1
|
Liu X, Zhang R, Liu L, Zhi S, Feng X, Shen Y, Wang L, Zhang Q, Chen Y, Hao J. Sohlh2 Promotes the Progression of Hepatocellular Carcinoma via TGM2-Mediated Autophagy. Mol Carcinog 2025; 64:138-151. [PMID: 39436118 DOI: 10.1002/mc.23832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Liver cancer is the third leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) accounting for 85% of liver cancer-related deaths. Autophagy controls HCC cell growth, invasion, metastasis, drug resistance, and stemness. Spermatogenesis and oogenesis basic helix-loop-helix transcription factor 2 (Sohlh2) can bind to the E-boxes in the promoter regions of target genes, which are involved in multiple neoplasms. In this study, Sohlh2 was highly expressed in HCC tissues and was related to poor prognosis. Moreover, Sohlh2 overexpression promoted the proliferation, migration, invasion, and metastasis of HCC cells in vivo and in vitro. However, Sohlh2 silencing inhibited proliferation, migration, invasion, and metastasis of HCC cells in vivo and in vitro. Mechanistically, Sohlh2 could bind to the promoter of TGM2 and enhance its transcriptional activity, thereby enhancing the autophagy of HCC cells. Furthermore, Sohlh2 protein levels were positively associated with TGM2 expression in HCC tissues. Taken together, these results demonstrate that Sohlh2 can promote HCC progression via TGM2-mediated autophagy, implying that Sohlh2 is a promising candidate for HCC treatment.
Collapse
Affiliation(s)
- Xuyue Liu
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ruihong Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lanlan Liu
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Sujuan Zhi
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoning Feng
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Shen
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liyan Wang
- Research Center for Medical and Structural Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qi Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanru Chen
- Liver Transplantation Center, Clinical Research Center for Pediatric Liver Transplantation, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Leary A, Estévez-García P, Sabatier R, Ray-Coquard I, Romeo M, Barretina-Ginesta P, Gil-Martin M, Garralda E, Bosch-Barrera J, Morán T, Martin-Martorell P, Nadal E, Gascón P, Rodon J, Lizcano JM, Muñoz-Guardiola P, Fierro-Durán G, Pedrós-Gámez O, Pérez-Montoyo H, Yeste-Velasco M, Cortal M, Pérez-Campos A, Alfon J, Domenech C, Pérez-Fidalgo A, Oaknin A. ENDOLUNG trial. A phase 1/2 study of the Akt/mTOR inhibitor and autophagy inducer Ibrilatazar (ABTL0812) in combination with paclitaxel/carboplatin in patients with advanced/recurrent endometrial cancer. BMC Cancer 2024; 24:876. [PMID: 39039449 PMCID: PMC11265130 DOI: 10.1186/s12885-024-12501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Carboplatin and paclitaxel (CP) have been the standard of care for advanced/recurrent endometrial cancer (EC) for many years. However, this chemotherapy combination shows limited efficacy and recurrences often occur in less than 12 months. ABTL0812 is a novel drug that selectively kill cancer cells by cytotoxic autophagy and has shown anticancer efficacy in preclinical models of EC in combination with CP. METHODS ENDOLUNG was an open-label, phase 1/2 clinical trial designed to determine the safety and efficacy of Ibrilatazar (ABTL0812) with CP in patients with advanced/recurrent EC and non-irradiable stage III and IV squamous non-small cell lung cancer (sq-NSCLC). The phase 1 part consisted of a 3 + 3 de-escalation design followed by an expansion cohort with 12 patients. The primary endpoint was safety. ABTL0812 starting dose was 1300 mg tid combined with carboplatin at area under the curve (AUC) 5 and paclitaxel at 175 mg/m2 both administered every 21 days for up to 8 cycles. The phase 2 part included a total of 51 patients. The primary endpoint was overall response rate (ORR) and the secondary endpoints included duration of response (DOR), progression-free survival (PFS) and overall survival (OS). RESULTS During the phase 1 only one dose limiting toxicity (DLT), a grade 4 neutropenia, was observed in 1 out of 6 patients, thus no de-escalation was applied. One additional DLT, a grade 3 febrile neutropenia, was observed in the expansion cohort, thus the recommended phase 2 dose (RP2D) for ABTL0812 was established at 1300 mg tid. Most frequent hematological adverse events (AE) of the combination were neutropenia (52.9%), anemia (37.3%) and thrombocytopenia (19.6%). Nausea (66.7%), asthenia (66.7%), diarrhea (54.9%) and vomiting (54.9%) were the most frequent non-hematological adverse events (AEs). The combination of ABTL0812 plus CP showed an ORR of 65.8% (13.2% complete response and 52.6% partial response) with a median DOR of 7.4 months (95% CI: 6.3-10.8 months). Median PFS was 9.8 months (95% CI: 6.6-10.6) and median OS 23.6 months (95% CI 6.4-ND). Pharmacokinetic parameters were compatible with target engagement observed in preclinical studies, and blood pharmacodynamic biomarkers indicated sustained target regulation during, at least, 28 days after starting the treatment. CONCLUSIONS This study suggests that the combination of ABTL0812 with CP is safe and feasible with an encouraging activity in patients with advanced/recurrent EC. Our data warrant further confirmation in prospective randomized trials. TRIAL REGISTRATION EU Clinical Trial Register, EudraCT number 2016-001352-21 and National Clinical Trials Number, NCT03366480. Registration on 19 September 2016.
Collapse
Affiliation(s)
- Alexandra Leary
- Medical Oncology, Institut Gustave Roussy, Villejuif, France
| | | | - Renaud Sabatier
- Department of Medical Oncology, Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, 232 Boulevard Sainte Marguerite, Marseille, France
| | | | - Margarita Romeo
- Department of Medical Oncology, Department of Medicine, Institut Català d'Oncologia Badalona Hospital Germans Trias i Pujol, Badalona-Applied Research Group in Oncology, Germans Trias i Pujol Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Pilar Barretina-Ginesta
- Medical Oncology Department, Precision Oncology Group (OncoGIR-Pro) Girona Biomedical Research Institute (IDIBGI) and Department of Medical Sciences, Institut Català d'Oncologia (ICO), Medical School University of Girona (UdG), Girona, Spain
| | - Marta Gil-Martin
- Medical Oncology, Catalan Institute of Oncology and IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Elena Garralda
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Joaquim Bosch-Barrera
- Medical Oncology Department, Precision Oncology Group (OncoGIR-Pro) Girona Biomedical Research Institute (IDIBGI) and Department of Medical Sciences, Institut Català d'Oncologia (ICO), Medical School University of Girona (UdG), Girona, Spain
| | - Teresa Morán
- Department of Medical Oncology, Department of Medicine, Institut Català d'Oncologia Badalona Hospital Germans Trias i Pujol, Badalona-Applied Research Group in Oncology, Germans Trias i Pujol Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | - Ernest Nadal
- Medical Oncology, Catalan Institute of Oncology and IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Pere Gascón
- Medical Oncology Service, Hospital Clínic. Universitat de Barcelona, Barcelona, Spain
| | - Jordi Rodon
- Early Drug Development, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Jose M Lizcano
- Department of Biochemistry and Molecular Biology, Institut de Neurocièncias, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Protein Kinases in Cancer Research, Vall Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Pau Muñoz-Guardiola
- Department of Biochemistry and Molecular Biology, Institut de Neurocièncias, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Research and Development, Ability Pharmaceuticals, Cerdanyola del Vallès, Barcelona, Spain
| | - Gemma Fierro-Durán
- Research and Development, Ability Pharmaceuticals, Cerdanyola del Vallès, Barcelona, Spain
| | - Oriol Pedrós-Gámez
- Research and Development, Ability Pharmaceuticals, Cerdanyola del Vallès, Barcelona, Spain
| | - Héctor Pérez-Montoyo
- Research and Development, Ability Pharmaceuticals, Cerdanyola del Vallès, Barcelona, Spain
| | - Marc Yeste-Velasco
- Research and Development, Ability Pharmaceuticals, Cerdanyola del Vallès, Barcelona, Spain
| | - Marc Cortal
- Research and Development, Ability Pharmaceuticals, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Pérez-Campos
- Research and Development, Ability Pharmaceuticals, Cerdanyola del Vallès, Barcelona, Spain
| | - Jose Alfon
- Research and Development, Ability Pharmaceuticals, Cerdanyola del Vallès, Barcelona, Spain
| | - Carles Domenech
- Research and Development, Ability Pharmaceuticals, Cerdanyola del Vallès, Barcelona, Spain.
| | | | - Ana Oaknin
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
3
|
Zhang Y, Li W, Yang Y, Zhang S, Yang H, Hao Y, Fang X, Du G, Shi J, Wu L, Wang J. AAA237, an SKP2 inhibitor, suppresses glioblastoma by inducing BNIP3-dependent autophagy through the mTOR pathway. Cancer Cell Int 2024; 24:69. [PMID: 38341584 PMCID: PMC10859026 DOI: 10.1186/s12935-023-03191-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common brain tumor with the worst prognosis. Temozolomide is the only first-line drug for GBM. Unfortunately, the resistance issue is a classic problem. Therefore, it is essential to develop new drugs to treat GBM. As an oncogene, Skp2 is involved in the pathogenesis of various cancers including GBM. In this study, we investigated the anticancer effect of AAA237 on human glioblastoma cells and its underlying mechanism. METHODS CCK-8 assay was conducted to evaluate IC50 values of AAA237 at 48, and 72 h, respectively. The Cellular Thermal Shift Assay (CETSA) was employed to ascertain the status of Skp2 as an intrinsic target of AAA237 inside the cellular milieu. The EdU-DNA synthesis test, Soft-Agar assay and Matrigel assay were performed to check the suppressive effects of AAA237 on cell growth. To identify the migration and invasion ability of GBM cells, transwell assay was conducted. RT-qPCR and Western Blot were employed to verify the level of BNIP3. The mRFP-GFP-LC3 indicator system was utilized to assess alterations in autophagy flux and investigate the impact of AAA237 on the dynamic fusion process between autophagosomes and lysosomes. To investigate the effect of compound AAA237 on tumor growth in vivo, LN229 cells were injected into the brains of mice in an orthotopic model. RESULTS AAA237 could inhibit the growth of GBM cells in vitro. AAA237 could bind to Skp2 and inhibit Skp2 expression and the degradation of p21 and p27. In a dose-dependent manner, AAA237 demonstrated the ability to inhibit colony formation, migration, and invasion of GBM cells. AAA237 treatment could upregulate BNIP3 as the hub gene and therefore induce BNIP3-dependent autophagy through the mTOR pathway whereas 3-MA can somewhat reverse this process. In vivo, the administration of AAA237 effectively suppressed the development of glioma tumors with no side effects. CONCLUSION Compound AAA237, a novel Skp2 inhibitor, inhibited colony formation, migration and invasion of GBM cells in a dose-dependent manner and time-dependent manner through upregulating BNIP3 as the hub gene and induced BNIP3-dependent autophagy through the mTOR pathway therefore it might be a viable therapeutic drug for the management of GBM.
