1
|
Hakami AY, Alghamdi BS, Alshehri FS. Exploring the potential use of melatonin as a modulator of tramadol-induced rewarding effects in rats. Front Pharmacol 2024; 15:1373746. [PMID: 38738177 PMCID: PMC11082292 DOI: 10.3389/fphar.2024.1373746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Background Melatonin is responsible for regulating the sleep-wake cycle and circadian rhythms in mammals. Tramadol, a synthetic opioid analgesic, is used to manage moderate to severe pain but has a high potential for abuse and dependence. Studies have shown that melatonin could be a potential modulator to reduce tramadol addiction. Methods Male Wistar rats were used to investigate the effect of melatonin on tramadol-induced place preference. The rats were divided into four groups: control, tramadol, tramadol + melatonin (single dose), and tramadol + melatonin (repeated doses). Tramadol was administered intraperitoneally at 40 mg/kg, while melatonin was administered at 50 mg/kg for both the single dose and repeated-dose groups. The study consisted of two phases: habituation and acquisition. Results Tramadol administration produced conditioned place preference (CPP) in rats, indicating rewarding effects. However, melatonin administration blocked tramadol-induced CPP. Surprisingly, repeated doses of melatonin were ineffective and did not reduce the expression of CPP compared to that of the single dose administration. Conclusion The study suggests that melatonin may be a potential therapeutic option for treating tramadol addiction. The results indicate that melatonin attenuates the expression of tramadol-induced CPP, supporting its uses as an adjunct therapy for managing tramadol addiction. However, further studies are needed to investigate its effectiveness in humans.
Collapse
Affiliation(s)
- Alqassem Y. Hakami
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad S. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
2
|
Krstic M, Jovicic N, Selakovic D, Krstic B, Arsenijevic N, Vasiljevic M, Milanovic P, Milanovic J, Milovanovic D, Simic M, Katanic Stankovic JS, Rosic G. Simultaneous Administration of Hyperbaric Oxygen Therapy and Antioxidant Supplementation with Filipendula ulmaria Extract in the Treatment of Thermal Skin Injuries Alters Nociceptive Signalling and Wound Healing. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1676. [PMID: 37763795 PMCID: PMC10536773 DOI: 10.3390/medicina59091676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: Thermal skin injuries are a prevalent cause of skin damage, potentially leading to severe morbidity and significant mortality. In this study, we intended to estimate the effects of HBO (hyperbaric oxygen treatment) and antioxidant supplementation with Filipendula ulmaria extract, individually and simultaneously, in the treatment of thermal skin injuries. Materials and Methods: As a thermal skin injury experimental model, we used two-month-old male Wistar albino rats. Thermal injuries were made with a solid aluminium bar at a constant temperature of 75 °C for 15 s. Hyperbaric oxygen treatment was performed in a specially constructed hyperbaric chamber for rats (HYB-C 300) for seven consecutive days (100% O2 at 2.5 ATA for 60 min). Antioxidant supplementation was performed with oral administration of Filipendula ulmaria extract dissolved in tap water to reach a final concentration of 100 mg/kg b.w. for seven consecutive days. Results: Simultaneous administration of hyperbaric oxygen therapy and antioxidant supplementation with Filipendula ulmaria extract significantly ameliorated the macroscopic and histopathological characteristics of the wound area and healing. Also, this therapeutic approach decreased the local expression of genes for proinflammatory mediators and increased the expression of the μ-opioid receptor and the MT1 and MT2 receptors in the wound area and spinal cord, with a consequent increase in reaction times in behavioural testing. Conclusions: In conclusion, the presented results of our study allow evidence for the advantages of the simultaneous employment of HBO and antioxidant supplementation in the treatment of thermal skin injuries, with special reference to the attenuation of painful sensations accompanied by this type of trauma.
Collapse
Affiliation(s)
- Milos Krstic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.K.); (D.S.); (B.K.); (M.S.); (G.R.)
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.K.); (D.S.); (B.K.); (M.S.); (G.R.)
| | - Bojana Krstic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.K.); (D.S.); (B.K.); (M.S.); (G.R.)
| | - Natalija Arsenijevic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (N.A.); (M.V.); (P.M.); (J.M.)
| | - Milica Vasiljevic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (N.A.); (M.V.); (P.M.); (J.M.)
| | - Pavle Milanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (N.A.); (M.V.); (P.M.); (J.M.)
| | - Jovana Milanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (N.A.); (M.V.); (P.M.); (J.M.)
| | - Dragan Milovanovic
- Clinical Pharmacology Department, Clinical Centre Kragujevac, 34000 Kragujevac, Serbia;
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marko Simic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.K.); (D.S.); (B.K.); (M.S.); (G.R.)
