Knockout of TPST1 and TPST2 decreased atherosclerosis and peritoneal macrophage adherence and migration in CKD condition. The sulfation of the chemokine receptors, CCR2 and CCR5, was increased in PBMCs from CKD patients. CONCLUSIONS CKD is associated with increased sulfation status. Increased sulfation contributes to monocyte/macrophage activation and might be involved in CKD-related atherosclerosis. Inhibition of sulfation may suppress CKD-related atherosclerosis and is worthy of further study.
Collapse
Affiliation(s)
- Daopeng Dai
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengbin Zhu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Hui Han
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Tian Xu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Feng
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenli Zhang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Fenghua Ding
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
| | - Ruiyan Zhang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jinzhou Zhu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Zhou AL, Jensen DR, Peterson FC, Thomas MA, Schlimgen RR, Dwinell MB, Smith BC, Volkman BF. Fragment-based drug discovery of small molecule ligands for the human chemokine CCL28. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:S2472-5552(23)00019-9. [PMID: 36841432 DOI: 10.1016/j.slasd.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The mucosal chemokine CCL28 is a promising target for immunotherapy drug development due to its elevated expression level in epithelial cells and critical role in creating and maintaining an immunosuppressive tumor microenvironment. Using sulfotyrosine as a probe, NMR chemical shift mapping identified a potential receptor-binding hotspot on the human CCL28 surface. CCL28 was screened against 2,678 commercially available chemical fragments by 2D NMR, yielding thirteen verified hits. Computational docking predicted that two fragments could occupy adjoining subsites within the sulfotyrosine recognition cleft. Dual NMR titrations confirmed their ability to bind CCL28 simultaneously, thereby validating an initial fragment pair for linking and merging strategies to design high-potency CCL28 inhibitors.
Collapse
Affiliation(s)
- Angela L Zhou
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Davin R Jensen
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Monica A Thomas
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Roman R Schlimgen
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michael B Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Center for Immunology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Center for Immunology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
11
|
Wu Q, Tu H, Li J. Multifaceted Roles of Chemokine C-X-C Motif Ligand 7 in Inflammatory Diseases and Cancer. Front Pharmacol 2022; 13:914730. [PMID: 35837284 PMCID: PMC9273993 DOI: 10.3389/fphar.2022.914730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over recent years, C-X-C motif ligand 7 (CXCL7) has received widespread attention as a chemokine involved in inflammatory responses. Abnormal production of the chemokine CXCL7 has been identified in different inflammatory diseases; nevertheless, the exact role of CXCL7 in the pathogenesis of inflammatory diseases is not fully understood. Persistent infection or chronic inflammation can induce tumorigenesis and progression. Previous studies have shown that the pro-inflammatory chemokine CXCL7 is also expressed by malignant tumor cells and that binding of CXCL7 to its cognate receptors C-X-C chemokine receptor 1 (CXCR1) and C-X-C chemokine receptor 2 (CXCR2) can influence tumor biological behavior (proliferation, invasion, metastasis, and tumor angiogenesis) in an autocrine and paracrine manner. CXCL7 and its receptor CXCR1/CXCR2, which are aberrantly expressed in tumors, may represent new targets for clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Qianmiao Wu
- Department of Hematology, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Medicine, Nanchang University, Nanchang, China
| | - Huaijun Tu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Li
- Department of Hematology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Moussouras NA, Hjortø GM, Peterson FC, Szpakowska M, Chevigné A, Rosenkilde MM, Volkman BF, Dwinell MB. Structural Features of an Extended C-Terminal Tail Modulate the Function of the Chemokine CCL21. Biochemistry 2020; 59:1338-1350. [PMID: 32182428 DOI: 10.1021/acs.biochem.0c00047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The chemokines CCL21 and CCL19, through binding of their cognate receptor CCR7, orchestrate lymph node homing of dendritic cells and naïve T cells. CCL21 differs from CCL19 via an unstructured 32 residue C-terminal domain. Previously described roles for the CCL21 C-terminus include GAG-binding, spatial localization to lymphatic vessels, and autoinhibitory modulation of CCR7-mediated chemotaxis. While truncation of the C-terminal tail induced chemical shift changes in the folded chemokine domain, the structural basis for its influence on CCL21 function remains largely unexplored. CCL21 concentration-dependent NMR chemical shifts revealed weak, nonphysiological self-association that mimics the truncation of the C-terminal tail. We generated a series of C-terminal truncation variants to dissect the C-terminus influence on CCL21 structure and receptor activation. Using NMR spectroscopy, we found that CCL21 residues 80-90 mediate contacts with the chemokine domain. In cell-based assays for CCR7 and ACKR4 activation, we also found that residues 92-100 reduced CCL21 potency in calcium flux, cAMP inhibition, and β-arrestin recruitment. Taken together, these structure-function studies support a model wherein intramolecular interactions with specific residues of the flexible C-terminus stabilize a less active monomer conformation of the CCL21. We speculate that the autoinhibitory intramolecular contacts between the C-terminal tail and chemokine body are disrupted by GAG binding and/or interactions with the CCR7 receptor to ensure optimal functionality.