Collapse
Affiliation(s)
- Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yue Hao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xu Fang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| | - Lianqiu Wu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
4
|
Akbari A, Noorbakhsh Varnosfaderani SM, Haeri MS, Fathi Z, Aziziyan F, Yousefi Rad A, Zalpoor H, Nabi-Afjadi M, Malekzadegan Y. Autophagy induced by Helicobacter Pylori infection can lead to gastric cancer dormancy, metastasis, and recurrence: new insights. Hum Cell 2024; 37:139-153. [PMID: 37924488 DOI: 10.1007/s13577-023-00996-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
According to the findings of recent research, Helicobacter Pylori (H. pylori) infection is not only the primary cause of gastric cancer (GC), but it is also linked to the spread and invasion of GC through a number of processes and factors that contribute to virulence. In this study, we discussed that H. pylori infection can increase autophagy in GC tumor cells, leading to poor prognosis in such patients. Until now, the main concerns have been focused on H. pylori's role in GC development. According to our hypothesis, however, H. pylori infection may also lead to GC dormancy, metastasis, and recurrence by stimulating autophagy. Therefore, understanding how H. pylori possess these processes through its virulence factors and various microRNAs can open new windows for providing new prevention and/or therapeutic approaches to combat GC dormancy, metastasis, and recurrence which can occur in GC patients with H. pylori infection with targeting autophagy and eradicating H. pylori infection.
Collapse
Affiliation(s)
- Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Melika Sadat Haeri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zeinab Fathi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Yousefi Rad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | | |
Collapse
|
5
|
Gopar-Cuevas Y, Saucedo-Cardenas O, Loera-Arias MJ, Montes-de-Oca-Luna R, Rodriguez-Rocha H, Garcia-Garcia A. Metformin and Trehalose-Modulated Autophagy Exerts a Neurotherapeutic Effect on Parkinson's Disease. Mol Neurobiol 2023; 60:7253-7273. [PMID: 37542649 DOI: 10.1007/s12035-023-03530-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Since the number of aged people will increase in the next years, neurodegenerative diseases, including Parkinson's Disease (PD), will also rise. Recently, we demonstrated that autophagy stimulation with rapamycin decreases dopaminergic neuronal death mediated by oxidative stress in the paraquat (PQ)-induced PD model. Assessing the neurotherapeutic efficacy of autophagy-inducing molecules is critical for preventing or delaying neurodegeneration. Therefore, we evaluated the autophagy inducers metformin and trehalose effect in a PD model. Autophagy induced by both molecules was confirmed in the SH-SY5Y dopaminergic cells by detecting increased LC3-II marker and autophagosome number compared to the control by western blot and transmission electron microscopy. Both autophagy inducers showed an antioxidant effect, improved mitochondrial activity, and decreased dopaminergic cell death induced by PQ. Next, we evaluated the effect of both inducers in vivo. C57BL6 mice were pretreated with metformin or trehalose before PQ administration. Cognitive and motor deteriorated functions in the PD model were evaluated through the nest building and the gait tests and were prevented by metformin and trehalose. Both autophagy inducers significantly reduced the dopaminergic neuronal loss, astrocytosis, and microgliosis induced by PQ. Also, cell death mediated by PQ was prevented by metformin and trehalose, assessed by TUNEL assay. Metformin and trehalose induced autophagy through AMPK phosphorylation and decreased α-synuclein accumulation. Therefore, metformin and trehalose are promising neurotherapeutic autophagy inducers with great potential for treating neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Yareth Gopar-Cuevas
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Odila Saucedo-Cardenas
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Maria J Loera-Arias
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Roberto Montes-de-Oca-Luna
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Humberto Rodriguez-Rocha
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico.
| | - Aracely Garcia-Garcia
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
6
|
Zurlo M, Zuccato C, Cosenza LC, Gasparello J, Gamberini MR, Stievano A, Fortini M, Prosdocimi M, Finotti A, Gambari R. Decrease in α-Globin and Increase in the Autophagy-Activating Kinase ULK1 mRNA in Erythroid Precursors from β-Thalassemia Patients Treated with Sirolimus. Int J Mol Sci 2023; 24:15049. [PMID: 37894732 PMCID: PMC10606773 DOI: 10.3390/ijms242015049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
The β-thalassemias are hereditary monogenic diseases characterized by a low or absent production of adult hemoglobin and excess in the content of α-globin. This excess is cytotoxic for the erythroid cells and responsible for the β-thalassemia-associated ineffective erythropoiesis. Therefore, the decrease in excess α-globin is a relevant clinical effect for these patients and can be realized through the induction of fetal hemoglobin, autophagy, or both. The in vivo effects of sirolimus (rapamycin) and analogs on the induction of fetal hemoglobin (HbF) are of key importance for therapeutic protocols in a variety of hemoglobinopathies, including β-thalassemias. In this research communication, we report data showing that a decrease in autophagy-associated p62 protein, increased expression of ULK-1, and reduction in excess α-globin are occurring in erythroid precursors (ErPCs) stimulated in vitro with low dosages of sirolimus. In addition, increased ULK-1 mRNA content and a decrease in α-globin content were found in ErPCs isolated from β-thalassemia patients recruited for the NCT03877809 clinical trial and treated with 0.5-2 mg/day sirolimus. Our data support the concept that autophagy, ULK1 expression, and α-globin chain reduction should be considered important endpoints in sirolimus-based clinical trials for β-thalassemias.
Collapse
Affiliation(s)
- Matteo Zurlo
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Ferrara University, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
| | - Maria Rita Gamberini
- Thalassemia Unit, Arcispedale S. Anna, 44121 Ferrara, Italy; (M.R.G.); (A.S.); (M.F.)
| | - Alice Stievano
- Thalassemia Unit, Arcispedale S. Anna, 44121 Ferrara, Italy; (M.R.G.); (A.S.); (M.F.)
| | - Monica Fortini
- Thalassemia Unit, Arcispedale S. Anna, 44121 Ferrara, Italy; (M.R.G.); (A.S.); (M.F.)
| | | | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Ferrara University, 44121 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Ferrara University, 44121 Ferrara, Italy
| |
Collapse
|
7
|
Isaev NK, Stelmashook EV, Genrikhs EE, Onishchenko GE. Interaction between mitophagy, cadmium and zinc. J Trace Elem Med Biol 2023; 79:127230. [PMID: 37290313 DOI: 10.1016/j.jtemb.2023.127230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Mitophagy is the selective degradation of mitochondria by autophagy. This process is considered to be one of the stages of mitochondrial quality control, as a result of which damaged depolarized mitochondria are eliminated, thus limiting the formation of reactive oxygen species and the release of apoptogenic factors. Selective degradation of mitochondria by autophagy is one of the main ways to protect cells from cadmium toxicity, which results in dysfunction of the mitochondrial electron transport chain, leading to electron leakage, production of reactive oxygen species and cells death. However, excessive autophagy can be dangerous for cells. Currently, the participation of cadmium ions in normal physiological processes has not been detected. Zn2+, unlike Cd2+, regulate the activity of a large number of functionally important proteins, including transcription factors, enzymes, and adapters. It has been shown that Zn2+ not only participate in autophagy, but are also crucial for basal or induced autophagy. It is likely that zinc drugs can be used to reduce the cadmium toxicity and in the regulation of mithophagy.
Collapse
Affiliation(s)
- Nickolay K Isaev
- M.V. Lomonosov Moscow State University, Moscow, Russia; Research Center of Neurology, Moscow, Russia.
| | | | | | | |
Collapse
|
8
|
In Vitro Fermentation of Pleurotus eryngii Mushrooms by Human Fecal Microbiota: Metataxonomic Analysis and Metabolomic Profiling of Fermentation Products. J Fungi (Basel) 2023; 9:jof9010128. [PMID: 36675949 PMCID: PMC9865116 DOI: 10.3390/jof9010128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Edible mushrooms contain biologically active compounds with antioxidant, antimicrobial, immunomodulatory and anticancer properties. The link between their anticancer and immunomodulatory properties with their possible prebiotic activity on gut micro-organisms has been the subject of intense research over the last decade. Lyophilized Pleurotus eryngii (PE) mushrooms, selected due to their strong lactogenic effect and anti-genotoxic, immunomodulatory properties, underwent in vitro static batch fermentation for 24 h by fecal microbiota from eight elderly apparently healthy volunteers (>65 years old). The fermentation-induced changes in fecal microbiota communities were examined using Next Generation Sequencing of the hypervariable regions of the 16S rRNA gene. Primary processing and analysis were conducted using the Ion Reporter Suite. Changes in the global metabolic profile were assessed by 1H NMR spectroscopy, and metabolites were assigned by 2D NMR spectroscopy and the MetaboMiner platform. PLS-DA analysis of both metataxonomic and metabolomic data showed a significant cluster separation of PE fermented samples relative to controls. DEseq2 analysis showed that the abundance of families such as Lactobacillaceae and Bifidobacteriaceae were increased in PE samples. Accordingly, in metabolomics, more than twenty metabolites including SCFAs, essential amino acids, and neurotransmitters discriminate PE samples from the respective controls, further validating the metataxonomic findings.
Collapse
|
9
|
Sehgal SA, Wu H, Sajid M, Sohail S, Ahsan M, Parveen G, Riaz M, Khan MS, Iqbal MN, Malik A. Pharmacological Progress of Mitophagy Regulation. Curr Neuropharmacol 2023; 21:1026-1041. [PMID: 36918785 PMCID: PMC10286582 DOI: 10.2174/1570159x21666230314140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 03/16/2023] Open
Abstract
With the advancement in novel drug discovery, biologically active compounds are considered pharmacological tools to understand complex biological mechanisms and the identification of potent therapeutic agents. Mitochondria boast a central role in different integral biological processes and mitochondrial dysfunction is associated with multiple pathologies. It is, therefore, prudent to target mitochondrial quality control mechanisms by using pharmacological approaches. However, there is a scarcity of biologically active molecules, which can interact with mitochondria directly. Currently, the chemical compounds used to induce mitophagy include oligomycin and antimycin A for impaired respiration and acute dissipation of mitochondrial membrane potential by using CCCP/FCCP, the mitochondrial uncouplers. These chemical probes alter the homeostasis of the mitochondria and limit our understanding of the energy regulatory mechanisms. Efforts are underway to find molecules that can bring about selective removal of defective mitochondria without compromising normal mitochondrial respiration. In this report, we have tried to summarize and status of the recently reported modulators of mitophagy.