| | - Jelena S. Katanic Stankovic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.K.); (D.S.); (B.K.); (M.S.); (G.R.)
| |
Collapse
|
3
|
Bernatoniene J, Sciupokas A, Kopustinskiene DM, Petrikonis K. Novel Drug Targets and Emerging Pharmacotherapies in Neuropathic Pain. Pharmaceutics 2023; 15:1799. [PMID: 37513986 PMCID: PMC10384314 DOI: 10.3390/pharmaceutics15071799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neuropathic pain is a debilitating condition characterized by abnormal signaling within the nervous system, resulting in persistent and often intense sensations of pain. It can arise from various causes, including traumatic nerve injury, neuropathy, and certain diseases. We present an overview of current and emerging pharmacotherapies for neuropathic pain, focusing on novel drug targets and potential therapeutic agents. Current pharmacotherapies, including tricyclic antidepressants, gabapentinoids, and serotonin norepinephrine re-uptake inhibitors, are discussed, as are emerging treatments, such as ambroxol, cannabidiol, and N-acetyl-L-cysteine. Additionally, the article highlights the need for further research in this field to identify new targets and develop more effective and targeted therapies for neuropathic pain management.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Arunas Sciupokas
- Pain Clinic, Lithuanian University of Health Sciences Hospital Kauno Klinikos, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| |
Collapse
|
4
|
Borsani E, Bonomini F, Bonini SA, Premoli M, Maccarinelli G, Giugno L, Mastinu A, Aria F, Memo M, Rezzani R. Role of melatonin in autism spectrum disorders in a male murine transgenic model: Study in the prefrontal cortex. J Neurosci Res 2022; 100:780-797. [PMID: 35043490 DOI: 10.1002/jnr.24997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/16/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of clinically heterogeneous neurodevelopmental disorders sharing common features related to impaired social and communication abilities in addition to stereotyped behaviors. ASD patients present encephalic morphological, physiological, and biomolecular alterations with low levels of melatonin due to alterations in its pathways. Therefore, even if ASDs have traditionally been framed as behavioral disorders, several lines of evidence are accumulating that ASDs are characterized by certain anatomical and physiological abnormalities, including oxidative stress and inflammation in peripheral biomarkers, but likewise present in human brain tissue also characterized by alterations in synaptic remodeling and neuromodulation. Melatonin has also protective and antioxidant properties, so we can therefore hypothesize that alterations in melatonin's pathways may be one of the causes of the symptomatology of autism. The aim of the present study was to analyze the beneficial effect induced by melatonin administration and its possible mechanism of action in a transgenic mouse model of autism, immediately after weaning. The male mice were daily treated per os with melatonin (10 mg/Kg/day) or vehicle for 8 weeks starting from the sixth week of life. The antioxidant modulation, the GABAergic/glutamatergic impairment, and the synaptic remodeling in the prefrontal cortex have been evaluated. Social and repetitive behaviors were also evaluated. The behavioral results showed no statistical evidences, instead the immunohistochemical results indicated the ability of melatonin to promote the activity of antioxidant system, the GABAergic/glutamatergic equilibrium, and the synaptic remodeling. The results show that melatonin may be a possible adjuvant therapeutic strategy in ASDs.
Collapse
Affiliation(s)
- Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| | - Francesca Bonomini
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| | - Sara Anna Bonini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marika Premoli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppina Maccarinelli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Lorena Giugno
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Andrea Mastinu
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Aria
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Involvement of Intestinal Goblet Cells and Changes in Sodium Glucose Transporters Expression: Possible Therapeutic Targets in Autistic BTBR T +Itpr3 tf/J Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111328. [PMID: 34769857 PMCID: PMC8583041 DOI: 10.3390/ijerph182111328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorder is a neurodevelopmental syndrome with a complicated etiology and could be responsible for disrupted gastrointestinal tract microbiota. The aim of this work was to study intestinal samples from an autistic animal model (BTBR mouse strain) to better describe gastrointestinal alterations. We performed a morphological and biological evaluation of small intestine samples. In terms of morphology, we studied the goblet cells, cells of intestinal mucosal responsible for the production and maintenance of the protective mucous blanket. Alterations in their secretion may indicate an altered rate of mucus synthesis and this is one of the possible causes of gastrointestinal problems. In terms of biological evaluation, impaired regulation of glucose homeostasis regulated by sodium-glucose transporters has been suggested as an important component of obesity and associated comorbidities; therefore, this study analyzed the expression of sodium/glucose transporter-1 and -3 in BTBR mice to better define their role. We demonstrated that, in BTBR mice as compared to C57BL/6J (B6) strain animals: (1) The goblet cells had different protein content in their vesicles and apparently a larger number of Golgi cisternae; (2) the expression and level of sodium/glucose transporters were higher. These findings could suggest new possible targets in autism spectrum disorder to maintain mucus barrier function.
