1
|
De Michele M, Amisano P, Schiavo OG, Cammisotto V, Carnevale R, Forte M, Picchio V, Ciacciarelli A, Berto I, Angeloni U, Pugliese S, Toni D, Lorenzano S. Secondary Brain Injury After Parenchymal Cerebral Hemorrhage in Humans: The Role of NOX2-Mediated Oxidative Stress and Endothelin-1. Int J Mol Sci 2024; 25:13180. [PMID: 39684890 DOI: 10.3390/ijms252313180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Perihematomal hypoperfusion may lead to ischemic damage during intraparenchymal cerebral hemorrhage (ICH), resulting in worse prognosis. We aimed to (1) investigate the relationship between serum biomarkers related to oxidative stress and vasoactive substances and the occurrence of hypoperfusion and ischemic perihematomal lesions in ICH and (2) evaluate their correlation with the volumetric evolution of the hematoma and perihematomal edema. We enrolled 28 patients affected by ICH. Blood samples were collected at three different time points from symptom onset: T0, T1, and T2 (admission, 12-24 h, and 48-72 h, respectively), to measure endothelin-1 (ET-1), nitrites/nitrates (NO), soluble nicotinamide adenine dinucleotide 2 (NOX2)-derived peptide (sNOX2-dp), and asymmetric dimethylarginine (ADMA). Patients underwent brain MRI with perfusion study at T1 and MRI without perfusion at T2. 12 patients had ischemic perihematomal lesions at T1. A higher sNOX2-dp concentration at T0 was observed in patients with ischemic perihematomal lesions compared to those without (p = 0.051) and with a more severe perihematomal edema at T2 (p = 0.011). The ischemic perihematomal lesions development was also associated with an increased hematoma volume (p < 0.005), perilesional edema (p = 0.046), and greater midline shift (p = 0.036). ET-1 values at T1 were inversely correlated with hemorrhage volume at T2 (ρ = -0.717, p = 0.030). NOX2 activation may have a role in the development of ischemic perihematomal lesions. The association between higher ET-1 values and a lower hemorrhage volume could be related to the ET-1 vasoconstriction action on the ruptured vessel wall.
Collapse
Affiliation(s)
- Manuela De Michele
- Stroke Unit, Umberto I Hospital, Emergency Department, Sapienza University, 00185 Rome, Italy
| | - Paolo Amisano
- Department of Human Neurosciences, Sapienza University, 00185 Rome, Italy
| | - Oscar G Schiavo
- Stroke Unit, Umberto I Hospital, Emergency Department, Sapienza University, 00185 Rome, Italy
| | - Vittoria Cammisotto
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy
| | - Roberto Carnevale
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | | | | | - Antonio Ciacciarelli
- Stroke Unit, Umberto I Hospital, Emergency Department, Sapienza University, 00185 Rome, Italy
| | - Irene Berto
- Stroke Unit, Umberto I Hospital, Emergency Department, Sapienza University, 00185 Rome, Italy
| | - Ugo Angeloni
- Neuroradiology Unit, Umberto I Hospital, Emergency Department, Sapienza University, 00185 Rome, Italy
| | - Silvia Pugliese
- Neuroradiology Unit, Umberto I Hospital, Emergency Department, Sapienza University, 00185 Rome, Italy
| | - Danilo Toni
- Department of Human Neurosciences, Sapienza University, 00185 Rome, Italy
| | - Svetlana Lorenzano
- Department of Human Neurosciences, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
2
|
Markowska A, Tarnacka B. Molecular Changes in the Ischemic Brain as Non-Invasive Brain Stimulation Targets-TMS and tDCS Mechanisms, Therapeutic Challenges, and Combination Therapies. Biomedicines 2024; 12:1560. [PMID: 39062133 PMCID: PMC11274560 DOI: 10.3390/biomedicines12071560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability. As the currently used neurorehabilitation methods present several limitations, the ongoing research focuses on the use of non-invasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). NIBS methods were demonstrated to modulate neural excitability and improve motor and cognitive functioning in neurodegenerative diseases. However, their mechanisms of action are not fully elucidated, and the clinical outcomes are often unpredictable. This review explores the molecular processes underlying the effects of TMS and tDCS in stroke rehabilitation, including oxidative stress reduction, cell death, stimulation of neurogenesis, and neuroprotective phenotypes of glial cells. A highlight is put on the newly emerging therapeutic targets, such as ferroptotic and pyroptotic pathways. In addition, the issue of interindividual variability is discussed, and the role of neuroimaging techniques is investigated to get closer to personalized medicine. Furthermore, translational challenges of NIBS techniques are analyzed, and limitations of current clinical trials are investigated. The paper concludes with suggestions for further neurorehabilitation stroke treatment, putting the focus on combination and personalized therapies, as well as novel protocols of brain stimulation techniques.
Collapse
Affiliation(s)
- Aleksandra Markowska
- Department of Rehabilitation Medicine, Faculty of Medicine, Warsaw Medical University, Spartańska 1, 02-637 Warsaw, Poland;
| | | |
Collapse
|
3
|
Gareev I, Beylerli O, Zhao B. MiRNAs as potential therapeutic targets and biomarkers for non-traumatic intracerebral hemorrhage. Biomark Res 2024; 12:17. [PMID: 38308370 PMCID: PMC10835919 DOI: 10.1186/s40364-024-00568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024] Open
Abstract
Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Hypertension is most often the cause of ICH. Less often, atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication, vitamin deficiencies, and other reasons cause hemorrhages. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. This very dangerous disease is difficult to treat, requires surgery and can lead to disability or death. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that are involved in a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., through gene repression. A growing number of studies have demonstrated miRNAs deregulation in various cardiovascular diseases, including ICH. In addition, given that computed tomography (CT) and/or magnetic resonance imaging (MRI) are either not available or do not show clear signs of possible vessel rupture, accurate and reliable analysis of circulating miRNAs in biological fluids can help in early diagnosis for prevention of ICH and prognosis patient outcome after hemorrhage. In this review, we highlight the up-to-date findings on the deregulated miRNAs in ICH, and the potential use of miRNAs in clinical settings, such as therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, China.