Collapse
Affiliation(s)
- Sheikh Arslan Sehgal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
- Department of Bioinformatics, University of Okara, Okara, Pakistan
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China
| | - Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Pakistan
| | - Summar Sohail
- Department of Forestry, Kohsar University Murree, Pakistan
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, Punjab, Pakistan
| | | | - Mehreen Riaz
- Department of Zoology, Women University, Swabi, Pakistan
| | | | - Muhammad Nasir Iqbal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Abbeha Malik
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| |
Collapse
|
10
|
Mancini A, Colapietro A, Cristiano L, Rossetti A, Mattei V, Gravina GL, Perez-Montoyo H, Yeste-Velasco M, Alfon J, Domenech C, Festuccia C. Anticancer effects of ABTL0812, a clinical stage drug inducer of autophagy-mediated cancer cell death, in glioblastoma models. Front Oncol 2022; 12:943064. [PMID: 36408162 PMCID: PMC9668006 DOI: 10.3389/fonc.2022.943064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most malignant adult brain tumor. Current standard of care treatments have very limited efficacy, being the patients´ overall survival 14 months and the 2-year survival rate less than 10%. Therefore, the treatment of GBM is an urgent unmet clinical need. Methods The aim of this study was to investigate in vitro and in vivo the potential of ABTL0812, an oral anticancer compound currently in phase II clinical stage, as a novel therapy for GBM. Results We showed that ABTL0812 inhibits cell proliferation in a wide panel of GBM cell lines and patient-derived glioblastoma stem cells (GSCs) with half maximal inhibitory concentrations (IC50s) ranging from 15.2 µM to 46.9 µM. Additionally, ABTL0812 decreased GSCs neurosphere formation. GBM cells aggressiveness is associated with a trans-differentiation process towards a less differentiated phenotype known as proneural to mesenchymal transition (PMT). ABTL0812 was shown to revert PMT and induce cell differentiation to a less malignant phenotype in GBM cell lines and GSCs, and consequently reduced cell invasion. As previously shown in other cancer types, we demonstrated that the molecular mechanism of action of ABTL0812 in glioblastoma involves the inhibition of Akt/mTORC1 axis by overexpression of TRIB3, and the activation of endoplasmic reticulum (ER) stress/unfolded protein response (UPR). Both actions converge to induce autophagy-mediated cell death. ABTL0812 anticancer efficacy was studied in vivo using subcutaneous and orthotopic intra-brain xenograft tumor models. We demonstrated that ABTL0812 impairs tumor growth and increases disease-free survival and overall survival of mice. Furthermore, the histological analysis of tumors indicated that ABTL0812 decreases angiogenesis. Finally, we investigated the combination of ABTL0812 with the standard of care treatments for GBM radiotherapy and temozolomide in an orthotopic model, detecting that ABTL0812 potentiates the efficacy of both treatments and that the strongest effect is obtained with the triple combination of ABTL0812+radiotherapy+temozolomide. Conclusions Overall, the present study demonstrated the anticancer efficacy of ABTL0812 as single agent and in combination with the GBM standard of care treatments in models of glioblastoma and supports the clinical investigation of ABTL0812 as a potential novel therapy for this aggressive brain tumor type.
Collapse
Affiliation(s)
- Andrea Mancini
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Colapietro
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Loredana Cristiano
- Department of Clinical Medicine, Public Health, Life Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandra Rossetti
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Giovanni Luca Gravina
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Division of Radiation Oncology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L’Aquila, Italy
| | - Héctor Perez-Montoyo
- R&D Department, Ability Pharmaceuticals, Parc Tecnològic del Vallès, Cerdanyola del Vallès, Barcelona, Spain
| | - Marc Yeste-Velasco
- R&D Department, Ability Pharmaceuticals, Parc Tecnològic del Vallès, Cerdanyola del Vallès, Barcelona, Spain
| | - Jose Alfon
- R&D Department, Ability Pharmaceuticals, Parc Tecnològic del Vallès, Cerdanyola del Vallès, Barcelona, Spain
| | - Carles Domenech
- R&D Department, Ability Pharmaceuticals, Parc Tecnològic del Vallès, Cerdanyola del Vallès, Barcelona, Spain
| | - Claudio Festuccia
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
11
|
Pupyshev AB, Klyushnik TP, Akopyan AA, Singh SK, Tikhonova MA. Disaccharide Trehalose in Experimental Therapies for Neurodegenerative Disorders: Molecular Targets and Translational Potential. Pharmacol Res 2022; 183:106373. [PMID: 35907433 DOI: 10.1016/j.phrs.2022.106373] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Induction of autophagy is a prospective approach to the treatment of neurodegeneration. In the recent decade, trehalose attracted special attention. It is an autophagy inducer with negligible adverse effects and is approved for use in humans according to FDA requirements. Trehalose has a therapeutic effect in various experimental models of diseases. This glucose disaccharide with a flexible α-1-1'-glycosidic bond has unique properties: induction of mTOR-independent autophagy (with kinase AMPK as the main target) and a chaperone-like effect on proteins imparting them natural spatial structure. Thus, it can reduce the accumulation of neurotoxic aberrant/misfolded proteins. Trehalose has an anti-inflammatory effect and inhibits detrimental oxidative stress partially owing to the enhancement of endogenous antioxidant defense represented by the Nrf2 protein. The disaccharide activates lysosome and autophagosome biogenesis pathways through the protein factors TFEB and FOXO1. Here we review various mechanisms of the neuroprotective action of trehalose and touch on the possibility of pleiotropic effects. Current knowledge about specific features of trehalose pharmacodynamics is discussed. The neuroprotective effects of trehalose in animal models of major neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases are examined too. Attention is given to translational transition to clinical trials of this drug, especially oral and parenteral routes of administration. Besides, the possibility of enhancing the therapeutic benefit via a combination of mTOR-dependent and mTOR-independent autophagy inducers is analyzed. In general, trehalose appears to be a promising multitarget tool for the inhibition of experimental neurodegeneration and requires thorough investigation of its clinical capabilities.
Collapse
Affiliation(s)
- Alexander B Pupyshev
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| | - Tatyana P Klyushnik
- Mental Health Research Center, Kashirskoye shosse 34, Moscow 115522, Russia.
| | - Anna A Akopyan
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Krishna Bhawan, 594 Kha/123, Shahinoor Colony, Nilmatha, Uttar Pradesh, Lucknow 226002, India.
| | - Maria A Tikhonova
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| |
Collapse
|
12
|
Bajalia EM, Azzouz FB, Chism DA, Giansiracusa DM, Wong CG, Plaskett KN, Bishayee A. Phytochemicals for the Prevention and Treatment of Renal Cell Carcinoma: Preclinical and Clinical Evidence and Molecular Mechanisms. Cancers (Basel) 2022; 14:3278. [PMID: 35805049 PMCID: PMC9265746 DOI: 10.3390/cancers14133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is associated with about 90% of renal malignancies, and its incidence is increasing globally. Plant-derived compounds have gained significant attention in the scientific community for their preventative and therapeutic effects on cancer. To evaluate the anticancer potential of phytocompounds for RCC, we compiled a comprehensive and systematic review of the available literature. Our work was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. The literature search was performed using scholarly databases such as PubMed, Scopus, and ScienceDirect and keywords such as renal cell carcinoma, phytochemicals, cancer, tumor, proliferation, apoptosis, prevention, treatment, in vitro, in vivo, and clinical studies. Based on in vitro results, various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, suppressed cell viability, proliferation and growth, showed cytotoxic activity, inhibited invasion and migration, and enhanced the efficacy of chemotherapeutic drugs in RCC. In various animal tumor models, phytochemicals suppressed renal tumor growth, reduced tumor size, and hindered angiogenesis and metastasis. The relevant antineoplastic mechanisms involved upregulation of caspases, reduction in cyclin activity, induction of cell cycle arrest and apoptosis via modulation of a plethora of cell signaling pathways. Clinical studies demonstrated a reduced risk for the development of kidney cancer and enhancement of the efficacy of chemotherapeutic drugs. Both preclinical and clinical studies displayed significant promise of utilizing phytochemicals for the prevention and treatment of RCC. Further research, confirming the mechanisms and regulatory pathways, along with randomized controlled trials, are needed to establish the use of phytochemicals in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (E.M.B.); (F.B.A.); (D.A.C.); (D.M.G.); (C.G.W.); (K.N.P.)
| |
Collapse
|
13
|
Hou Y, Li J, Deng C. Vitamin D/vitamin D receptor, autophagy, and infection. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:780-785. [PMID: 35837778 PMCID: PMC10930018 DOI: 10.11817/j.issn.1672-7347.2022.210556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 06/15/2023]
Abstract
Vitamin D plays an important role in mineral and bone homeostasis, immune responses, cardiovascular function and keratinocyte proliferation and differentiation. Vitamin D performs most of its functions by binding to vitamin D receptors (VDR), which interact with other intracellular signaling pathways to regulate bone metabolism, inflammation, immunity, cell cycle progression and apoptosis. Autophagy is a basic stress response in yeast, plants and mammals, and plays a critical role in maintaining optimal functional states at the level of cells and organs. Vitamin D/VDR plays an anti-infection role via inducing and regulating autophagy.
Collapse
Affiliation(s)
- Yu Hou
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, China.
| | - Jinghui Li
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, China.
| | - Chao Deng
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, China
| |
Collapse
|
14
|
Gong QY, Cai L, Jing Y, Wang W, Yang DX, Chen SW, Tian HL. Urolithin A alleviates blood-brain barrier disruption and attenuates neuronal apoptosis following traumatic brain injury in mice. Neural Regen Res 2022; 17:2007-2013. [PMID: 35142690 PMCID: PMC8848621 DOI: 10.4103/1673-5374.335163] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Urolithin A (UA) is a natural metabolite produced from polyphenolics in foods such as pomegranates, berries, and nuts. UA is neuroprotective against Parkinson's disease, Alzheimer's disease, and cerebral hemorrhage. However, its effect against traumatic brain injury remains unknown. In this study, we established adult C57BL/6J mouse models of traumatic brain injury by controlled cortical impact and then intraperitoneally administered UA. We found that UA greatly reduced brain edema; increased the expression of tight junction proteins in injured cortex; increased the immunopositivity of two neuronal autophagy markers, microtubule-associated protein 1A/B light chain 3A/B (LC3) and p62; downregulated protein kinase B (Akt) and mammalian target of rapamycin (mTOR), two regulators of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR signaling pathway; decreased the phosphorylation levels of inhibitor of NFκB (IκB) kinase alpha (IKKα) and nuclear factor kappa B (NFκB), two regulators of the neuroinflammation-related Akt/IKK/NFκB signaling pathway; reduced blood-brain barrier permeability and neuronal apoptosis in injured cortex; and improved mouse neurological function. These findings suggest that UA may be a candidate drug for the treatment of traumatic brain injury, and its neuroprotective effects may be mediated by inhibition of the PI3K/Akt/mTOR and Akt/IKK/NFκB signaling pathways, thus reducing neuroinflammation and enhancing autophagy.