Collapse
|
6
|
The antinociceptive mechanisms of melatonin: role of L-arginine/nitric oxide/cyclic GMP/KATP channel signaling pathway. Behav Pharmacol 2021; 31:728-737. [PMID: 32925224 DOI: 10.1097/fbp.0000000000000579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pain is one of the most common medical challenges, reducing life quality. Despite the progression in pain management, it has remained a clinical challenge, which raises the need for investigating novel antinociceptive drugs with correspondence signaling pathways. Besides, the precise antinociceptive mechanisms of melatonin are not revealed. Accordingly, owing to the critical role of L-arginine/nitric oxide (NO)/cyclic GMP (cGMP)/KATP in the antinociceptive responses of various analgesics, the role of this signaling pathway is evaluated in the antinociceptive effects of melatonin. Male NMRI mice were intraperitoneally pretreated with the injection of L-arginine (NO precursor, 100 mg/kg), N(gamma)-nitro-L-arginine methyl ester [L-NAME, NO synthase (NOS) inhibitor, 30 mg/kg], S-nitroso-N-acetylpenicillamine (SNAP, NO donor, 1 mg/kg), sildenafil (phosphodiesterase inhibitor, 0.5 mg/kg), and glibenclamide (KATP channel blocker, 10 mg/kg) alone and before the administration of the most effective dose of melatonin amongst the intraperitoneal doses of 50, 100, and 150 mg/kg. The formalin test (2%, 25 µL, intra-plantarly) was done following the melatonin administration, then the nociceptive responses of mice were evaluated during the early phase for 5 min and the late phase for 15 min. The results showed that 100 mg/kg dose of melatonin carried out the most antinociceptive effects. While the antinociceptive effect of melatonin was increased by L-arginine, SNAP, and sildenafil, it was significantly reduced by L-NAME and glibenclamide in both phases of the formalin test, with no relation to the sedative effects of melatonin evaluated by the inclined plane test. In conclusion, the antinociceptive effect of melatonin is mediated through the L-arginine/NO/cGMP/KATP pathway.
Collapse
|
7
|
Adjuvant use of melatonin for relieving symptoms of painful diabetic neuropathy: results of a randomized, double-blinded, controlled trial. Eur J Clin Pharmacol 2021; 77:1649-1663. [PMID: 34121140 DOI: 10.1007/s00228-021-03170-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE The trial aimed to investigate the effectiveness of exogenous melatonin as an adjuvant to pregabalin for relief of pain in patients suffering from painful diabetic neuropathy (PDN). PATIENTS AND METHODS This randomized, double-blind, placebo-controlled trial was carried out between October 2019 and December 2020 in an outpatient specialty clinic in Iran. One-hundred-three type 2 diabetic patients suffering from PDN were randomized into either the melatonin group (n = 52) or the placebo group (n = 51). Besides pregabalin at a dose of 150 mg per day, patients started with melatonin or an identical placebo, at a dose of 3 mg/day at bedtime for 1 week, which was augmented to 6 mg/day for further 7 weeks. The primary outcomes were changes in mean NRS (numerical rating scale) pain score from baseline to endpoint and responder rate (patients with a reduction of 50% and higher in average pain score compared with baseline). Secondary endpoints were changes in mean NRS pain-related sleep-interference score, overall improvement evaluated by Patient and Clinical Global Impressions of Change (PGIC, CGIC), and impact of the intervention on patient's Health-related quality of life (QOL). All analyses were conducted on an Intention-to-Treat (ITT) analysis data set. RESULTS At the study endpoint, treatment with melatonin resulted in a considerably higher reduction in the mean NRS pain score in comparison with placebo (4.2 ± 1.83 vs. 2.9 ± 1.56; P-value < 0.001). In terms of treatment responders, a greater proportion of melatonin-treated patients satisfied the responder criterion than placebo-treated patients (63.5% vs. 43.1%). Melatonin also reduced pain-related sleep interference scores more than did placebo (3.38 ± 1.49 vs. 2.25 ± 1.26; P-value < 0.001). Further, at the endpoint, more improvement was also seen in terms of PGIC, CGIC, and Health-related QOL in patients treated with melatonin than placebo. Melatonin was also well tolerated. CONCLUSION The present results showed that melatonin as an adjunct therapy to pregabalin might be helpful for use in patients with PDN. However, confirmation of these results requires further studies.