Collapse
Affiliation(s)
- Natasha A Moussouras
- From the Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Michael B Dwinell
- From the Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
13
|
Host-Receptor Post-Translational Modifications Refine Staphylococcal Leukocidin Cytotoxicity. Toxins (Basel) 2020; 12:toxins12020106. [PMID: 32041354 PMCID: PMC7076806 DOI: 10.3390/toxins12020106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 01/23/2023] Open
Abstract
Staphylococcal bi-component pore-forming toxins, also known as leukocidins, target and lyse human phagocytes in a receptor-dependent manner. S-components of the leukocidins Panton-Valentine leukocidin (PVL), γ-haemolysin AB (HlgAB) and CB (HlgCB), and leukocidin ED (LukED) specifically employ receptors that belong to the class of G-protein coupled receptors (GPCRs). Although these receptors share a common structural architecture, little is known about the conserved characteristics of the interaction between leukocidins and GPCRs. In this study, we investigated host cellular pathways contributing to susceptibility towards S. aureus leukocidin cytotoxicity. We performed a genome-wide CRISPR/Cas9 library screen for toxin-resistance in U937 cells sensitized to leukocidins by ectopic expression of different GPCRs. Our screen identifies post-translational modification (PTM) pathways involved in the sulfation and sialylation of the leukocidin-receptors. Subsequent validation experiments show differences in the impact of PTM moieties on leukocidin toxicity, highlighting an additional layer of refinement and divergence in the staphylococcal host-pathogen interface. Leukocidin receptors may serve as targets for anti-staphylococcal interventions and understanding toxin-receptor interactions will facilitate the development of innovative therapeutics. Variations in the genes encoding PTM pathways could provide insight into observed differences in susceptibility of humans to infections with S. aureus.
Collapse
|
14
|
Guo F, Long L, Wang J, Wang Y, Liu Y, Wang L, Luo F. Insights on CXC chemokine receptor 2 in breast cancer: An emerging target for oncotherapy. Oncol Lett 2019; 18:5699-5708. [PMID: 31788042 PMCID: PMC6865047 DOI: 10.3892/ol.2019.10957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common malignant neoplasm in women worldwide, and the treatment regimens currently available are far from optimal. Targeted therapy, based on molecular typing of breast cancer, is the most precise form of treatment, and CXC chemokine receptor 2 (CXCR2) is one of the molecular markers used in targeted therapies. As a member of the seven transmembrane G-protein-coupled receptor family, CXCR2 and its associated ligands have been increasingly implicated in tumor-associated processes. These processes include proliferation, angiogenesis, invasion, metastasis, chemoresistance, and stemness and phenotypic maintenance of cancer stem cells. Thus, the inhibition of CXCR2 or its downstream signaling pathways could significantly attenuate tumor progression. Therefore, studies on the biological functions of CXCR2 and its association with neoplasia may help improve the prognosis of breast cancer. Furthermore, the targeting of CXCR2 could supplement the present clinical approaches of breast cancer treatment strategies. The present review discusses the structures and mechanisms of CXCR2 and its ligands. Additionally, the contribution of CXCR2 to the development of breast cancer and its potential therapeutic benefits are also discussed.
Collapse
Affiliation(s)
- Fengzhu Guo
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lang Long
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiantao Wang
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuyi Wang
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanyang Liu
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Wang
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Luo
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
15
|
Regulation of Chemokine-Receptor Interactions and Functions. Int J Mol Sci 2017; 18:ijms18112415. [PMID: 29135930 PMCID: PMC5713383 DOI: 10.3390/ijms18112415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammation is the body's response to injury or infection. As early as 2000 years ago, the Roman encyclopaedist Aulus Cornelius Celsus recognised four cardinal signs of this response-redness, heat, swelling and pain; a fifth sign is loss of function.[...].
Collapse
|