Collapse
Affiliation(s)
- Qiu-Yuan Gong
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Cai
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yao Jing
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dian-Xu Yang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shi-Wen Chen
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
15
|
Koustas E, Trifylli EM, Sarantis P, Kontolatis NI, Damaskos C, Garmpis N, Vallilas C, Garmpi A, Papavassiliou AG, Karamouzis MV. The Implication of Autophagy in Gastric Cancer Progression. Life (Basel) 2021; 11:life11121304. [PMID: 34947835 PMCID: PMC8705750 DOI: 10.3390/life11121304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is the fifth most common malignancy and the third leading cause of cancer-related death worldwide. The three entirely variable entities have distinct epidemiology, molecular characteristics, prognosis, and strategies for clinical management. However, many gastric tumors appear to be resistant to current chemotherapeutic agents. Moreover, a significant number of gastric cancer patients, with a lack of optimal treatment strategies, have reduced survival. In recent years, multiple research data have highlighted the importance of autophagy, an essential catabolic process of cytoplasmic component digestion, in cancer. The role of autophagy as a tumor suppressor or tumor promoter mechanism remains controversial. The multistep nature of the autophagy process offers a wide array of targetable points for designing novel chemotherapeutic strategies. The purpose of this review is to summarize the current knowledge regarding the interplay between gastric cancer development and the autophagy process and decipher the role of autophagy in this kind of cancer. A plethora of different agents that direct or indirect target autophagy may be a novel therapeutic approach for gastric cancer patients.
Collapse
Affiliation(s)
- Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-M.T.); (P.S.); (N.I.K.); (C.V.); (A.G.P.); (M.V.K.)
- Correspondence:
| | - Eleni-Myrto Trifylli
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-M.T.); (P.S.); (N.I.K.); (C.V.); (A.G.P.); (M.V.K.)
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-M.T.); (P.S.); (N.I.K.); (C.V.); (A.G.P.); (M.V.K.)
| | - Nikolaos I. Kontolatis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-M.T.); (P.S.); (N.I.K.); (C.V.); (A.G.P.); (M.V.K.)
| | - Christos Damaskos
- Renal Transplantation Unit, ‘Laiko’ General Hospital, 11527 Athens, Greece;
- ‘N.S. Christeas’ Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Garmpis
- ‘N.S. Christeas’ Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Second Department of Propedeutic Surgery, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Vallilas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-M.T.); (P.S.); (N.I.K.); (C.V.); (A.G.P.); (M.V.K.)
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-M.T.); (P.S.); (N.I.K.); (C.V.); (A.G.P.); (M.V.K.)
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-M.T.); (P.S.); (N.I.K.); (C.V.); (A.G.P.); (M.V.K.)
| |
Collapse
|
16
|
Ramachandran S, Kaushik IS, Srivastava SK. Pimavanserin: A Novel Autophagy Modulator for Pancreatic Cancer Treatment. Cancers (Basel) 2021; 13:cancers13225661. [PMID: 34830816 PMCID: PMC8616166 DOI: 10.3390/cancers13225661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/14/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic tumors exhibit high basal autophagy compared to that of other cancers. Several studies including those from our laboratory reported that enhanced autophagy leads to apoptosis in cancer cells. In this study, we evaluated the autophagy and apoptosis inducing effects of Pimavanserin tartrate (PVT). Autophagic effects of PVT were determined by Acridine Orange assay and Transmission Electron Microscopy analysis. Clinical significance of ULK1 in normal and pancreatic cancer patients was evaluated by R2 and GEPIA cancer genomic databases. Modulation of proteins in autophagy signaling was assessed by Western blotting and Immunofluorescence. Apoptotic effects of PVT was evaluated by Annexin-V/APC assay. Subcutaneous xenograft pancreatic tumor model was used to evaluate the autophagy-mediated apoptotic effects of PVT in vivo. Autophagy was induced upon PVT treatment in pancreatic ducal adenocarcinoma (PDAC) cells. Pancreatic cancer patients exhibit reduced levels of autophagy initiator gene, ULK1, which correlated with reduced patient survival. Interestingly, PVT induced the expression of autophagy markers ULK1, FIP200, Atg101, Beclin-1, Atg5, LC3A/B, and cleavage of caspase-3, an indicator of apoptosis in several PDAC cells. ULK1 agonist LYN-1604 enhanced the autophagic and apoptotic effects of PVT. On the other hand, autophagy inhibitors chloroquine and bafilomycin blocked the autophagic and apoptotic effects of PVT in PDAC cells. Notably, chloroquine abrogated the growth suppressive effects of PVT by 25% in BxPC3 tumor xenografts in nude mice. Collectively, our results indicate that PVT mediated pancreatic tumor growth suppression was associated with induction of autophagy mediated apoptosis.
Collapse
|
17
|
Zhao Y, Li WF, Li QJ, He SW, He QM, Long LF, Liu N, Ma J. WIPI-1 inhibits metastasis and tumour growth via the WIPI-1-TRIM21 axis and MYC regulation in nasopharyngeal carcinoma. Oral Oncol 2021; 122:105576. [PMID: 34689010 DOI: 10.1016/j.oraloncology.2021.105576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022]
Abstract
The metastatic rate of nasopharyngeal carcinoma (NPC) is the highest among head and neck tumours. Additionally, distant metastasis is the main cause of therapy failure and mortality in NPC. Thus, novel biomarkers are needed for designing new therapeutic strategies to improve the prognosis of this disease. In this study, qRT-PCR and western blotting revealed that the expression of the WD repeat domain phosphoinositide interacting 1 (WIPI-1) was markedly decreased in NPC cells and tissues. Furthermore, low WIPI-1 expression closely correlated with poor prognosis in NPC patients. In vitro functional experiments revealed that overexpression or knockdown of WIPI-1 repressed or facilitated the migration, colony formation, and proliferation of NPC cells. Consistent with the in vitro studies, WIPI-1 significantly inhibited tumour growth, invasion and metastasis in popliteal lymph node metastasis, lung metastasis, and xenograft mouse models in vivo. Mechanistically, WIPI-1 directly interacted with tripartite motif containing 21 (TRIM21) and enhanced starvation-induced autophagy by interacting with TRIM21 in NPC cells. Moreover, MYC gene expression was markedly increased in the WIPI-1 knockdown group, as demonstrated by RNA-seq analysis and qRT-PCR validation. Altogether, WIPI-1 acts as a tumour suppressor gene in NPC that inhibits tumour growth and metastasis. Targeting WIPI-1 may be a novel treatment approach for NPC.
Collapse
Affiliation(s)
- Yin Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Wen-Fei Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Qing-Jie Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Shi-Wei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Qing-Mei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Liu-Fen Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Na Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China.
| |
Collapse
|
18
|
Koustas E, Trifylli EM, Sarantis P, Papavassiliou AG, Karamouzis MV. Role of autophagy in cholangiocarcinoma: An autophagy-based treatment strategy. World J Gastrointest Oncol 2021; 13:1229-1243. [PMID: 34721764 PMCID: PMC8529918 DOI: 10.4251/wjgo.v13.i10.1229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/28/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are diverse biliary epithelial tumours involving the intrahepatic, perihilar and distal parts of the biliary tree. The three entirely variable entities have distinct epidemiology, molecular characteristics, prognosis and strategy for clinical management. However, many cholangiocarcinoma tumor-cells appear to be resistant to current chemotherapeutic agents. The role of autophagy and the therapeutic value of autophagy-based therapy are largely unknown in CCA. The multistep nature of autophagy offers a plethora of regulation points, which are prone to be deregulated and cause different human diseases, including cancer. However, it offers multiple targetable points for designing novel therapeutic strategies. Tumor cells have evolved to use autophagy as an adaptive mechanism for survival under stressful conditions such as energy imbalance and hypoxic region of tumors within the tumor microenvironment, but also to increase invasiveness and resistance to chemotherapy. The purpose of this review is to summarize the current knowledge regarding the interplay between autophagy and cholangiocarcinogenesis, together with some preclinical studies with agents that modulate autophagy in order to induce tumor cell death. Altogether, a combinatorial strategy, which comprises the current anti-cancer agents and autophagy modulators, would represent a positive CCA patient approach.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Eleni-Myrto Trifylli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
19
|
Xie Q, Chen Y, Tan H, Liu B, Zheng LL, Mu Y. Targeting Autophagy with Natural Compounds in Cancer: A Renewed Perspective from Molecular Mechanisms to Targeted Therapy. Front Pharmacol 2021; 12:748149. [PMID: 34512368 PMCID: PMC8427500 DOI: 10.3389/fphar.2021.748149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023] Open
Abstract
Natural products are well-characterized to have pharmacological or biological activities that can be of therapeutic benefits for cancer therapy, which also provide an important source of inspiration for discovery of potential novel small-molecule drugs. In the past three decades, accumulating evidence has revealed that natural products can modulate a series of key autophagic signaling pathways and display therapeutic effects in different types of human cancers. In this review, we focus on summarizing some representative natural active compounds, mainly including curcumin, resveratrol, paclitaxel, Bufalin, and Ursolic acid that may ultimately trigger cancer cell death through the regulation of some key autophagic signaling pathways, such as RAS-RAF-MEK-ERK, PI3K-AKT-mTOR, AMPK, ULK1, Beclin-1, Atg5 and p53. Taken together, these inspiring findings would shed light on exploiting more natural compounds as candidate small-molecule drugs, by targeting the crucial pathways of autophagy for the future cancer therapy.
Collapse
Affiliation(s)
- Qiang Xie
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Chen
- Department of Stomatology, Zigong First People’s Hospital, Zigong, China
| | - Huidan Tan
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling-Li Zheng
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yandong Mu
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
20
|
Chen C, Gao H, Su X. Autophagy-related signaling pathways are involved in cancer (Review). Exp Ther Med 2021; 22:710. [PMID: 34007319 PMCID: PMC8120650 DOI: 10.3892/etm.2021.10142] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a self-digestion process in cells that can maintain energy homeostasis under normal circumstances. However, misfolded proteins, damaged mitochondria and other unwanted components in cells can be decomposed and reused via autophagy in some specific cases (including hypoxic stress, low energy states or nutrient deprivation). Therefore, autophagy serves a positive role in cell survival and growth. However, excessive autophagy may lead to apoptosis. Furthermore, abnormal autophagy may lead to carcinogenesis and promote tumorigenesis in normal cells. In tumor cells, autophagy may provide the energy required for excessive proliferation, promote the growth of cancer cells, and evade apoptosis caused by certain treatments, including radiotherapy and chemotherapy, resulting in increased treatment resistance and drug resistance. On the other hand, autophagy leads to an insufficient nutrient supply in cancer cells and the destruction of energy homeostasis, thereby inducing cancer cell apoptosis. Therefore, understanding the mechanism of the double-edged sword of autophagy is crucial for the treatment of cancer. The present review summarizes the signaling pathways and key factors involved in autophagy and cancer to provide possible strategies for treating tumors.