Collapse
|
8
|
Majumder S, Crabtree JS, Golde TE, Minter LM, Osborne BA, Miele L. Targeting Notch in oncology: the path forward. Nat Rev Drug Discov 2021; 20:125-144. [PMID: 33293690 DOI: 10.1038/s41573-020-00091-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Notch signalling is involved in many aspects of cancer biology, including angiogenesis, tumour immunity and the maintenance of cancer stem-like cells. In addition, Notch can function as an oncogene and a tumour suppressor in different cancers and in different cell populations within the same tumour. Despite promising preclinical results and early-phase clinical trials, the goal of developing safe, effective, tumour-selective Notch-targeting agents for clinical use remains elusive. However, our continually improving understanding of Notch signalling in specific cancers, individual cancer cases and different cell populations, as well as crosstalk between pathways, is aiding the discovery and development of novel investigational Notch-targeted therapeutics.
Collapse
Affiliation(s)
- Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Judy S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
9
|
de Brito RN, Ludtke DD, de Oliveira BH, de Oliveira Galassi T, Fernandes PF, Van Den Berge S, Salgado ASI, Cidral-Filho FJ, Horewicz VV, Bobinski F, Martins DF. Balneotherapy decreases mechanical hyperalgesia by reversing BDNF and NOS2 immunocontent in spinal cord of mice with neuropathic pain. J Neuroimmunol 2020; 348:577360. [PMID: 32862113 DOI: 10.1016/j.jneuroim.2020.577360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
In the last decades, balneotherapy or thermalism has been used for health promotion and in the treatment of inflammatory and chronic processes. We found that balneotherapy reduced mechanical hyperalgesia, as well the increase of BDNF and NOS2 levels in the spinal cord, while increased BDNF and NOS1 in the paw. The data presented herein demonstrated for the first time in a murine model of neuropathic pain, the analgesic effect of balneotherapy with the water from the natural springs of Santo Amaro da Imperatriz-Brazil. Nevertheless, future clinical trials should be conducted to test the effectiveness of balneotherapy in neuropathic pain patients.
Collapse
Affiliation(s)
- Rômulo Nolasco de Brito
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniela D Ludtke
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna Hoffmann de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Taynah de Oliveira Galassi
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Paula Franson Fernandes
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Sarah Van Den Berge
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Afonso Shiguemi Inoue Salgado
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Integrative Physical therapy Residency, Centro Universitário Filadélfia, Londrina, Paraná, Brazil
| | - Francisco José Cidral-Filho
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Verônica Vargas Horewicz
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
10
|
The active second-generation proteasome inhibitor oprozomib reverts the oxaliplatin-induced neuropathy symptoms. Biochem Pharmacol 2020; 182:114255. [PMID: 33010214 DOI: 10.1016/j.bcp.2020.114255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Oxaliplatin-induced neuropathy (OXAIN) is a major adverse effect of this antineoplastic drug, widely used in the treatment of colorectal cancer. Although its molecular mechanisms remain poorly understood, recent evidence suggest that maladaptive neuroplasticity and oxidative stress may participate to the development of this neuropathy. Given the role played on protein remodeling by ubiquitin-proteasome system (UPS) in response to oxidative stress and in neuropathic pain, we investigated whether oxaliplatin might cause alterations in the UPS-mediated degradation pathway, in order to identify new pharmacological tools useful in OXAIN. In a rat model of OXAIN (2.4 mg kg-1 i.p., daily for 10 days), a significant increase in chymotrypsin-(β5) like activity of the constitutive proteasome 26S was observed in the thalamus (TH) and somatosensory cortex (SSCx). In addition, the selective up-regulation of β5 and LMP7 (β5i) subunit gene expression was assessed in the SSCx. Furthermore, this study revealed that oprozomib, a selective β5 subunit proteasome inhibitor, is able to normalize the spinal prodynorphin gene expression upregulation induced by oxaliplatin, as well as to revert mechanical allodynia and thermal hyperalgesia observed in oxaliplatin-treated rats. These results underline the relevant role of UPS in the OXAIN and suggest new pharmacological targets to counteract this severe adverse effect. This preclinical study reveals the involvement of the proteasome in the oxaliplatin-induced neuropathy and adds useful information to better understand the molecular mechanism underlying this pain condition. Moreover, although further evidence is required, these findings suggest that oprozomib could be a therapeutic option to counteract chemotherapy-induced neuropathy.