- Harbin Medical University No, 157, Baojian Road, Nangang District, Harbin, 150001, China.
| |
Collapse
|
4
|
Kotchetkov P, Blakeley N, Lacoste B. Involvement of brain metabolism in neurodevelopmental disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:67-113. [PMID: 37993180 DOI: 10.1016/bs.irn.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Neurodevelopmental disorders (NDDs) affect a significant portion of the global population and have a substantial social and economic impact worldwide. Most NDDs manifest in early childhood and are characterized by deficits in cognition, communication, social interaction and motor control. Due to a limited understanding of the etiology of NDDs, current treatment options primarily focus on symptom management rather than on curative solutions. Moreover, research on NDDs is problematic due to its reliance on a neurocentric approach. However, recent studies are broadening the scope of research on NDDs, to include dysregulations within a diverse network of brain cell types, including vascular and glial cells. This review aims to summarize studies from the past few decades on potential new contributions to the etiology of NDDs, with a special focus on metabolic signatures of various brain cells. In particular, we aim to convey how the metabolic functions are intimately linked to the onset and/or progression of common NDDs such as autism spectrum disorders, fragile X syndrome, Rett syndrome and Down syndrome.
Collapse
Affiliation(s)
- Pavel Kotchetkov
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nicole Blakeley
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Guo K, Shang Y, Wang Z, Li Y, Chen J, Zhu B, Zhang D, Chen J. BRG1 alleviates microglial activation by promoting the KEAP1-NRF2/HO-1 signaling pathway and minimizing oxidative damage in cerebral ischemia-reperfusion. Int Immunopharmacol 2023; 119:110201. [PMID: 37172425 DOI: 10.1016/j.intimp.2023.110201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
BRG1 is a key factor in the process of apoptosis and oxidative damage; however, its role in the pathophysiology of ischemic stroke is unclear. Here, we discovered that during middle cerebral artery occlusion (MCAO) reperfusion in mice, microglia were significantly activated in the cerebral cortex of the infarct area, and BRG1 expression was increased in the mouse MCAO/R model, peaking at 4 days. In microglia subjected to OGD/R, BRG1 expression increased and peaked at 12 h after reoxygenation. After ischemic stroke, in vitro changing the expression of BRG1 expression levels greatly altered the activation of microglia and the production of antioxidant and pro-oxidant proteins. Knocking down BRG1 expression levels in vitro increased the inflammatory response, promoted microglial activation, and decreased the expression of the NRF2/HO-1 signaling pathway after ischemic stroke. In contrast, overexpression of BRG1 dramatically reduced the expression of NRF2/HO-1 signaling pathway and microglial activation. Our research reveals that BRG1 reduces postischemic oxidative damage via the KEAP1-NRF2/HO-1 signaling pathway, protecting against brain ischemia/reperfusion injury. Using BRG1 as a pharmaceutical target to inhibit inflammatory responses to reduce oxidative damage may be a unique way to explore techniques for the treatment of ischemic stroke and other cerebrovascular illnesses.
Collapse
Affiliation(s)
- Kongwei Guo
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Clinical Medicine, Medical College, Nantong University, Nantong 226001, People's Republic of China; Nantong Key Laboratory of Molecular Immunology, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Yanxing Shang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Nantong Key Laboratory of Molecular Immunology, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Zhao Wang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Clinical Medicine, Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Yu Li
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Jinliang Chen
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Respiratory Medicine, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Baofeng Zhu
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Emergency, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Nantong Key Laboratory of Molecular Immunology, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China.
| | - Jianrong Chen
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Respiratory Medicine, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Emergency, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Nantong Key Laboratory of Molecular Immunology, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China.
| |
Collapse
|
6
|
Lin Y, Zhan Z, Hu M, Li H, Zhang B, Wu R, Tan S, Shan Y, Lu Z, Qin B. Inhibition of interaction between ROCK1 and Rubicon restores autophagy in endothelial cells and attenuates brain injury after prolonged ischemia. J Neurochem 2023; 164:172-192. [PMID: 36334306 DOI: 10.1111/jnc.15721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/27/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Acute ischemic stroke (AIS) induces cerebral endothelial cell death resulting in the breakdown of the blood-brain barrier (BBB). Endothelial cell autophagy acts as a protective mechanism against cell death. Autophagy is activated in the very early stages of ischemic stroke and declines after prolonged ischemia. Previous studies have shown that Rubicon can inhibit autophagy. The current study aimed to investigate whether continuous long-term ischemia can inhibit autophagy in endothelial cells after ischemic stroke by regulating the function of Rubicon and its underlying mechanism. Wild-type male C57BL/6J mice were subjected to transient middle cerebral artery occlusion (tMCAO). ROCK1, ROCK2, and NOX2 inhibitors were injected into male mice 1 h before the onset of tMCAO. Disease severity and BBB permeability were evaluated. bEnd.3 cells were cultured in vitro and subjected to oxygen-glucose deprivation (OGD). bEnd.3 cells were pretreated with or without ROCK1, ROCK2, or NOX2 inhibitors overnight and then subjected to OGD. Cell viability and permeability were also evaluated. The expression of Rubicon, ROCK1, and autophagy-related proteins were analyzed. Increased BBB permeability was correlated with Rubicon expression in tMCAO mice and Rubicon was upregulated in endothelial cells subjected to OGD. Autophagy was inhibited in endothelial cells after long-term OGD treatment and knockdown of Rubicon expression restored autophagy and viability in endothelial cells subjected to 6-h OGD. ROCK1 inhibition decreased the interaction between Beclin1 and Rubicon and restored cell viability and autophagy suppressed by 6-h OGD treatment in endothelial cells. Additionally, ROCK1 inhibition suppressed Rubicon, attenuated BBB disruption, and brain injury induced by prolonged ischemia in 6-h tMCAO mice. Prolonged ischemia induced the death of brain endothelial cells and the breakdown of the BBB, thus aggravating brain injury by increasing the interaction of ROCK1 and Rubicon with Beclin1 while inhibiting canonical autophagy. Inhibition of ROCK1 signaling in endothelial cells could be a promising therapeutic strategy to prolong the therapeutic time window in AIS.