Collapse
Affiliation(s)
- Caixia Chen
- Clinical Medicine Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Hui Gao
- Department of Thoracic Surgery, Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, Inner Mongolia 010020, P.R. China
| | - Xiulan Su
- Clinical Medicine Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
21
|
Vidal L, Victoria I, Gaba L, Martín MG, Brunet M, Colom H, Cortal M, Gómez-Ferrería M, Yeste-Velasco M, Perez A, Rodon J, Sohal DPS, Lizcano JM, Domènech C, Alfón J, Gascón P. A first-in-human phase I/Ib dose-escalation clinical trial of the autophagy inducer ABTL0812 in patients with advanced solid tumours. Eur J Cancer 2021; 146:87-94. [PMID: 33588149 DOI: 10.1016/j.ejca.2020.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND ABTL0812 is an autophagy inducer that promotes cancer cell death by activation of cytotoxic autophagy selectively in tumour cells. ABTL0812 induces endoplasmic reticulum stress and blocks the Akt-mTOR axis; both actions converge to activate a robust and sustained autophagy leading to cancer cell death. Preclinical data supported the initiation of clinical trials in patients with cancer. PATIENTS AND METHODS This first-in-human trial consisted of an escalation phase (3 + 3 design), followed by an expansion phase, to assess safety and tolerability of ABTL0812. Secondary objectives were determining the recommended phase II dose (RP2D), clinical antitumour activity, pharmacokinetics (PK) and pharmacodynamics (PD). RESULTS A total of 29 patients were enrolled and treated; fifteen patients were treated in four escalation dosing cohorts (ranging from 500 mg once a day to 2000 mg twice a day) and fourteen in the expansion phase (dosed with 1300 mg three times a day). No maximum tolerated dose was attained, and RP2D was determined by PK/PD modelling. Most drug-related adverse events were gastrointestinal grade I-II. Correlation between drug levels and pAkt/Akt ratio was found. Two cases of long-term (>1 year) stable disease were observed. CONCLUSIONS ABTL0812 is safe and has an acceptable tolerability profile, allowing a long-term oral dosing. RP2D of 1300 mg three times a day was determined according to PK/PD modelling, and preliminary antitumour efficacy was observed. CLINICAL TRIAL REGISTRATION NUMBER NCT02201823.
Collapse
Affiliation(s)
- Laura Vidal
- IntherUnit, Hospital Clínic i Provincial de Barcelona, Barcelona, Catalonia, Spain
| | - Ivan Victoria
- IntherUnit, Hospital Clínic i Provincial de Barcelona, Barcelona, Catalonia, Spain
| | - Lydia Gaba
- Department of Medical Oncology, Hospital Clinic, Barcelona Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| | - Marta Gil Martín
- Medical Oncology, Catalan Institute of Oncology (ICO), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Mercè Brunet
- Biomedical Diagnostic Center (CDB), Hospital Clínic i Provincial de Barcelona, Barcelona, Catalonia, Spain
| | - Helena Colom
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Marc Cortal
- Ability Pharmaceuticals, SL, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | | | - Marc Yeste-Velasco
- Ability Pharmaceuticals, SL, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Antonio Perez
- Ability Pharmaceuticals, SL, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Jordi Rodon
- Early Clinical Drug Development Group, Vall d´Hebron Institute of Oncology (VHIO), Barcelona, Catalonia, Spain; Department of Thoracic/Head & Neck Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Davendra P S Sohal
- Division of Hematology and Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - José Miguel Lizcano
- Departament of Biochemistry and Institute of Neuroscience, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Catalonia, Spain
| | - Carles Domènech
- Ability Pharmaceuticals, SL, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - José Alfón
- Ability Pharmaceuticals, SL, Cerdanyola del Vallès, Barcelona, Catalonia, Spain.
| | - Pere Gascón
- IntherUnit, Hospital Clínic i Provincial de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
22
|
Spirina LV, Avgustinovich AV, Afanas'ev SG, Cheremisina OV, Volkov MY, Choynzonov EL, Gorbunov AK, Usynin EA. Molecular Mechanism of Resistance to Chemotherapy in Gastric Cancers, the Role of Autophagy. Curr Drug Targets 2021; 21:713-721. [PMID: 31775598 DOI: 10.2174/1389450120666191127113854] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Gastric cancer (GC) is biologically and genetically heterogeneous with complex carcinogenesis at the molecular level. Despite the application of multiple approaches in the GC treatment, its 5-year survival is poor. A major limitation of anti-cancer drugs application is intrinsic or acquired resistance, especially to chemotherapeutical agents. It is known that the effectiveness of chemotherapy remains debatable and varies according to the molecular type of GC. Chemotherapy has an established role in the management of GC. Perioperative chemotherapy or postoperative chemotherapy is applied for localized ones. Most of the advanced GC patients have a poor response to treatment and unfavorable outcomes with standard therapies. Resistance substantially limits the depth and duration of clinical responses to targeted anticancer therapies. Through the use of complementary experimental approaches, investigators have revealed that cancer cells can achieve resistance through adaptation or selection driven by specific genetic, epigenetic, or microenvironmental alterations. Ultimately, these diverse alterations often lead to the activation of MAPK, AKT/mTOR, and Wnt/β-catenin signaling pathways that, when co-opted, enable cancer cells to survive drug treatments. We have summarized the mechanisms of resistance development to cisplatin, 5-fluorouracil, and multidrug resistance in the GC management. The complexity of molecular targets and components of signaling cascades altered in the resistance development results in the absence of significant benefits in GC treatment, and its efficacy remains low. The universal process responsible for the failure in the multimodal approach in GC treatment is autophagy. Its dual role in oncogenesis is the most unexplored issue. We have discussed the possible mechanism of autophagy regulation upon the action of endogenous factors and drugs. The experimental data obtained in the cultured GC cells need further verification. To overcome the cancer resistance and to prevent autophagy as the main reason of ineffective treatment, it is suggested the concept of the direct influence of autophagy molecular markers followed by the standard chemotherapy. Dozen of studies have focused on finding the rationale for the benefits of such complex therapy. The perspectives in the molecular-based management of GC are associated with the development of molecular markers predicting the protective autophagy initiation and search for novel targets of effective anticancer therapy.
Collapse
Affiliation(s)
- Liudmila V Spirina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| | - Alexandra V Avgustinovich
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Sergey G Afanas'ev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Olga V Cheremisina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Maxim Yu Volkov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Evgeny L Choynzonov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| | - Alexey K Gorbunov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Evgeny A Usynin
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| |
Collapse
|
23
|
Yamamoto S, Lee S, Ariyasu T, Endo S, Miyata S, Yasuda A, Harashima A, Ohta T, Kumagai-Τakei N, Ito T, Shimizu Y, Srinivas B, Sada N, Nishimura Y, Otsuki T. Ingredients such as trehalose and hesperidin taken as supplements or foods reverse alterations in human T cells, reducing asbestos exposure-induced antitumor immunity. Int J Oncol 2021; 58:2. [PMID: 33655329 PMCID: PMC7891817 DOI: 10.3892/ijo.2021.5182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Exposure of human immune cells to asbestos causes a reduction in antitumor immunity. The present study aimed to investigate the recovery of reduced antitumor immunity by several ingredients taken as supplements or foods, including trehalose (Treh) and glycosylated hesperidin (gHesp). Peripheral blood CD4+ cells were stimulated with IL-2, anti-CD3 and anti-CD28 antibodies for 3 days, followed by further stimulation with IL-2 for 7 days. Subsequently, cells were stimulated with IL-2 for an additional 28 days. During the 28 days, cells were cultured in the absence or presence of 50 μg/ml chrysotile asbestos fibers. In addition, cells were treated with 10 mM Treh or 10 μM gHesp. Following culture for 28 days, reverse transcription-quantitative PCR was performed to assess the expression levels of transcription factors, cytokines and specific genes, including matrix metalloproteinase-7 (MMP-7), nicotinamide nucleotide transhydrogenase (NNT) and C-X-C motif chemokine receptor 3, in unstimulated cells (fresh) and cells stimulated with PMA and ionomycin (stimuli). The results demonstrated that compared with the control group, chrysotile-exposure induced alterations in MMP-7, NNT and IL-17A expression levels were not observed in the 'Treh' and 'gHesp' groups in stimulated cells. The results suggested that Treh and gHesp may reverse asbestos exposure-induced reduced antitumor immunity in T helper cells. However, further investigation is required to confirm the efficacy of future trials involving the use of these compounds with high-risk human populations exposed to asbestos, such as workers involved in asbestos-handling activities.
Collapse
Affiliation(s)
- Shoko Yamamoto
- Department of Hygiene, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Suni Lee
- Department of Hygiene, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Toshio Ariyasu
- R&D Division, Hayashibara Co., Ltd., Naka-ku, Okayama 702-8006, Japan
| | - Shin Endo
- R&D Division, Hayashibara Co., Ltd., Naka-ku, Okayama 702-8006, Japan
| | - Satomi Miyata
- R&D Division, Hayashibara Co., Ltd., Naka-ku, Okayama 702-8006, Japan
| | - Akiko Yasuda
- R&D Division, Hayashibara Co., Ltd., Naka-ku, Okayama 702-8006, Japan
| | - Akira Harashima
- R&D Division, Hayashibara Co., Ltd., Naka-ku, Okayama 702-8006, Japan
| | - Tsunetaka Ohta
- R&D Division, Hayashibara Co., Ltd., Naka-ku, Okayama 702-8006, Japan
| | - Naoko Kumagai-Τakei
- Department of Hygiene, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Tatsuo Ito
- Department of Hygiene, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Yurika Shimizu
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-0867, Japan
| | - Bandaru Srinivas
- Department of Hygiene, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Nagisa Sada
- Department of Hygiene, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Yasumitsu Nishimura
- Department of Hygiene, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| |
Collapse
|
24
|
Owens LV, Benedetto A, Dawson N, Gaffney CJ, Parkin ET. Gene therapy-mediated enhancement of protective protein expression for the treatment of Alzheimer's disease. Brain Res 2021; 1753:147264. [PMID: 33422539 DOI: 10.1016/j.brainres.2020.147264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/22/2020] [Accepted: 12/20/2020] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is the leading form of dementia but lacks curative treatments. Current understanding of AD aetiology attributes the development of the disease to the misfolding of two proteins; amyloid-β (Aβ) and hyperphosphorylated tau, with their pathological accumulation leading to concomitant oxidative stress, neuroinflammation, and neuronal death. These processes are regulated at multiple levels to maintain homeostasis and avert disease. However, many of the relevant regulatory proteins appear to be downregulated in the AD-afflicted brain. Enhancement/restoration of these 'protective' proteins, therefore, represents an attractive therapeutic avenue. Gene therapy is a desirable means of achieving this because it is not associated with the side-effects linked to systemic protein administration, and sustained protein expression virtually eliminates compliance issues. The current article represents a focused and succinct review of the better established 'protective' protein targets for gene therapy enhancement/restoration rather than being designed as an exhaustive review incorporating less validated protein subjects. In addition, we will discuss how the risks associated with uncontrolled or irreversible gene expression might be mitigated through combining neuronal-specific promoters, inducible expression systems and localised injections. Whilst many of the gene therapy targets reviewed herein are yet to enter clinical trials, preclinical testing has thus far demonstrated encouraging potential for the gene therapy-based treatment of AD.