Collapse
|
11
|
Chen IJ, Yang CP, Lin SH, Lai CM, Wong CS. The Circadian Hormone Melatonin Inhibits Morphine-Induced Tolerance and Inflammation via the Activation of Antioxidative Enzymes. Antioxidants (Basel) 2020; 9:antiox9090780. [PMID: 32842597 PMCID: PMC7555201 DOI: 10.3390/antiox9090780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Opioids are commonly prescribed for clinical pain management; however, dose-escalation, tolerance, dependence, and addiction limit their usability for long-term chronic pain. The associated poor sleep pattern alters the circadian neurobiology, and further compromises the pain management. Here, we aim to determine the correlation between constant light exposure and morphine tolerance and explore the potential of melatonin as an adjuvant of morphine for neuropathic pain treatment. Methods: Wistar rats were preconditioned under constant light (LL) or a regular light/dark (LD) cycle before neuropathic pain induction by chronic constriction injury. An intrathecal (i.t.) osmotic pump was used for continued drug delivery to induce morphine tolerance. Pain assessments, including the plantar test, static weight-bearing symmetry, and tail-flick latency, were used to determine the impact of the light disruption or exogenous melatonin on the morphine tolerance progression. Results: constant light exposure significantly aggravates morphine tolerance in neuropathic rats. Continued infusion of low-dose melatonin (3 μg/h) attenuated morphine tolerance in both neuropathic and naïve rats. This protective effect was independent of melatonin receptors, as shown by the neutral effect of melatonin receptors inhibitors. The transcriptional profiling demonstrated a significant enhancement of proinflammatory and pain-related receptor genes in morphine-tolerant rats. In contrast, this transcriptional pattern was abolished by melatonin coinfusion along with the upregulation of the Kcnip3 gene. Moreover, melatonin increased the antioxidative enzymes SOD2, HO-1, and GPx1 in the spinal cord of morphine-tolerant rats. Conclusion: Dysregulated circadian light exposure significantly compromises the efficacy of morphine’s antinociceptive effect, while the cotreatment with melatonin attenuates morphine tolerance/hyperalgesia development. Our results suggest the potential of melatonin as an adjuvant of morphine in clinical pain management, particularly in patients who need long-term opioid treatment.
Collapse
Affiliation(s)
- Ing-Jung Chen
- Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan;
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
| | - Chih-Ping Yang
- Department of Anesthesiology, Chi-Mei Medical Center, Tainan 71004, Taiwan;
- Department of Anesthesiology, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Sheng-Hsiung Lin
- Planning & Management Office, Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Chang-Mei Lai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Correspondence: ; Tel.: +886-2-27082121
| |
Collapse
|
12
|
Leung JWH, Cheung KK, Ngai SPC, Tsang HWH, Lau BWM. Protective Effects of Melatonin on Neurogenesis Impairment in Neurological Disorders and Its Relevant Molecular Mechanisms. Int J Mol Sci 2020; 21:ijms21165645. [PMID: 32781737 PMCID: PMC7460604 DOI: 10.3390/ijms21165645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 02/05/2023] Open
Abstract
Neurogenesis is the process by which functional new neurons are generated from the neural stem cells (NSCs) or neural progenitor cells (NPCs). Increasing lines of evidence show that neurogenesis impairment is involved in different neurological illnesses, including mood disorders, neurogenerative diseases, and central nervous system (CNS) injuries. Since reversing neurogenesis impairment was found to improve neurological outcomes in the pathological conditions, it is speculated that modulating neurogenesis is a potential therapeutic strategy for neurological diseases. Among different modulators of neurogenesis, melatonin is a particularly interesting one. In traditional understanding, melatonin controls the circadian rhythm and sleep-wake cycle, although it is not directly involved in the proliferation and survival of neurons. In the last decade, it was reported that melatonin plays an important role in the regulation of neurogenesis, and thus it may be a potential treatment for neurogenesis-related disorders. The present review aims to summarize and discuss the recent findings regarding the protective effects of melatonin on the neurogenesis impairment in different neurological conditions. We also address the molecular mechanisms involved in the actions of melatonin in neurogenesis modulation.
Collapse
Affiliation(s)
- Joseph Wai-Hin Leung
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.-K.C.); (S.P.-C.N.)
| | - Shirley Pui-Ching Ngai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.-K.C.); (S.P.-C.N.)
| | - Hector Wing-Hong Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.-K.C.); (S.P.-C.N.)
- Correspondence: (H.W.-H.T.); (B.W.-M.L.)
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.-K.C.); (S.P.-C.N.)
- Correspondence: (H.W.-H.T.); (B.W.-M.L.)
| |
Collapse
|
13
|
Xie S, Fan W, He H, Huang F. Role of Melatonin in the Regulation of Pain. J Pain Res 2020; 13:331-343. [PMID: 32104055 PMCID: PMC7012243 DOI: 10.2147/jpr.s228577] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a pleiotropic hormone synthesized and secreted mainly by the pineal gland in vertebrates. Melatonin is an endogenous regulator of circadian and seasonal rhythms. Melatonin is involved in many physiological and pathophysiological processes demonstrating antioxidant, antineoplastic, anti-inflammatory, and immunomodulatory properties. Accumulating evidence has revealed that melatonin plays an important role in pain modulation through multiple mechanisms. In this review, we examine recent evidence for melatonin on pain regulation in various animal models and patients with pain syndromes, and the potential cellular mechanisms.