Collapse
Affiliation(s)
- Yinyao Lin
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zexin Zhan
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haiyan Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bingjun Zhang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ruizhen Wu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Sha Tan
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yilong Shan
- Department of Rehabilitation Medicine, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bing Qin
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Chen X, Chen D, Chen P, Chen A, Deng J, Wei J, Zeng W, Zheng X. Dexmedetomidine Attenuates Apoptosis and Neurological Deficits by Modulating Neuronal NADPH Oxidase 2-Derived Oxidative Stress in Neonates Following Hypoxic Brain Injury. Antioxidants (Basel) 2022; 11:2199. [PMID: 36358571 PMCID: PMC9686745 DOI: 10.3390/antiox11112199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 08/31/2023] Open
Abstract
Hypoxic-ischemic brain injury is an important cause of neonatal neurological deficits. Our previous study demonstrated that dexmedetomidine (Dex) provided neuroprotection against neonatal hypoxic brain injury; however, the underlying mechanisms remain incompletely elucidated. Overactivation of NADPH oxidase 2 (NOX2) can cause neuronal apoptosis and neurological deficits. Hence, we aimed to investigate the role of neuronal NOX2 in Dex-mediated neuroprotection and to explore its potential mechanisms. Hypoxic injury was modeled in neonatal rodents in vivo and in cultured hippocampal neurons in vitro. Our results showed that pre- or post-treatment with Dex improved the neurological deficits and alleviated the hippocampal neuronal damage and apoptosis caused by neonatal hypoxia. In addition, Dex treatment significantly suppressed hypoxia-induced neuronal NOX2 activation; it also reduced oxidative stress, as evidenced by decreases in intracellular reactive oxygen species (ROS) production, malondialdehyde, and 8-hydroxy-2-deoxyguanosine, as well as increases in the antioxidant enzymatic activity of superoxide dismutase and glutathione peroxidase in neonatal rat hippocampi and in hippocampal neurons. Lastly, the posthypoxicneuroprotective action of Dex was almost completely abolished in NOX2-deficient neonatal mice and NOX2-knockdown neurons. In conclusion, our data demonstrated that neuronal NOX2-mediated oxidative stress is involved in the neuroprotection that Dex provides against apoptosis and neurological deficits in neonates following hypoxia.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Dongtai Chen
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Pinzhong Chen
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Andi Chen
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Jianhui Deng
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Jianjie Wei
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Co-Constructed Laboratory of “Belt and Road”, Fuzhou 350001, China
| |
Collapse
|
8
|
Deng M, Sun J, Peng L, Huang Y, Jiang W, Wu S, Zhou L, Chung SK, Cheng X. Scutellarin acts on the AR-NOX axis to remediate oxidative stress injury in a mouse model of cerebral ischemia/reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154214. [PMID: 35689902 DOI: 10.1016/j.phymed.2022.154214] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Oxidative stress plays an important role in the pathology of ischemic stroke. Studies have confirmedthat scutellarin has antioxidant effects against ischemic injury, and we also reported that the involvement of Aldose reductase (AR) in oxidative stress and cerebral ischemic injury, in this study we furtherly explicit whether the antioxidant effect of scutellarin on cerebral ischemia injury is related to AR gene regulation and its specific mechanism. METHODS C57BL/6N mice (Wild-type, WT) and AR knockout (AR-/-) mice suffered from transient middle cerebral artery occlusion (tMCAO) injury (1 h occlusion followed by 3 days reperfusion), and scutellarin was administered from 2 h before surgery to 3 days after surgery. Subsequently, neurological function was assessed by the modified Longa score method, the histopathological morphology observed with 2,3,5-triphenyltetrazolium chloride (TTC) and hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (Elisa) was used to detect the levels of ROS, 4-hydroxynonenal (4-HNE), 8-hydroxydeoxyguanosine (8-OHDG), Neurotrophin-3 (NT-3), poly ADP-ribose polymerase-1 (PARP1) and 3-nitrotyrosine (3-NT) in the ischemic penumbra regions. Quantitative proteomics profiling using quantitative nano-HPLC-MS/MS were performed to compare the protein expression difference between AR-/- and WT mice with or without tMCAO injury. The expression of AR, nicotinamide adenine dinucleotide phosphate oxidases (NOX1, NOX2 and NOX4) in the ipsilateral side of ischemic brain were detected by qRT-PCR, Western blot and immunofluorescence co-staining with NeuN. RESULTS Scutellarin treatment alleviated brain damage in tMCAO stroke model such as improved neurological function deficit, brain infarct area and neuronal injury and reduced the expression of oxidation-related products, moreover, also down-regulated tMCAO induced AR mRNA and protein expression. In addition, the therapeutic effect of scutellarin on the reduction of cerebral infarction area and neurological function deficits abolished in AR-/- mice under ischemia cerebral injury, which indicated that the effect of scutellarin treatment on tMCAO injury is through regulating AR gene. Proteomic analysis of AR-/- and WT mice indicated AR knockout would affect oxidation reaction even as NADPH related process and activity in mice under cerebral ischemia conditions. Moreover, NOX isoforms (NOX1, NOX2 and NOX4) mRNA and protein expression were significant decreased in neurons of penumbra region in AR-/- mice compared with that in WT mice at 3d after tMCAO injury, which indicated that AR should be the upstream protein regulating NOX after cerebral ischemia. CONCLUSIONS We first reported that AR directly regulates NOX subtypes (not only NOX2 but also NOX1 and NOX4) after cerebral ischaemic injury. Scutellarin specifically targets the AR-NOX axis and has antioxidant effects in mice with cerebral ischaemic injury, providing a theoretical basis and accurate molecular targets for the clinical application of scutellarin.