Collapse
Affiliation(s)
- Lauren V Owens
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Alexandre Benedetto
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Christopher J Gaffney
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Edward T Parkin
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK.
| |
Collapse
|
25
|
Aliper AM, Bozdaganyan ME, Sarkisova VA, Veviorsky AP, Ozerov IV, Orekhov PS, Korzinkin MB, Moskalev A, Zhavoronkov A, Osipov AN. Radioprotectors.org: an open database of known and predicted radioprotectors. Aging (Albany NY) 2020; 12:15741-15755. [PMID: 32805729 PMCID: PMC7467366 DOI: 10.18632/aging.103815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
The search for radioprotectors is an ambitious goal with many practical applications. Particularly, the improvement of human radioresistance for space is an important task, which comes into view with the recent successes in the space industry. Currently, all radioprotective drugs can be divided into two large groups differing in their effectiveness depending on the type of exposure. The first of these is radioprotectors, highly effective for pulsed, and some types of relatively short exposure to irradiation. The second group consists of long-acting radioprotectors. These drugs are effective for prolonged and fractionated irradiation. They also protect against impulse exposure to ionizing radiation, but to a lesser extent than short-acting radioprotectors. Creating a database on radioprotectors is a necessity dictated by the modern development of science and technology. We have created an open database, Radioprotectors.org, containing an up-to-date list of substances with proven radioprotective properties. All radioprotectors are annotated with relevant chemical and biological information, including transcriptomic data, and can be filtered according to their properties. Additionally, the performed transcriptomics analysis has revealed specific transcriptomic profiles of radioprotectors, which should facilitate the search for potent radioprotectors.
Collapse
Affiliation(s)
| | - Marine E Bozdaganyan
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong.,Lomonosov Moscow State University, School of Biology, Moscow, Russia.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Viktoria A Sarkisova
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong.,Lomonosov Moscow State University, School of Biology, Moscow, Russia
| | | | - Ivan V Ozerov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong
| | - Philipp S Orekhov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong.,Lomonosov Moscow State University, School of Biology, Moscow, Russia.,The Moscow Institute of Physics and Technology, Moscow Region, Dolgoprudny, Russia
| | | | - Alexey Moskalev
- Department of Radioecology, Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the FRC of Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong
| | - Andreyan N Osipov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,The Moscow Institute of Physics and Technology, Moscow Region, Dolgoprudny, Russia.,State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow, Russia
| |
Collapse
|
26
|
Trehalose for Ocular Surface Health. Biomolecules 2020; 10:biom10050809. [PMID: 32466265 PMCID: PMC7277924 DOI: 10.3390/biom10050809] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Trehalose is a natural disaccharide synthesized in various life forms, but not found in vertebrates. An increasing body of evidence demonstrates exceptional bioprotective characteristics of trehalose. This review discusses the scientific findings on potential functions of trehalose in oxidative stress, protein clearance, and inflammation, with an emphasis on animal models and clinical trials in ophthalmology. The main objective is to help understand the beneficial effects of trehalose in clinical trials and practice, especially in patients suffering from ocular surface disease. The discussion is supplemented with an overview of patents for the use of trehalose in dry eye and with prospects for the 2020s.
Collapse
|
27
|
Fan J, Feng Z, Chen N. Spermidine as a target for cancer therapy. Pharmacol Res 2020; 159:104943. [PMID: 32461185 DOI: 10.1016/j.phrs.2020.104943] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Spermidine, as a natural component from polyamine members, is originally isolated from semen and also existed in many natural plants, and can be responsible for cell growth and development in eukaryotes. The supplementation of spermidine can extend health and lifespan across species. Although the elevated levels of polyamines and the regulation of rate-limiting enzymes for polyamine metabolism have been identified as the biomarkers in many cancers, recent epidemiological data support that an increased uptake of spermidine as a caloric restriction mimic can reduce overall mortality associated with cancers. The possible mechanisms between spermidine and cancer development may be related to the precise regulation of polyamine metabolism, anti-cancer immunosurveillance, autophagy, and apoptosis. Increased intake of polyamine seems to suppress tumorigenesis, but appears to accelerate the growth of established tumors. Based on these observations and the absolute requirement for polyamines in tumor growth, spermidine could be a rational target for chemoprevention and clinical therapeutics of cancers.
Collapse
Affiliation(s)
- Jingjing Fan
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China
| | - Ziyuan Feng
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
28
|
Xu F, Hua C, Tautenhahn HM, Dirsch O, Dahmen U. The Role of Autophagy for the Regeneration of the Aging Liver. Int J Mol Sci 2020; 21:ijms21103606. [PMID: 32443776 PMCID: PMC7279469 DOI: 10.3390/ijms21103606] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Age is one of the key risk factors to develop malignant diseases leading to a high incidence of hepatic tumors in the elderly population. The only curative treatment for hepatic tumors is surgical removal, which initiates liver regeneration. However, liver regeneration is impaired with aging, leading to an increased surgical risk for the elderly patient. Due to the increased risk, those patients are potentially excluded from curative surgery. Aging impairs autophagy via lipofuscin accumulation and inhibition of autophagosome formation. Autophagy is a recycling mechanism for eukaryotic cells to maintain homeostasis. Its principal function is to degrade endogenous bio-macromolecules for recycling cellular substances. A number of recent studies have shown that the reduced regenerative capacity of the aged remnant liver can be restored by promoting autophagy. Autophagy can be activated via multiple mTOR-dependent and mTOR-independent pathways. However, inducing autophagy through the mTOR-dependent pathway alone severely impairs liver regeneration. In contrast, recent observations suggest that inducing autophagy via mTOR-independent pathways might be promising in promoting liver regeneration. Conclusion: Activation of autophagy via an mTOR-independent autophagy inducer is a potential therapy for promoting liver regeneration, especially in the elderly patients at risk.
Collapse
Affiliation(s)
- Fengming Xu
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
| | - Chuanfeng Hua
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz gGmbH, 09111 Chemnitz, Germany;
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
- Correspondence: ; Tel.: +49-03641-9325350
| |
Collapse
|
29
|
Choi YK, Kang JI, Han S, Kim YR, Jo J, Kang YW, Choo DR, Hyun JW, Koh YS, Yoo ES, Kang HK. L-Ascorbic Acid Inhibits Breast Cancer Growth by Inducing IRE/JNK/CHOP-Related Endoplasmic Reticulum Stress-Mediated p62/SQSTM1 Accumulation in the Nucleus. Nutrients 2020; 12:nu12051351. [PMID: 32397306 PMCID: PMC7284633 DOI: 10.3390/nu12051351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/24/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
Anticancer effects of L-ascorbic acid (Vitamin C, L-AA) have been reported in various types of cancers. L-AA intake reduces breast cancer recurrence and mortality; however, the role of L-AA in the treatment of breast cancer remains poorly understood. In this study, we investigated the effect and mechanism action of L-AA on breast cancer growth. L-AA inhibited the growth of breast cancer cells by inducing apoptotic cell death at the evaluated treatment concentrations without affecting normal cells. Moreover, L-AA induces autophagosome formation via regulation of mammalian target of rapamycin (mTOR), Beclin1, and autophagy-related genes (ATGs) and increased autophagic flux. Notably, we observed that L-AA increased p62/SQSTM1 (sequestosome 1) protein levels. Accumulation of p62 protein in cancer cells in response to stress has been reported, but its role in cancer regulation remains controversial. Here, we demonstrated that L-AA-induced p62 accumulation is related to L-AA-induced breast cancer growth inhibition. Furthermore, L-AA induced endoplasmic reticulum (ER) stress via the IRE–JNK–CHOP (inositol-requiring endonuclease–c-Jun N-terminal kinase–C/EBP homologous protein) signaling pathways, which increased the nuclear levels of p62/SQSTM1. These findings provide evidence that L-AA-induced ER stress could be crucial for p62 accumulation-dependent cell death, and L-AA can be useful in breast cancer treatment.
Collapse
Affiliation(s)
- Youn Kyung Choi
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
| | - Jung-Il Kang
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
| | - Sanghoon Han
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
| | - Young Ree Kim
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
| | - Jaemin Jo
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
| | - Yong Woo Kang
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
| | - Do Ryeon Choo
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
| | - Jin Won Hyun
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
- Jeju Research Center for Natural Medicine, Jeju National University; 102 Jejudaehakno, Jeju 63243, Korea
| | - Young Sang Koh
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
- Jeju Research Center for Natural Medicine, Jeju National University; 102 Jejudaehakno, Jeju 63243, Korea
| | - Eun-Sook Yoo
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
- Jeju Research Center for Natural Medicine, Jeju National University; 102 Jejudaehakno, Jeju 63243, Korea
| | - Hee-Kyoung Kang
- Department of Medicine, School of Medicine, Jeju National University 102 Jejudaehakno, Jeju 63243, Korea; (Y.K.C.); (J.-I.K.); (S.H.); (Y.R.K.); (J.J.); (Y.W.K.); (D.R.C.); (J.W.H.); (Y.S.K.); (E.-S.Y.)
- Jeju Research Center for Natural Medicine, Jeju National University; 102 Jejudaehakno, Jeju 63243, Korea
- Correspondence: ; Tel.:+82-10-6214-5464
| |
Collapse
|
30
|
Kuei CH, Lin HY, Lee HH, Lin CH, Zheng JQ, Chen KC, Lin YF. IMPA2 Downregulation Enhances mTORC1 Activity and Restrains Autophagy Initiation in Metastatic Clear Cell Renal Cell Carcinoma. J Clin Med 2020; 9:jcm9040956. [PMID: 32235551 PMCID: PMC7230261 DOI: 10.3390/jcm9040956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Although mTOR inhibitors have been approved as first-line therapy for treating metastatic clear cell renal cell carcinoma (ccRCC), the lack of useful markers reduces their therapeutic effectiveness. The objective of this study was to estimate if inositol monophosphatase 2 (IMPA2) downregulation refers to a favorable outcome in metastatic ccRCC receiving mTOR inhibitor treatment. Gene set enrichment analysis predicted a significant activation of mTORC1 in the metastatic ccRCC with IMPA2 downregulation. Transcriptional profiling of IMPA2 and mTORC1-related gene set revealed significantly inverse correlation in ccRCC tissues. Whereas the enforced expression of exogenous IMPA2 inhibited the phosphorylation of Akt/mTORC1, artificially silencing IMPA2 led to increased phosphorylation of Akt/mTORC1 in ccRCC cells. The pharmaceutical inhibition of mTORC1 activity by rapamycin reinforced autophagy initiation but suppressed the cellular migration and lung metastatic abilities of IMPA2-silenced ccRCC cells. In contrast, blocking autophagosome formation with 3-methyladenine rescued the mitigated metastatic potential in vitro and in vivo in IMPA2-overexpressing ccRCC cells. Our findings indicated that IMPA2 downregulation negatively activates mTORC1 activity and could be a biomarker for guiding the use of mTOR inhibitors or autophagy inducers to combat metastatic ccRCC in the clinic.
Collapse
Affiliation(s)
- Chia-Hao Kuei
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.K.); (H.-Y.L.); (H.-H.L.); (J.-Q.Z.); (K.-C.C.)
- Department of Urology, Division of Surgery, Cardinal Tien Hospital, Xindian district, New Taipei City 23148, Taiwan
| | - Hui-Yu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.K.); (H.-Y.L.); (H.-H.L.); (J.-Q.Z.); (K.-C.C.)