Collapse
Affiliation(s)
- Shanshan Xie
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China.,Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China.,Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| |
Collapse
|
14
|
Burr RL, Gu H, Cain K, Djukovic D, Zhang X, Han C, Callan N, Raftery D, Heitkemper M. Tryptophan Metabolites in Irritable Bowel Syndrome: An Overnight Time-course Study. J Neurogastroenterol Motil 2019; 25:551-562. [PMID: 31587547 PMCID: PMC6786437 DOI: 10.5056/jnm19042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/01/2019] [Accepted: 07/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background/Aims Patients with irritable bowel syndrome (IBS) often report poor sleep quality. Whether poor sleep is associated with tryptophan (Trp) metabolites is unknown. We compared serum Trp metabolites in women with IBS and healthy controls (HCs) using targeted liquid chromatography mass spectrometry (LC-MS)-based profiling. In IBS only, we explored whether Trp metabolites are associated with IBS symptoms and subjective and objective sleep indices, serum cortisol, plasma adrenocorticotropic hormone (ACTH), and cortisol/ACTH levels. Methods Blood samples were obtained every 80 minutes in 21 HCs and 38 IBS subjects following an anticipation-of-public-speaking stressor during a sleep laboratory protocol. Subjects completed symptom diaries for 28 days. Adjacent values of metabolites were averaged to represent 4 time-periods: awake, early sleep, mid-sleep, and mid-to-late sleep. Thirteen of 20 targeted Trp metabolites were identified. Results Ten of 13 Trp metabolites decreased across the night, while nicotinamide increased in both groups. A MANOVA omnibus test performed after principal component analysis showed a significant difference in these 13 principal component (P = 0.014) between groups. Compared to HCs, nicotinamide levels were higher and indole-3-lactic acid levels lower in the IBS group. Melatonin and indole-3-acetic acid levels were associated with several subjective/objective sleep measures; decreased stool consistency/frequency and abdominal pain were positively associated with melatonin and serotonin in the IBS group. The kynurenine and kynurenic acid were associated with ACTH (positively) and cortisol/ACTH (negatively). Conclusions Nighttime Trp metabolites may provide clues to poor sleep and stress with IBS. Further study of the mechanism of metabolite action is warranted.
Collapse
Affiliation(s)
- Robert L Burr
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA.,Office for Nursing Research, University of Washington, Seattle, WA, USA
| | - Haiwei Gu
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Kevin Cain
- Office for Nursing Research, University of Washington, Seattle, WA, USA.,Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Xinyu Zhang
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Claire Han
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nini Callan
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Margaret Heitkemper
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Peres MF, Valença MM, Amaral FG, Cipolla-Neto J. Current understanding of pineal gland structure and function in headache. Cephalalgia 2019; 39:1700-1709. [PMID: 31370669 DOI: 10.1177/0333102419868187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The pineal gland plays an important role in biological rhythms, circadian and circannual variations, which are key aspects in several headache disorders. OVERVIEW Melatonin, the main pineal secreting hormone, has been extensively studied in primary and secondary headache disorders. Altered melatonin secretion occurs in many headache syndromes. Experimental data show pineal gland and melatonin both interfere in headache animal models, decreasing trigeminal activation. Melatonin has been shown to regulate CGRP and control its release. DISCUSSION Melatonin has been used successfully as a treatment for migraine, cluster headaches and other headaches. There is a rationale for including the pineal gland as a relevant brain structure in the mechanisms of headache pathophysiology, and melatonin as a treatment option in primary headache.