Collapse
Affiliation(s)
- Minzhen Deng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jingbo Sun
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Lilin Peng
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yan Huang
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Wen Jiang
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Shuang Wu
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Lihua Zhou
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Xiao Cheng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China.
| |
Collapse
|
9
|
Chlorpromazine and Promethazine (C+P) Reduce Brain Injury after Ischemic Stroke through the PKC-δ/NOX/MnSOD Pathway. Mediators Inflamm 2022; 2022:6886752. [PMID: 35873710 PMCID: PMC9307415 DOI: 10.1155/2022/6886752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cerebral ischemia-reperfusion (I/R) incites neurologic damage through a myriad of complex pathophysiological mechanisms, most notably, inflammation and oxidative stress. In I/R injury, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) produces reactive oxygen species (ROS), which promote inflammatory and apoptotic pathways, augmenting ROS production and promoting cell death. Inhibiting ischemia-induced oxidative stress would be beneficial for reducing neuroinflammation and promoting neuronal cell survival. Studies have demonstrated that chlorpromazine and promethazine (C+P) induce neuroprotection. This study investigated how C+P minimizes oxidative stress triggered by ischemic injury. Adult male Sprague-Dawley rats were subject to middle cerebral artery occlusion (MCAO) and subsequent reperfusion. 8 mg/kg of C+P was injected into the rats when reperfusion was initiated. Neurologic damage was evaluated using infarct volumes, neurological deficit scoring, and TUNEL assays. NOX enzymatic activity, ROS production, protein expression of NOX subunits, manganese superoxide dismutase (MnSOD), and phosphorylation of PKC-δ were assessed. Neural SHSY5Y cells underwent oxygen-glucose deprivation (OGD) and subsequent reoxygenation and C+P treatment. We also evaluated ROS levels and NOX protein subunit expression, MnSOD, and p-PKC-δ/PKC-δ. Additionally, we measured PKC-δ membrane translocation and the level of interaction between NOX subunit (p47phox) and PKC-δ via coimmunoprecipitation. As hypothesized, treatment with C+P therapy decreased levels of neurologic damage. ROS production, NOX subunit expression, NOX activity, and p-PKC-δ/PKC-δ were all significantly decreased in subjects treated with C+P. C+P decreased membrane translocation of PKC-δ and lowered the level of interaction between p47phox and PKC-δ. This study suggests that C+P induces neuroprotective effects in ischemic stroke through inhibiting oxidative stress. Our findings also indicate that PKC-δ, NOX, and MnSOD are vital regulators of oxidative processes, suggesting that C+P may serve as an antioxidant.
Collapse
|
10
|
Pineda Sanabria JP, Tolosa Cubillos JM. Accidente cerebrovascular isquémico de la arteria cerebral media. REPERTORIO DE MEDICINA Y CIRUGÍA 2022. [DOI: 10.31260/repertmedcir.01217372.1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
La segunda causa de muerte a nivel mundial corresponde a los ataques cerebrovasculares (ACV), de los cuales más de dos terceras partes son de origen isquémico. Causan discapacidad a largo plazo por lo que conocer la anatomía de la circulación cerebral y las posibles manifestaciones clínicas del ACV isquémico permite sospechar, diagnosticar y brindar un manejo oportuno y apropiado, reduciendo el impacto en la salud y la calidad de vida del paciente y sus cuidadores. Objetivo: relacionar los últimos hallazgos en la anatomía arterial cerebral, los mecanismos fisiopatológicos y las manifestaciones clínicas del ACV isquémico de la arteria cerebral media (ACM). Materiales y métodos: revisión de la literatura mediante la búsqueda con términos MeSH en la base de datos Medline, incluyendo estudios, ensayos y metaanálisis publicados entre 2000 y 2020 en inglés y español, además de otras referencias para complementar la información. Resultados: se seleccionaron 59 publicaciones, priorizando la de los últimos 5 años y las más relevantes del rango temporal consultado. Conclusiones: son escasos los estudios sobre la presentación clínica de los ACV, lo que sumado a la variabilidad interindividual de la irrigación cerebral, dificulta la determinación clínica de la localización de la lesión dentro del lecho vascular. La reperfusión del área de penumbra isquémica como objetivo terapéutico se justifica por los mecanismos fisiopatológicos de la enfermedad.
Collapse
|
11
|
Wasan H, Singh D, Joshi B, Sharma U, Dinda AK, Reeta KH. Post Stroke Safinamide Treatment Attenuates Neurological Damage by Modulating Autophagy and Apoptosis in Experimental Model of Stroke in Rats. Mol Neurobiol 2021; 58:6121-6135. [PMID: 34453687 DOI: 10.1007/s12035-021-02523-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Exploring and repurposing a drug have become a lower risk alternative. Safinamide, approved for Parkinson's disease, has shown neuroprotection in various animal models of neurological disorders. The present study aimed to explore the potential of safinamide in cerebral ischemia/reperfusion (I/R) in rats. Sprague-Dawley rats were used in middle cerebral artery occlusion model of stroke. The effective dose of safinamide was selected based on the results of neurobehavioral parameters and reduction in infarct size assessed 24 h post-reperfusion. For sub-acute study, the treatment with effective dose was extended for 3 days and effects on neurobehavioral parameters, infarct size (TTC staining and MRI), oxidative stress parameters (MDA, GSH, SOD, NOX-2), inflammatory cytokines (TNF-α, IL-1β, IL-10), apoptosis (Bax, Bcl-2, cleaved caspase-3 expression, and TUNEL staining), and autophagy (pAMPK, Beclin-1, LC3-II expression) were studied. The results of dose selection study showed significant reduction (p < 0.05) in infarct size and improvement in neurobehavioral parameters with safinamide (80 mg/kg). In sub-acute study, safinamide showed significant (p < 0.05) improvement in motor coordination and infarct size reduction. Additionally, safinamide treatment significantly normalized altered redox homeostasis and inflammatory cytokine levels. However, no change was observed in expression of NOX-2 in I/R or safinamide treatment group when compared with sham. I/R induced deranged expression of apoptotic markers and increased TUNEL positive cells in cortex were significantly normalized with safinamide treatment. Further, safinamide significantly (p < 0.05) induced the expressions of autophagic proteins (Beclin-1 and LC3-II) in cortex. Overall, the results demonstrated neuroprotective potential of safinamide via anti-oxidant, anti-inflammatory, anti-apoptotic, and autophagy inducing properties. Thus, safinamide can be explored for repurposing in ischemic stroke after further exploration.