- Department of Breast Surgery and General Surgery, Division of Surgery, Cardinal Tien Hospital, Xindian district, New Taipei City 23148, Taiwan
| | - Hsun-Hua Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.K.); (H.-Y.L.); (H.-H.L.); (J.-Q.Z.); (K.-C.C.)
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Neurology, Vertigo and Balance Impairment Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Che-Hsuan Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jing-Quan Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.K.); (H.-Y.L.); (H.-H.L.); (J.-Q.Z.); (K.-C.C.)
- Department of Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Kuan-Chou Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.K.); (H.-Y.L.); (H.-H.L.); (J.-Q.Z.); (K.-C.C.)
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23148, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.K.); (H.-Y.L.); (H.-H.L.); (J.-Q.Z.); (K.-C.C.)
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 ext. 3106
| |
Collapse
|
31
|
Yang X, Bayat V, DiDonato N, Zhao Y, Zarnegar B, Siprashvili Z, Lopez-Pajares V, Sun T, Tao S, Li C, Rump A, Khavari P, Lu B. Genetic and genomic studies of pathogenic EXOSC2 mutations in the newly described disease SHRF implicate the autophagy pathway in disease pathogenesis. Hum Mol Genet 2020; 29:541-553. [PMID: 31628467 PMCID: PMC7068030 DOI: 10.1093/hmg/ddz251] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
Missense mutations in the RNA exosome component exosome component 2 (EXOSC2), also known as ribosomal RNA-processing protein 4 (RRP4), were recently identified in two unrelated families with a novel syndrome known as Short stature, Hearing loss, Retinitis pigmentosa and distinctive Facies (SHRF, #OMIM 617763). Little is known about the mechanism of the SHRF pathogenesis. Here we have studied the effect of mutations in EXOSC2/RRP4 in patient-derived lymphoblasts, clustered regularly interspaced short palindromic repeats (CRISPR)-generated mutant fetal keratinocytes and Drosophila. We determined that human EXOSC2 is an essential gene and that the pathogenic G198D mutation prevents binding to other RNA exosome components, resulting in protein and complex instability and altered expression and/or activities of critical genes, including those in the autophagy pathway. In parallel, we generated multiple CRISPR knockouts of the fly rrp4 gene. Using these flies, as well as rrp4 mutants with Piggy Bac (PBac) transposon insertion in the 3'UTR and RNAi flies, we determined that fly rrp4 was also essential, that fly rrp4 phenotypes could be rescued by wild-type human EXOSC2 but not the pathogenic form and that fly rrp4 is critical for eye development and maintenance, muscle ultrastructure and wing vein development. We found that overexpression of the transcription factor MITF was sufficient to rescue the small eye and adult lethal phenotypes caused by rrp4 inhibition. The autophagy genes ATG1 and ATG17, which are regulated by MITF, had similar effect. Pharmacological stimulation of autophagy with rapamycin also rescued the lethality caused by rrp4 inactivation. Our results implicate defective autophagy in SHRF pathogenesis and suggest therapeutic strategies.
Collapse
Affiliation(s)
- Xue Yang
- Department travellers of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
- Department of Dermatology, Stanford School of Medicine, Stanford, CA 94305, USA
- Program in Cancer Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Vafa Bayat
- Department travellers of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | | | - Yang Zhao
- Department of Dermatology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Brian Zarnegar
- Department of Dermatology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Zurab Siprashvili
- Department of Dermatology, Stanford School of Medicine, Stanford, CA 94305, USA
| | | | - Tao Sun
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Shiying Tao
- Department of Dermatology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Chenjian Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Andreas Rump
- Institute for Clinical Genetics, TU Dresden, Dresden, Germany
| | - Paul Khavari
- Department of Dermatology, Stanford School of Medicine, Stanford, CA 94305, USA
- Program in Cancer Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Bingwei Lu
- Department travellers of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
- Program in Cancer Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Restoration of Autophagic Flux Rescues Oxidative Damage and Mitochondrial Dysfunction to Protect against Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7810320. [PMID: 31976028 PMCID: PMC6954474 DOI: 10.1155/2019/7810320] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/07/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Oxidative stress-induced mitochondrial dysfunction and nucleus pulposus (NP) cell apoptosis play crucial roles in the development of intervertebral disc degeneration (IDD). Increasing studies have shown that interventions targeting impaired autophagic flux can maintain cellular homeostasis by relieving oxidative damage. Here, we investigated the effect of curcumin (CUR), a known autophagy activator, on IDD in vitro and in vivo. CUR suppressed tert-butyl hydroperoxide- (TBHP-) induced oxidative stress and mitochondrial dysfunction and thereby inhibited human NP cell apoptosis, senescence, and ECM degradation. CUR treatment induced autophagy and enhanced autophagic flux in an AMPK/mTOR/ULK1-dependent manner. Notably, CUR alleviated TBHP-induced interruption of autophagosome-lysosome fusion and impairment of lysosomal function and thus contributed to the restoration of blocked autophagic clearance. These protective effects of CUR in TBHP-stimulated human NP cells resembled the effects produced by the autophagy inducer rapamycin, but the effects were partially eliminated by 3-methyladenine- and compound C-mediated inhibition of autophagy initiation or chloroquine-mediated obstruction of autophagic flux. Lastly, CUR also exerted a protective effect against puncture-induced IDD progression in vivo. Our results showed that suppression of excessive ROS production and mitochondrial dysfunction through enhancement of autophagy coupled with restoration of autophagic flux ameliorated TBHP-induced human NP cell apoptosis, senescence, and ECM degradation. Thus, maintenance of the proper functioning of autophagy represents a promising therapeutic strategy for IDD, and CUR might serve as an effective therapeutic agent for IDD.
Collapse
|
33
|
Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol 2019; 136:27-41. [DOI: 10.1016/j.yjmcc.2019.09.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
|
34
|
Bonam SR, Ruff M, Muller S. HSPA8/HSC70 in Immune Disorders: A Molecular Rheostat that Adjusts Chaperone-Mediated Autophagy Substrates. Cells 2019; 8:E849. [PMID: 31394830 PMCID: PMC6721745 DOI: 10.3390/cells8080849] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
HSPA8/HSC70 is a molecular chaperone involved in a wide variety of cellular processes. It plays a crucial role in protein quality control, ensuring the correct folding and re-folding of selected proteins, and controlling the elimination of abnormally-folded conformers and of proteins daily produced in excess in our cells. HSPA8 is a crucial molecular regulator of chaperone-mediated autophagy, as a detector of substrates that will be processed by this specialized autophagy pathway. In this review, we shortly summarize its structure and overall functions, dissect its implication in immune disorders, and list the known pharmacological tools that modulate its functions. We also exemplify the interest of targeting HSPA8 to regulate pathological immune dysfunctions.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Neuroimmunology & peptide therapy, Biotechnology and cell signaling, CNRS-University of Strasbourg, Illkirch 67412, France/Laboratory of excellence Medalis, 67000 Strasbourg, France
| | - Marc Ruff
- Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404 Strasbourg, France
| | - Sylviane Muller
- Neuroimmunology & peptide therapy, Biotechnology and cell signaling, CNRS-University of Strasbourg, Illkirch 67412, France/Laboratory of excellence Medalis, 67000 Strasbourg, France.
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France.
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, 67000 Strasbourg, France.
| |
Collapse
|
35
|
Zhang L, Wang H. Long Non-coding RNA in CNS Injuries: A New Target for Therapeutic Intervention. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:754-766. [PMID: 31437654 PMCID: PMC6709344 DOI: 10.1016/j.omtn.2019.07.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022]
Abstract
CNS injuries, such as traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), and cerebral ischemic stroke, are important causes of death and long-term disability worldwide. As an important class of pervasive genes involved in many pathophysiological processes, long non-coding RNAs (lncRNAs) have received attention in the past decades. Multiple studies indicate that lncRNAs are abundant in the CNS and have a key role in brain function as well as many neurological disorders, especially in CNS injuries. Several investigations have deciphered that regulation of lncRNAs exert pro-angiogenesis, anti-apoptosis, and anti-inflammation effects in CNS injury via different molecules and pathways, including microRNA (miRNA), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT), Notch, and p53. Thus, lncRNAs show great promise as molecular targets in CNS injuries. In this article, we provide an updated review of the current state of our knowledge about the relationship between lncRNAs and CNS injuries, highlighting the specific roles of lncRNAs in CNS injuries.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
36
|
Koustas E, Sarantis P, Kyriakopoulou G, Papavassiliou AG, Karamouzis MV. The Interplay of Autophagy and Tumor Microenvironment in Colorectal Cancer-Ways of Enhancing Immunotherapy Action. Cancers (Basel) 2019; 11:E533. [PMID: 31013961 PMCID: PMC6520891 DOI: 10.3390/cancers11040533] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 02/05/2023] Open
Abstract
Autophagy as a primary homeostatic and catabolic process is responsible for the degradation and recycling of proteins and cellular components. The mechanism of autophagy has a crucial role in several cellular functions and its dysregulation is associated with tumorigenesis, tumor-stroma interactions, and resistance to cancer therapy. A growing body of evidence suggests that autophagy is also a key regulator of the tumor microenvironment and cellular immune response in different types of cancer, including colorectal cancer (CRC). Furthermore, autophagy is responsible for initiating the immune response especially when it precedes cell death. However, the role of autophagy in CRC and the tumor microenvironment remains controversial. In this review, we identify the role of autophagy in tumor microenvironment regulation and the specific mechanism by which autophagy is implicated in immune responses during CRC tumorigenesis and the context of anticancer therapy.
Collapse
Affiliation(s)
- Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Georgia Kyriakopoulou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
- First Department of Internal Medicine, 'Laiko' General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
37
|
Jang YJ, Kim JH, Byun S. Modulation of Autophagy for Controlling Immunity. Cells 2019; 8:cells8020138. [PMID: 30744138 PMCID: PMC6406335 DOI: 10.3390/cells8020138] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an essential process that maintains physiological homeostasis by promoting the transfer of cytoplasmic constituents to autophagolysosomes for degradation. In immune cells, the autophagy pathway plays an additional role in facilitating proper immunological functions. Specifically, the autophagy pathway can participate in controlling key steps in innate and adaptive immunity. Accordingly, alterations in autophagy have been linked to inflammatory diseases and defective immune responses against pathogens. In this review, we discuss the various roles of autophagy signaling in coordinating immune responses and how these activities are connected to pathological conditions. We highlight the therapeutic potential of autophagy modulators that can impact immune responses and the mechanisms of action responsible.