Collapse
Affiliation(s)
- Mario Fp Peres
- Hospital Israelita Albert Einstein, Sao Paolo, Brazil.,Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, Pernambuco, Brazil
| | | | | | - José Cipolla-Neto
- Instituto de Ciencias Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Altiparmak B, Cil H, Celebi N. [Effect of melatonin on the daytime sleepiness side-effect of gabapentin in adults patients with neuropathic pain]. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2019; 69:137-143. [PMID: 30454846 PMCID: PMC9391827 DOI: 10.1016/j.bjan.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/02/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Gabapentin is an antiepileptic drug. Widely used for the management of neuropathic pain. Although it is known to be well tolerated, somnolence and dizziness are the most frequent adverse effects. In this study, we aimed to evaluate the effect of melatonin on daytime sleepiness side effect of gabapentin, sleep quality and pain intensity of patients with neuropathic pain. METHODS Patients suffering from "neuropathic pain" and planed to receive gabapentin therapy were randomly divided into two groups. Group 1 received melatonin 3mg and gabapentin 900mg orally, group 2 received matching placebo capsule and gabapentin 900mg. The Epworth Sleepiness Scale, the Pittsburgh sleep quality index for assessment of sleep quality and Verbal Rating Scale were completed at the 0th, 10th and 30th days of treatment. Additive analgesic drug requirements were recorded. RESULTS Eighty patients were enrolled to the study; age, gender, ratio of additive analgesic consumption, baseline Epworth Sleepiness Scale, Pittsburg Sleep Quality index and Verbal Rating Scale scores were similar between the groups. Epworth Sleepiness Scale scores, Pittsburgh sleep quality index scores and Verbal Rating Scale scores in Group 1 were significantly lower than group 2 at the 10th day of treatment (p=0.002, p=0.003, p=0.002 respectively). At the 30th day of treatment, Epworth Sleepiness Scale scores and Verbal Rating Scale scores were significantly lower in Group 1 (p=0.002, p=0.008 respectively). However, Pittsburgh sleep quality index scores did not significantly differ between the groups (p=0.0566). CONCLUSIONS Melatonin supplementation rapidly and significantly improved daytime sleepiness side-effect of gabapentin, however sleep quality of the patients with neuropathic pain was similar between groups.
Collapse
Affiliation(s)
- Basak Altiparmak
- Mugla Sitki Kocman University, Department of Anesthesiology and Reanimation, Mugla, Turquia.
| | - Hemra Cil
- University of California, Department of Orthopedics and Traumatology, San Francisco, Estados Unidos
| | - Nalan Celebi
- Hacettepe University, Department of Anesthesiology and Reanimation, Ankara, Turquia
| |
Collapse
|
17
|
Altiparmak B, Cil H, Celebi N. Effect of melatonin on the daytime sleepiness side-effect of gabapentin in adults patients with neuropathic pain. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ENGLISH EDITION) 2019. [PMID: 30454846 PMCID: PMC9391827 DOI: 10.1016/j.bjane.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background and objectives Gabapentin is an antiepileptic drug. Widely used for the management of neuropathic pain. Although it is known to be well tolerated, somnolence and dizziness are the most frequent adverse effects. In this study, we aimed to evaluate the effect of melatonin on daytime sleepiness side effect of gabapentin, sleep quality and pain intensity of patients with neuropathic pain. Methods Patients suffering from “neuropathic pain” and planed to receive gabapentin therapy were randomly divided into two groups. Group 1 received melatonin 3 mg and gabapentin 900 mg orally, group 2 received matching placebo capsule and gabapentin 900 mg. The Epworth Sleepiness Scale, the Pittsburgh sleep quality index for assessment of sleep quality and Verbal Rating Scale were completed at the 0th, 10th and 30th days of treatment. Additive analgesic drug requirements were recorded. Results Eighty patients were enrolled to the study; age, gender, ratio of additive analgesic consumption, baseline Epworth Sleepiness Scale, Pittsburg Sleep Quality index and Verbal Rating Scale scores were similar between the groups. Epworth Sleepiness Scale scores, Pittsburgh sleep quality index scores and Verbal Rating Scale scores in Group 1 were significantly lower than group 2 at the 10th day of treatment (p = 0.002, p = 0.003, p = 0.002 respectively). At the 30th day of treatment, Epworth Sleepiness Scale scores and Verbal Rating Scale scores were significantly lower in Group 1 (p = 0.002, p = 0.008 respectively). However, Pittsburgh sleep quality index scores did not significantly differ between the groups (p = 0.0566). Conclusions Melatonin supplementation rapidly and significantly improved daytime sleepiness side-effect of gabapentin, however sleep quality of the patients with neuropathic pain was similar between groups.
Collapse
Affiliation(s)
- Basak Altiparmak
- Mugla Sitki Kocman University, Department of Anesthesiology and Reanimation, Mugla, Turquia.