Collapse
Affiliation(s)
- Himika Wasan
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Devendra Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Balu Joshi
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Uma Sharma
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| | - A K Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - K H Reeta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
12
|
Change in the central control of the bladder function of rats with focal cerebral infarction induced by photochemically-induced thrombosis. PLoS One 2021; 16:e0255200. [PMID: 34752461 PMCID: PMC8577768 DOI: 10.1371/journal.pone.0255200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022] Open
Abstract
The photochemically-induced thrombosis (photothrombosis) method can create focal cerebral infarcts anywhere in the relatively superficial layers of the cerebrum; it is easy to implement and minimally invasive. Taking advantage of this versatility, we aimed to establish a new rat model of urinary frequency with focal cerebral infarction, which was characterized by its simplicity, nonlethal nature, and high reproducibility. The prefrontal cortex and the anterior cingulate cortex, which are involved in lower urinary tract control, were targeted for focal cerebral infarction, and urinary parameters were measured by cystometrogram. Cystometric analysis indicated that micturition intervals significantly shortened in photothrombosis-treated rats compared with those in the sham operative group on Days 1 and 7 (P < 0.01), but prolonged after 14 days, with no difference between the two groups. Immunopathological evaluation showed an accumulation of activated microglia, followed by an increase in reactive astrocytes at the peri-infarct zone after photothrombotic stroke. Throughout this study, all postphotothrombosis rats showed cerebral infarction in the prefrontal cortex and anterior cingulate cortex; there were no cases of rats with fatal cerebral infarction. This model corresponded to the clinical presentation, in that the micturition status changed after stroke. In conclusion, this novel model combining nonlethality and high reproducibility may be a suitable model of urinary frequency after focal cerebral infarction.
Collapse
|
13
|
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021; 26:5001. [PMID: 34443584 PMCID: PMC8399750 DOI: 10.3390/molecules26165001] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Leonardo Eugênio Vieira
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
14
|
Rinaldi C, Donato L, Alibrandi S, Scimone C, D’Angelo R, Sidoti A. Oxidative Stress and the Neurovascular Unit. Life (Basel) 2021; 11:767. [PMID: 34440511 PMCID: PMC8398978 DOI: 10.3390/life11080767] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
The neurovascular unit (NVU) is a relatively recent concept that clearly describes the relationship between brain cells and their blood vessels. The components of the NVU, comprising different types of cells, are so interrelated and associated with each other that they are considered as a single functioning unit. For this reason, even slight disturbances in the NVU could severely affect brain homeostasis and health. In this review, we aim to describe the current state of knowledge concerning the role of oxidative stress on the neurovascular unit and the role of a single cell type in the NVU crosstalk.
Collapse
Affiliation(s)
- Carmela Rinaldi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
| | - Luigi Donato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Via Michele Miraglia, 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Concetta Scimone
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Via Michele Miraglia, 90139 Palermo, Italy
| | - Rosalia D’Angelo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
| | - Antonina Sidoti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
| |
Collapse
|
15
|
Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel) 2021; 10:890. [PMID: 34205998 PMCID: PMC8228183 DOI: 10.3390/antiox10060890] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91phox component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest.
Collapse
Affiliation(s)
- Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Isabelle Petit-Härtlein
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Susan M. E. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| |
Collapse
|
16
|
Guo S, Cosky E, Li F, Guan L, Ji Y, Wei W, Peng C, Geng X, Ding Y. An inhibitory and beneficial effect of chlorpromazine and promethazine (C + P) on hyperglycolysis through HIF-1α regulation in ischemic stroke. Brain Res 2021; 1763:147463. [PMID: 33811844 DOI: 10.1016/j.brainres.2021.147463] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND After ischemic stroke, the increased catabolism of glucose (hyperglycolysis) results in the production of reactive oxygen species (ROS) via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). A depressive or hibernation-like effect of C + P on brain activity was reported to induce neuroprotection. The current study assesses the effect of C + P on hyperglycolysis and NOX activation. METHODS Adult male Sprague-Dawley rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) followed by 6 or 24 h of reperfusion. At the onset of reperfusion, rats received C + P with or without temperature control, or phloretin [glucose transporter (GLUT)-1 inhibitor], or cytochalasin B (GLUT-3 inhibitor). We detected brain ROS, apoptotic cell death, and ATP levels along with HIF-1α expression. Cerebral hyperglycolysis was measured by glucose, protein expression of GLUT-1/3, and phosphofructokinase-1 (PFK-1), as well as lactate and lactate dehydrogenase (LDH) at 6 and 24 h of reperfusion. The enzymatic activity of NOX and protein expression of its subunits (gp91phox) were detected. Neural SHSY5Y cells were placed under 2 h of oxygen-glucose deprivation (OGD) followed by reoxygenation for 6 and 24 h with C + P treatment. Cell viability and protein levels of HIF-1α, GLUT-1/3, PFK-1, LDH, and gp91phox were measured. A HIF-1α overexpression vector was transfected into the cells, and then protein levels of HIF-1α, GLUT-1/3, PFK-1, and LDH were quantitated. In sham-operated rats and control cells, the protein levels of HIF-1α, GLUT-1/3, PFK-1, LDH, and gp91phox were measured at 6 and 24 h after C + P administration. RESULTS C + P reduced the protein elevations after stroke in HIF-1α, glycolytic enzymes, as well as in ROS, cell death, glucose and lactate, but raised ATP levels in the brain. In ischemic rats exposed to GLUT-1/3 inhibitors, ROS, cell death, glucose, and lactate were all decreased, as well as GLUT-1, GLUT-3, LDH, and PFK-1 protein levels. C + P decreased ischemia-induced NOX activation by reducing the enzymatic activity and protein expression of the NOX subunit gp91phox, as was observed in the presence of GLUT-1/3 inhibitors. These markers were significantly decreased following C + P administration with the induced hypothermia, while C + P administration with temperature control at 37 °C induced lesser protection after ischemia stroke. In the OGD/reoxygenation model, C + P treatment increased cell viability and diminished protein levels of HIF-1α, GLUT-1, GLUT-3, PFK-1, LDH, and gp91phox. However, in OGD with HIF-1α overexpression, C + P was unable to effectively reduce the upregulated GLUT-1, GLUT-3, and LDH. In normal conditions, C + P reduced HIF-1α and the levels of key glycolytic enzymes depending on its pharmacological effect. CONCLUSION C + P, partially depending on hypothermia, attenuates hyperglycolysis and NOX activation through HIF-1α regulation.