Collapse
Affiliation(s)
- Young Jin Jang
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanjugun55365, Korea.
| | - Jae Hwan Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
| | - Sanguine Byun
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea.
| |
Collapse
|
38
|
Qin A, Zhong T, Zou H, Wan X, Yao B, Zheng X, Yin D. Critical role of Tim-3 mediated autophagy in chronic stress induced immunosuppression. Cell Biosci 2019; 9:13. [PMID: 30680089 PMCID: PMC6341633 DOI: 10.1186/s13578-019-0275-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/09/2019] [Indexed: 01/02/2023] Open
Abstract
Background Psychological and physical stress can either enhance or suppress immune functions depending on a variety of factors such as duration and severity of stressful situation. Chronic stress exerts a significantly suppressive effect on immune functions. However, the mechanisms responsible for this phenomenon remain to be elucidated. Autophagy plays an essential role in modulating cellular homeostasis and immune responses. However, it is not known yet whether autophagy contributes to chronic stress-induced immunosuppression. T cell immunoglobulin and mucin domain 3 (Tim-3) has shown immune-suppressive effects and obviously positive regulation on cell apoptosis. Tim-3 combines with Tim-3 ligand galectin-9 to modulate apoptosis. However, its impact on autophagy and chronic stress-induced immunosuppression is not yet identified. Results We found remarkably higher autophagy level in the spleens of mice that were subjected to chronic restraint stress compared with the control group. We also found that inhibition of autophagy by the autophagy inhibitor 3-methyladenine (3-MA) significantly attenuated chronic stress-induced alterations of pro-inflammatory and anti-inflammatory cytokine levels. We further elucidated that 3-MA dramatically inhibited the reduction of lymphocyte numbers. Moreover, chronic stress dramatically enhanced the expression of Tim-3 and galectin-9. Inhibition of Tim-3 by small interfering RNA against Tim-3 significantly decreased the level of autophagy and immune suppression in isolated primary splenocytes from stressed mice. In addition, α-lactose, a blocker for the interaction of Tim-3 and galectin-9, also decreased the autophagy level and immune suppression. Conclusion Chronic stress induces autophagy, resulting with suppression of immune system. Tim-3 and galectin-9 play a crucial regulatory role in chronic stress-induced autophagy. These studies suggest that Tim-3 mediated autophagy may offer a novel therapeutic strategy against the deleterious effects of chronic stress on the immune system.
Collapse
Affiliation(s)
- Anna Qin
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Ting Zhong
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Huajiao Zou
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Xiaoya Wan
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Bifeng Yao
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Xinbin Zheng
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Deling Yin
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China.,2Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
| |
Collapse
|
39
|
Effect of Trehalose and Glycerol on the Resistance of Recombinant Saccharomyces cerevisiae Strains to Desiccation, Freeze-Thaw and Osmotic Stresses. SCIENCE AND INNOVATION 2018. [DOI: 10.15407/scine14.06.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
40
|
WIPI1, BAG1, and PEX3 Autophagy-Related Genes Are Relevant Melanoma Markers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1471682. [PMID: 30622661 PMCID: PMC6304818 DOI: 10.1155/2018/1471682] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
ROS and oxidative stress may promote autophagy; on the other hand, autophagy may help reduce oxidative damages. According to the known interplay of ROS, autophagy, and melanoma onset, we hypothesized that autophagy-related genes (ARGs) may represent useful melanoma biomarkers. We therefore analyzed the gene and protein expression of 222 ARGs in human melanoma samples, from 5 independent expression databases (overall 572 patients). Gene expression was first evaluated in the GEO database. Forty-two genes showed extremely high ability to discriminate melanoma from nevi (63 samples) according to ROC (AUC ≥ 0.85) and Mann-Whitney (p < 0.0001) analyses. The 9 genes never related to melanoma before were then in silico validated in the IST online database. BAG1, CHMP2B, PEX3, and WIPI1 confirmed a strong differential gene expression, in 355 samples. A second-round validation performed on the Human Protein Atlas database showed strong differential protein expression for BAG1, PEX3, and WIPI1 in melanoma vs control samples, according to the image analysis of 80 human histological sections. WIPI1 gene expression also showed a significant prognostic value (p < 0.0001) according to 102 melanoma patients' survival data. We finally addressed in Oncomine database whether WIPI1 overexpression is melanoma-specific. Within more than 20 cancer types, the most relevant WIPI1 expression change (p = 0.00002; fold change = 3.1) was observed in melanoma. Molecular/functional relationships of the investigated molecules with melanoma and their molecular/functional network were analyzed via Chilibot software, STRING analysis, and gene ontology enrichment analysis. We conclude that WIPI1 (AUC = 0.99), BAG1 (AUC = 1), and PEX3 (AUC = 0.93) are relevant novel melanoma markers at both gene and protein levels.
Collapse
|
41
|
Ma X, Long F, Yun Y, Dang J, Wei S, Zhang Q, Li J, Zhang H, Zhang W, Wang Z, Liu Q, Zou C. ORMDL3 and its implication in inflammatory disorders. Int J Rheum Dis 2018; 21:1154-1162. [PMID: 29879314 DOI: 10.1111/1756-185x.13324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A growing body of evidence has suggested the genetic association of ORMDL3 gene (ORMDL Sphingolipid Biosynthesis Regulator 3) polymorphisms with a diverse set of inflammatory disorders that include bronchial asthma, inflammatory bowel disease, ankylosing spondylitis and atherosclerosis. Gene functional investigations have revealed the particular relevance of ORMDL3 in endoplasmic reticulum stress, lipid metabolism and inflammatory reactions. Additionally, several reports have recently added a new dimension to our understanding of the modulation of ORMDL3 gene expression in inflammation. This mini-review summarizes the pertinent publications regarding the genetic association studies and mechanistic exploration of ORMDL3 in common inflammatory disorders.
Collapse
Affiliation(s)
- Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Feng Long
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Yan Yun
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Dang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China.,Department of Medical Genetics and Cell Biology, Ningxia Medical University, Yinchuan, China
| | - Shijun Wei
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Qian Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Jinzhang Li
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Haizhou Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Wenlong Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Zhengjun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Chengwei Zou
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| |
Collapse
|
42
|
Filali S, Geloën A, Lysenko V, Pirot F, Miossec P. Live-stream characterization of cadmium-induced cell death using visible CdTe-QDs. Sci Rep 2018; 8:12614. [PMID: 30135565 PMCID: PMC6105671 DOI: 10.1038/s41598-018-31077-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022] Open
Abstract
Characterization of cell death currently requires the use of indirect markers, which has largely limited the ability to monitor cell death processes inside the cell. Here, we introduce a new method for the characterization of cell death mechanisms using cadmium telluride quantum dots (CdTe-QDs). Using visible CdTe-QDs with mesenchymal cells (e.g. synoviocytes), live-stream imaging allowed for visualization of cadmium-induced cell death, combining characteristics of apoptosis and autophagy. Initially, similar anti-proliferative effect was observed between 10 µg/ml Cd2+ and CdTe-QDs at 24 h (cell index/cell density ratio decreased from 0.6 to −16.6, p < 0.05) using techniques that do not require the capacity of CdTe-QDs. Apoptosis was confirmed by the quantification of morphological parameters (reduced surface area, increased cell thickness) and positive labeling with annexin V. Autophagy was confirmed by monodansylcadaverine staining, identifying similar autophagic vacuoles with both Cd2+ and CdTe-QD. However, QD imaging allowed for visualization of cadmium elements inside cell structures and their kinetic changes leading to cell death. Cell death characteristics were similar in inflammatory and non-inflammatory environment but were induced up to 4 h earlier in the former. Therefore, live-stream imaging of a visible cytotoxic agent has useful applications not currently possible with indirect methods, including chronological monitoring of cell death.
Collapse
Affiliation(s)
- Samira Filali
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Immunology and Rheumatology, Edouard Herriot Hospital, Hospices Civils de Lyon, University of Lyon, Lyon, France.,Laboratory of Research and Development of Industrial Galenic Pharmacy and Laboratory of Tissue Biology and Therapeutic Engineering UMR-CNRS 5305, Pharmacy Department, FRIPHARM Platform, Edouard Herriot Hospital, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - Alain Geloën
- CarMeN laboratory, INRA UMR1397, INSERM U1060, INSA Lyon, University of Lyon, Lyon, France
| | - Vladimir Lysenko
- Nanotechnology Institute of Lyon, UMR-CNRS 5270, INSA Lyon, University of Lyon, Lyon, France
| | - Fabrice Pirot
- Laboratory of Research and Development of Industrial Galenic Pharmacy and Laboratory of Tissue Biology and Therapeutic Engineering UMR-CNRS 5305, Pharmacy Department, FRIPHARM Platform, Edouard Herriot Hospital, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Immunology and Rheumatology, Edouard Herriot Hospital, Hospices Civils de Lyon, University of Lyon, Lyon, France.
| |
Collapse
|
43
|
Zhang L, Wang H. Autophagy in Traumatic Brain Injury: A New Target for Therapeutic Intervention. Front Mol Neurosci 2018; 11:190. [PMID: 29922127 PMCID: PMC5996030 DOI: 10.3389/fnmol.2018.00190] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/15/2018] [Indexed: 11/23/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most devastating forms of brain injury. Many pathological mechanisms such as oxidative stress, apoptosis and inflammation all contribute to the secondary brain damage and poor outcomes of TBI. Current therapies are often ineffective and poorly tolerated, which drive the explore of new therapeutic targets for TBI. Autophagy is a highly conserved intracellular mechanism during evolution. It plays an important role in elimination abnormal intracellular proteins or organelles to maintain cell stability. Besides, autophagy has been researched in various models including TBI. Previous studies have deciphered that regulation of autophagy by different molecules and pathways could exhibit anti-oxidative stress, anti-apoptosis and anti-inflammation effects in TBI. Hence, autophagy is a promising target for further therapeutic development in TBI. The present review provides an overview of current knowledge about the mechanism of autophagy, the frequently used methods to monitor autophagy, the functions of autophagy in TBI as well as its potential molecular mechanisms based on the pharmacological regulation of autophagy.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
44
|
Russo M, Russo GL. Autophagy inducers in cancer. Biochem Pharmacol 2018; 153:51-61. [PMID: 29438677 DOI: 10.1016/j.bcp.2018.02.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/07/2018] [Indexed: 12/19/2022]
Abstract
Autophagy is a complex, physiological process devoted to degrade and recycle cellular components. Proteins and organelles are first phagocytized by autophagosomes, then digested in lysosomes, and finally recycled to be utilized again during cellular metabolism. Moreover, autophagy holds an important role in the physiopathology of several diseases. In cancer, excellent works demonstrated the dual functions of autophagy in tumour biology: autophagy activation can promote cancer cells survival (protective autophagy), or contribute to cancer cell death (cytotoxic/nonprotective autophagy). A better understanding of the dichotomy roles of autophagy in cancer biology can help to identify or design new drugs able to induce/enhance (or block) autophagic flux. These features will necessary be tissue-dependent and confined to a specific time of treatment. The intent of this review is to focus on the different potentialities of autophagy inducers in cancer prevention versus therapy in order to elicit a desirable clinical response. Few promising synthetic and natural compounds have been identified and the pros and cons of their role in autophagy regulation is reviewed here. In the complex framework of autophagy modulation, "connecting the dots" is not a simple work and the lack of clinical studies further complicates the scenario, but the final goal to obtain clinically relevant autophagy inducers can reveal an unexpected landscape.
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| |
Collapse
|