| | - Hemra Cil
- University of California, Department of Orthopedics and Traumatology, San Francisco, Estados Unidos
| | - Nalan Celebi
- Hacettepe University, Department of Anesthesiology and Reanimation, Ankara, Turquia
| |
Collapse
|
18
|
Kuthati Y, Lin SH, Chen IJ, Wong CS. Melatonin and their analogs as a potential use in the management of Neuropathic pain. J Formos Med Assoc 2018; 118:1177-1186. [PMID: 30316678 DOI: 10.1016/j.jfma.2018.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/02/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), secreted by the pineal gland is known to perform multiple functions including, antioxidant, anti-hypertensive, anti-cancerous, immunomodulatory, sedative and tranquilizing functions. Melatonin is also known to be involved in the regulation of body mass index, control the gastrointestinal system and play an important role in cardioprotection, thermoregulation, and reproduction. Recently, several studies have reported the efficacy of Melatonin in treating various pain syndromes. The current paper reviews the studies on Melatonin and its analogs, particularly in Neuropathic pain. Here, we first briefly summarized research in preclinical studies showing the possible mechanisms through which Melatonin and its analogs induce analgesia in Neuropathic pain. Second, we reviewed research indicating the role of Melatonin in attenuating analgesic tolerance. Finally, we discussed the recent studies that reported novel Melatonin agonists, which were proven to be effective in treating Neuropathic pain.
Collapse
Affiliation(s)
- Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Sheng-Hsiung Lin
- Planning and Management Office, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | - Ing-Jung Chen
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan; Planning and Management Office, Tri-Service General Hospital, National Defense Medical Center, Taiwan; Institute of Medical Sciences, National Defense Medical Center, Taiwan; Department of Anesthesiology, Tri-Service General Hospital, Taiwan.
| |
Collapse
|
19
|
Bonomini F, Borsani E, Favero G, Rodella LF, Rezzani R. Dietary Melatonin Supplementation Could Be a Promising Preventing/Therapeutic Approach for a Variety of Liver Diseases. Nutrients 2018; 10:nu10091135. [PMID: 30134592 PMCID: PMC6164189 DOI: 10.3390/nu10091135] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023] Open
Abstract
In the therapeutic strategies, the role of diet is a well-established factor that can also have an important role in liver diseases. Melatonin, identified in animals, has many antioxidant properties and it was after discovered also in plants, named phytomelatonin. These substances have a positive effect during aging and in pathological conditions too. In particular, it is important to underline that the amount of melatonin produced by pineal gland in human decreases during lifetime and its reduction in blood could be related to pathological conditions in which mitochondria and oxidative stress play a pivotal role. Moreover, it has been indicated that melatonin/phytomelatonin containing foods may provide dietary melatonin, so their ingestion through balanced diets could be sufficient to confer health benefits. In this review, the classification of liver diseases and an overview of the most important aspects of melatonin/phytomelatonin, concerning the differences among their synthesis, their presence in foods and their role in health and diseases, are summarized. The findings suggest that melatonin/phytomelatonin supplementation with diet should be considered important in preventing different disease settings, in particular in liver. Currently, more studies are needed to strengthen the potential beneficial effects of melatonin/phytomelatonin in liver diseases and to better clarify the molecular mechanisms of action.
Collapse
Affiliation(s)
- Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Elisa Borsani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Luigi F Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
20
|
Gagnon K, Godbout R. Melatonin and Comorbidities in Children with Autism Spectrum Disorder. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2018; 5:197-206. [PMID: 30148039 PMCID: PMC6096870 DOI: 10.1007/s40474-018-0147-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Melatonin is used to treat sleep difficulties associated with autism spectrum disorder (ASD). There are growing evidence that melatonin could have an effect on other symptoms than sleep, such as anxiety, depression, pain, and gastrointestinal dysfunctions. Interestingly, these symptoms frequently are found as comorbid conditions in individuals with ASD. We aimed to highlight the potential effect of melatonin on these symptoms. RECENT FINDINGS Animal and human studies show that melatonin reduces anxiety. Regarding the effect of melatonin on pain, animal studies are promising, but results remain heterogeneous in humans. Both animal and human studies have found that melatonin can have a positive effect on gastrointestinal dysfunction. SUMMARY Melatonin has the potential to act on a wide variety of symptoms associated with ASD. However, other than sleep difficulties, no studies exist on melatonin as a treatment for ASD comorbid conditions. Such investigations should be on the research agenda because melatonin could improve a multitude of ASD comorbidities and, consequently, improve well-being.
Collapse
Affiliation(s)
- Katia Gagnon
- Sleep Laboratory & Clinic, Hôpital Rivière-des-Prairies, CIUSSS du Nord-de-l’Île-de-Montréal, 7070 Boul. Perras, Montréal, Québec H1E 1A4 Canada
- Department of Psychiatry, Université de Montréal, Montréal, Québec Canada
| | - Roger Godbout
- Sleep Laboratory & Clinic, Hôpital Rivière-des-Prairies, CIUSSS du Nord-de-l’Île-de-Montréal, 7070 Boul. Perras, Montréal, Québec H1E 1A4 Canada
- Department of Psychiatry, Université de Montréal, Montréal, Québec Canada
| |
Collapse
|