Collapse
Affiliation(s)
- Sichao Guo
- Luhe Institute of Neuroscience, Capital Medical University, Beijing 101100, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Eric Cosky
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Fengwu Li
- Luhe Institute of Neuroscience, Capital Medical University, Beijing 101100, China
| | - Longfei Guan
- Luhe Institute of Neuroscience, Capital Medical University, Beijing 101100, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Yu Ji
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Wenjing Wei
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Changya Peng
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Xiaokun Geng
- Luhe Institute of Neuroscience, Capital Medical University, Beijing 101100, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
17
|
Eyford BA, Singh CSB, Abraham T, Munro L, Choi KB, Hill T, Hildebrandt R, Welch I, Vitalis TZ, Gabathuler R, Gordon JA, Adomat H, Guns ES, Lu CJ, Pfeifer CG, Tian MM, Jefferies WA. A Nanomule Peptide Carrier Delivers siRNA Across the Intact Blood-Brain Barrier to Attenuate Ischemic Stroke. Front Mol Biosci 2021; 8:611367. [PMID: 33869275 PMCID: PMC8044710 DOI: 10.3389/fmolb.2021.611367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) hinders the distribution of therapeutics intended for treatment of neuroinflammation (NI) of the central nervous system. A twelve-amino acid peptide that transcytoses the BBB, termed MTfp, was chemically conjugated to siRNA to create a novel peptide-oligonucleotide conjugate (POC), directed to downregulate NOX4, a gene thought responsible for oxidative stress in ischemic stroke. The MTfp-NOX4 POC has the ability to cross the intact BBB and knockdown NOX4 expression in the brain. Following induction of ischemic stroke, animals pretreated with the POC exhibited significantly smaller infarcts; accompanied by increased protection against neurological deterioration and improved recovery. The data demonstrates that the MTfp can act as a nanomule to facilitate BBB transcytosis of siRNAs; where the NOX-4 specific siRNA moiety can elicit effective therapeutic knockdown of a gene responsible for oxidative stress in the central nervous system. This study is the first to conclusively demonstrate both siRNA-carrier delivery and therapeutic efficacy in any CNS disease model where the BBB remains intact and thus offers new avenues for potential treatments of oxidative stress underlying neuroinflammation in a variety of neuropathologies that are currently refractory to existing therapies.
Collapse
Affiliation(s)
- Brett A. Eyford
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Chaahat S. B. Singh
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Thomas Abraham
- Department of Neural and Behavioral Sciences and Microscopy Imaging Core Lab, Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Kyung Bok Choi
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Tracy Hill
- Centre for Comparative Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rhonda Hildebrandt
- Centre for Comparative Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ian Welch
- Centre for Comparative Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Reinhard Gabathuler
- Bioasis Technologies Inc., Guilford, CT, United States
- King’s College London, London, United Kingdom
| | - Jacob A. Gordon
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hans Adomat
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Emma S.T. Guns
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Chieh-Ju Lu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl G. Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Mei Mei Tian
- Bioasis Technologies Inc., Guilford, CT, United States
| | - Wilfred A. Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Matveev DV, Kuznetsov MR, Matveev AD, Evteev AV, Fedorov EE. [Reperfusion syndrome: state of the art]. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2020; 26:176-183. [PMID: 33332321 DOI: 10.33529/angio2020421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reperfusion syndrome is a complex series of clinical manifestations resulting from restoration of blood flow to previously ischaemic tissues. It is accompanied by damage to cells, tissues and organs at various levels, followed by the development of multiple organ failure. This review deals with the main pathophysiological mechanisms of the development of reperfusion syndrome in lesions of cardiac, cerebral and lower-limb vessels. Oxidative stress is considered to be the most important marker of ischaemia-reperfusion injury irrespective of the type of tissues affected. Presented herein are the data on contemporary possibilities of influencing various stages and components of the development of reperfusion injury by means of drug therapy, demonstrating that due to the importance of oxidative stress as a key link of reperfusion injury, antioxidant therapy should be the main component of prevention and treatment of reperfusion injury.
Collapse
Affiliation(s)
- D V Matveev
- Department of Surgery, Russian Medical Academy of Continuous Professional Education, RF Ministry of Public Health, Moscow, Russia
| | - M R Kuznetsov
- Institute of Cluster Oncology named after L.L. Levshin, I.M. Sechenov First Moscow Medical University, Moscow, Russia
| | - A D Matveev
- Department of Surgery, Russian Medical Academy of Continuous Professional Education, RF Ministry of Public Health, Moscow, Russia
| | - A V Evteev
- Scientific Company "Flamena", Reutov, Moscow Region, Russia
| | - E E Fedorov
- Surgical Department #1, Municipal Clinical Hospital #29 named after N.E. Bauman, Moscow, Russia
| |
Collapse
|
19
|
Sheng H, Wang X, Jiang M, Zhang Z, Nowen J. The Diagnosis of Early Cerebral Infarction Ischemic Penumbra in Compression Sensing Magnetic Resonance Diffusion Weighted Imaging and Perfusion Weighted Imaging (Preprint). JMIR Med Inform 2020. [DOI: 10.2196/19082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Kim KA, Kim D, Kim JH, Shin YJ, Kim ES, Akram M, Kim EH, Majid A, Baek SH, Bae ON. Autophagy-mediated occludin degradation contributes to blood-brain barrier disruption during ischemia in bEnd.3 brain endothelial cells and rat ischemic stroke models. Fluids Barriers CNS 2020; 17:21. [PMID: 32169114 PMCID: PMC7071658 DOI: 10.1186/s12987-020-00182-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
Background The blood–brain barrier (BBB) maintains homeostasis of the brain environment by tightly regulating the entry of substances from systemic circulation. A breach in the BBB results in increased permeability to potentially toxic substances and is an important contributor to amplification of ischemic brain damage. The precise molecular pathways that result in impairment of BBB integrity remain to be elucidated. Autophagy is a degradation pathway that clears damaged or unnecessary proteins from cells. However, excessive autophagy can lead to cellular dysfunction and death under pathological conditions. Methods In this study, we investigated whether autophagy is involved in BBB disruption in ischemia, using in vitro cells and in vivo rat models. We used brain endothelial bEnd.3 cells and oxygen glucose deprivation (OGD) to simulate ischemia in culture, along with a rat ischemic stroke model to evaluate the role of autophagy in BBB disruption during cerebral ischemia. Results OGD 18 h induced cellular dysfunction, and increased permeability with degradation of occludin and activation of autophagy pathways in brain endothelial cells. Immunostaining revealed that occludin degradation is co-localized with ischemic autophagosomes. OGD-induced occludin degradation and permeability changes were significantly decreased by inhibition of autophagy using 3-methyladenine (3-MA). Enhanced autophagic activity and loss of occludin were also observed in brain capillaries isolated from rats with middle cerebral artery occlusion (MCAO). Intravenous administration of 3-MA inhibited these molecular changes in brain capillaries, and recovered the increased permeability as determined using Evans blue. Conclusions Our findings provide evidence that autophagy plays an important role in ischemia-induced occludin degradation and loss of BBB integrity.
Collapse
Affiliation(s)
- Kyeong-A Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Jeong-Hyeon Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Young-Jun Shin
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Eun-Sun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Muhammad Akram
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea.,Faculty of Pharmacy, University of Sindh, Jamshoro, Pakistan
| | - Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, England, UK
| | - Seung-Hoon Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
21
|
Gai Z, Wang Z, Zhang L, Ma J, Zhu Q. Paeonol protects against hypertension in spontaneously hypertensive rats by restoring vascular endothelium. Biosci Biotechnol Biochem 2019; 83:1992-1999. [PMID: 31362597 DOI: 10.1080/09168451.2019.1648203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
ABSTRACT
The present study focused on the effect of paeonol, one of the main components of Guizhi Fuling Pill, on blood pressure, cerebral blood flow, and vascular endothelium injury in spontaneously hypertensive rats to provide theoretical basis for the treatment of hypertension. After treatment with paeonol, the mean arterial pressure (MAP) of LSHRT and HSHRT rats decreased gradually with the prolongation of treatment time. The systolic blood flow velocity (Vs), diastolic blood flow velocity (Vd) and mean blood flow velocity (Vm) were significantly increased after paeonol treatment (p < 0.05). Paeonol effectively improved the blood pressure and increased the cerebral blood flow velocity in spontaneously hypertensive rats. This may be related to the fact that paeonol reduced the blood viscosity and the oxidative stress and improved the antioxidant capacity. Moreover, paeonol protected vascular endothelial cells and reduced vascular endothelial injury in spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Zhonghui Gai
- Department of Heart Disease, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Zhenxing Wang
- Department of Encephalopathy, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Lei Zhang
- Department of Heart Disease, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Jun Ma
- Department of Heart Disease, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Qiao Zhu
- Department of Heart Disease, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| |
Collapse
|
22
|
Yang Q, Huang Q, Hu Z, Tang X. Potential Neuroprotective Treatment of Stroke: Targeting Excitotoxicity, Oxidative Stress, and Inflammation. Front Neurosci 2019; 13:1036. [PMID: 31611768 PMCID: PMC6777147 DOI: 10.3389/fnins.2019.01036] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
Stroke is a major cause of death and adult disability. However, therapeutic options remain limited. Numerous pathways underlie acute responses of brain tissue to stroke. Early events following ischemic damage include reactive oxygen species (ROS)-mediated oxidative stress and glutamate-induced excitotoxicity, both of which contribute to rapid cell death within the infarct core. A subsequent cascade of inflammatory events escalates damage progression. This review explores potential neuroprotective strategies for targeting key steps in the cascade of ischemia–reperfusion (I/R) injury. NADPH oxidase (NOX) inhibitors and several drugs currently approved by the U.S. Food and Drug Administration including glucose-lowering agents, antibiotics, and immunomodulators, have shown promise in the treatment of stroke in both animal experiments and clinical trials. Ischemic conditioning, a phenomenon by which one or more cycles of a short period of sublethal ischemia to an organ or tissue protects against subsequent ischemic events in another organ, may be another potential neuroprotective strategy for the treatment of stroke by targeting key steps in the I/R injury cascade.
Collapse
Affiliation(s)
- Qianwen Yang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
23
|
Zong X, Dong Y, Li Y, Yang L, Li Y, Yang B, Tucker L, Zhao N, Brann DW, Yan X, Hu S, Zhang Q. Beneficial Effects of Theta-Burst Transcranial Magnetic Stimulation on Stroke Injury via Improving Neuronal Microenvironment and Mitochondrial Integrity. Transl Stroke Res 2019; 11:450-467. [PMID: 31515743 DOI: 10.1007/s12975-019-00731-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022]
Abstract
Recent work suggests that repetitive transcranial magnetic stimulation (rTMS) may beneficially alter the pathological status of several neurological disorders, although the mechanism remains unclear. The current study was designed to investigate the effects of rTMS on behavioral deficits and potential underlying mechanisms in a rat photothrombotic (PT) stroke model. From day 0 (3 h) to day 5 after the establishment of PT stroke, 5-min daily continuous theta-burst rTMS (3 pulses of 50 Hz repeated every 200 ms, intensity at 200 G) was applied on the infarct hemisphere. We report that rTMS significantly attenuated behavioral deficits and infarct volume after PT stroke. Further investigation demonstrated that rTMS remarkably reduced synaptic loss and neuronal degeneration in the peri-infarct cortical region. Mechanistic studies displayed that beneficial effects of rTMS were associated with robust suppression of reactive micro/astrogliosis and the overproduction of pro-inflammatory cytokines, as well as oxidative stress and oxidative neuronal damage especially at the late stage following PT stroke. Intriguingly, rTMS could effectively induce a shift in microglial M1/M2 phenotype activation and an A1 to A2 switch in astrocytic phenotypes. In addition, the release of anti-inflammatory cytokines and mitochondrial MnSOD in peri-infarct regions were elevated following rTMS treatment. Finally, rTMS treatment efficaciously preserved mitochondrial membrane integrity and suppressed the intrinsic mitochondrial caspase-9/3 apoptotic pathway within the peri-infarct cortex. Our novel findings indicate that rTMS treatment exerted robust neuroprotection when applied at least 3 h after ischemic stroke. The underlying mechanisms are partially associated with improvement of the local neuronal microenvironment by altering inflammatory and oxidative status and preserving mitochondrial integrity in the peri-infarct zone. These findings provide strong support for the promising therapeutic effect of rTMS against ischemic neuronal injury and functional deficits following stroke.
Collapse
Affiliation(s)
- Xuemei Zong
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yuyu Li
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China
| | - Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yong Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Baocheng Yang
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Lorelei Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Ningjun Zhao
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Xianliang Yan
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China
| | - Shuqun Hu
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China.
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
24
|
Tang BL. Neuroprotection by glucose-6-phosphate dehydrogenase and the pentose phosphate pathway. J Cell Biochem 2019; 120:14285-14295. [PMID: 31127649 DOI: 10.1002/jcb.29004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/23/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD), the rate limiting enzyme that channels glucose catabolism from glycolysis into the pentose phosphate pathway (PPP), is vital for the production of reduced nicotinamide adenine dinucleotide phosphate (NADPH) in cells. NADPH is in turn a substrate for glutathione reductase, which reduces oxidized glutathione disulfide to sulfhydryl glutathione. Best known for inherited deficiencies underlying acute hemolytic anemia due to elevated oxidative stress by food or medication, G6PD, and PPP activation have been associated with neuroprotection. Recent works have now provided more definitive evidence for G6PD's protective role in ischemic brain injury and strengthened its links to neurodegeneration. In Drosophila models, improved proteostasis and lifespan extension result from an increased PPP flux due to G6PD induction, which is phenocopied by transgenic overexpression of G6PD in neurons. Moderate transgenic expression of G6PD was also shown to improve healthspan in mouse. Here, the deciphered and implicated roles of G6PD and PPP in protection against brain injury, neurodegenerative diseases, and in healthspan/lifespan extensions are discussed together with an important caveat, namely NADPH oxidase (NOX) activity and the oxidative stress generated by the latter. Activation of G6PD with selective inhibition of NOX activity could be a viable neuroprotective strategy for brain injury, disease, and aging.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Shen J, Rastogi R, Geng X, Ding Y. Nicotinamide adenine dinucleotide phosphate oxidase activation and neuronal death after ischemic stroke. Neural Regen Res 2019; 14:948-953. [PMID: 30761998 PMCID: PMC6404502 DOI: 10.4103/1673-5374.250568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a multisubunit enzyme complex that utilizes nicotinamide adenine dinucleotide phosphate to produce superoxide anions and other reactive oxygen species. Under normal circumstances, reactive oxygen species mediate a number of important cellular functions, including the facilitation of adaptive immunity. In pathogenic circumstances, however, excess reactive oxygen species generated by NOX promotes apoptotic cell death. In ischemic stroke, in particular, it has been shown that both NOX activation and derangements in glucose metabolism result in increased apoptosis. Moreover, recent studies have established that glucose, as a NOX substrate, plays a vital role in the pathogenesis of reperfusion injury. Thus, NOX inhibition has the potential to mitigate the deleterious impact of hyperglycemia on stroke. In this paper, we provide an overview of this research, coupled with a discussion of its implications for the development of NOX inhibition as a strategy for the treatment of ischemic stroke. Both inhibition using apocynin, as well as the prospect of developing more specific inhibitors based on what is now understood of the biology of NOX assembly and activation, will be highlighted in the course of our discussion.
Collapse
Affiliation(s)
- Jiamei Shen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Radhika Rastogi
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
26
|
Liu W, Guo Q, Zhao H. Oxidative stress-elicited YY1 potentiates antioxidative response via enhancement of NRF2-driven transcriptional activity: A potential neuronal defensive mechanism against ischemia/reperfusion cerebral injury. Biomed Pharmacother 2018; 108:698-706. [DOI: 10.1016/j.biopha.2018.09.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
|