1
|
Yamagata M, Sanes JR. CRISPR-mediated Labeling of Cells in Chick Embryos Based on Selectively Expressed Genes. Bio Protoc 2021; 11:e4105. [PMID: 34458399 PMCID: PMC8376491 DOI: 10.21769/bioprotoc.4105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022] Open
Abstract
The abilities to mark and manipulate specific cell types are essential for an increasing number of functional, structural, molecular, and developmental analyses in model organisms. In a few species, this can be accomplished by germline transgenesis; in other species, other methods are needed to selectively label somatic cells based on the genes that they express. Here, we describe a method for CRISPR-based somatic integration of reporters or Cre recombinase into specific genes in the chick genome, followed by visualization of cells in the retina and midbrain. Loci are chosen based on an RNA-seq-based cell atlas. Reporters can be soluble to visualize the morphology of individual cells or appended to the encoded protein to assess subcellular localization. We call the method eCHIKIN for electroporation- and CRISPR-mediated Homology-instructed Knock-IN.
Collapse
Affiliation(s)
- Masahito Yamagata
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, 02138, USA
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, 02138, USA
| |
Collapse
|
2
|
Park YH, Woo SJ, Chungu K, Lee SB, Shim JH, Lee HJ, Kim I, Rengaraj D, Song CS, Suh JY, Lim JM, Han JY. Asp149 and Asp152 in chicken and human ANP32A play an essential role in the interaction with influenza viral polymerase. FASEB J 2021; 35:e21630. [PMID: 33982347 DOI: 10.1096/fj.202002006rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/05/2023]
Abstract
The acidic nuclear phosphoprotein 32 family member A (ANP32A) is a cellular host factor that determines the host tropism of the viral polymerase (vPol) of avian influenza viruses (AIVs). Compared with human ANP32A (hANP32A), chicken ANP32A contains an additional 33 amino acid residues (176-208) duplicated from amino acid residues 149-175 (27 residues), suggesting that these residues could be involved in increasing vPol activity by strengthening interactions between ANP32A and vPol. However, the molecular interactions and functional roles of the 27 residues within hANP32A during AIV vPol activity remain unclear. Here, we examined the functional role of 27 residues of hANP32A based on comparisons with other human (h) ANP32 family members. It was notable that unlike hANP32A and hANP32B, hANP32C could not support vPol activity or replication of AIVs, despite the fact that hANP32C shares a higher sequence identity with hANP32A than hANP32B. Pairwise comparison between hANP32A and hANP32C revealed that Asp149 (D149) and Asp152 (D152) are involved in hydrogen bonding and electrostatic interactions, respectively, which support vPol activity. Mutation of these residues reduced the interaction between hANP32A and vPol. Finally, we demonstrated that precise substitution of the identified residues within chicken ANP32A via homology-directed repair using the CRISPR/Cas9 system resulted in a marked reduction of viral replication in chicken cells. These results increase our understanding of ANP32A function and may facilitate the development of AIV-resistant chickens via precise modification of residues within ANP32A.
Collapse
Affiliation(s)
- Young Hyun Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Je Woo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kelly Chungu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Su Bin Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyeon Shim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hong Jo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Iktae Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chang-Seon Song
- Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jeong Mook Lim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Improving germline transmission efficiency in chimeric chickens using a multi-stage injection approach. PLoS One 2021; 16:e0247471. [PMID: 34086696 PMCID: PMC8177527 DOI: 10.1371/journal.pone.0247471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/18/2021] [Indexed: 11/19/2022] Open
Abstract
Although different strategies have been developed to generate transgenic poultry, low efficiency of germline transgene transmission has remained a challenge in poultry transgenesis. Herein, we developed an efficient germline transgenesis method using a lentiviral vector system in chickens through multiple injections of transgenes into embryos at different stages of development. The embryo chorioallantoic membrane (CAM) vasculature was successfully used as a novel route of gene transfer into germline tissues. Compared to the other routes of viral vector administration, the embryo’s bloodstream at Hamburger-Hamilton (HH) stages 14–15 achieved the highest rate of germline transmission (GT), 7.7%. Single injection of viral vectors into the CAM vasculature resulted in a GT efficiency of 2.7%, which was significantly higher than the 0.4% obtained by injection into embryos at the blastoderm stage. Double injection of viral vectors into the bloodstream at HH stages 14–15 and through CAM was the most efficient method for producing germline chimeras, giving a GT rate of 13.6%. The authors suggest that the new method described in this study could be efficiently used to produce transgenic poultry in virus-mediated gene transfer systems.
Collapse
|
4
|
Development of a transposon-based technology for transfection of day 0 chicken embryos. Gene 2020; 730:144318. [DOI: 10.1016/j.gene.2019.144318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
|
5
|
Lee HJ, Yoon JW, Jung KM, Kim YM, Park JS, Lee KY, Park KJ, Hwang YS, Park YH, Rengaraj D, Han JY. Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development. FASEB J 2019; 33:8519-8529. [PMID: 30951374 DOI: 10.1096/fj.201802671r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) have facilitated the production of genome-edited animals for use as models. Because of their unique developmental system, avian species offer many advantages as model vertebrates. Here, we report the development of novel chicken models using the CRISPR/Cas9-mediated nonhomologous end joining repair pathway in chicken primordial germ cells (PGCs). Through the introduction of a donor plasmid containing short guide RNA recognition sequences and CRISPR/Cas9 plasmids into chicken PGCs, exogenous genes of donor plasmids were precisely inserted into target loci, and production of transgenic chickens was accomplished through subsequent transplantation of the Z chromosome-targeted PGCs. Using this method, we successfully accomplished the targeted gene insertion to the chicken sex Z chromosome without detected off-target effects. The genome-modified chickens robustly expressed green fluorescent protein from the Z chromosome, which could then be used for easy sex identification during embryogenesis. Our results suggest that this powerful genome-editing method could be used to develop many chicken models and should significantly expand the application of genome-modified avians.-Lee, H. J., Yoon, J. W., Jung, K. M., Kim, Y. M., Park, J. S., Lee, K. Y., Park, K. J., Hwang, Y. S., Park, Y. H., Rengaraj, D., Han, J. Y. Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development.
Collapse
Affiliation(s)
- Hong Jo Lee
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jong Won Yoon
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jin Se Park
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Young Sun Hwang
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Lee HJ, Park KJ, Lee KY, Yao Y, Nair V, Han JY. Sequential disruption of ALV host receptor genes reveals no sharing of receptors between ALV subgroups A, B, and J. J Anim Sci Biotechnol 2019; 10:23. [PMID: 30976416 PMCID: PMC6444617 DOI: 10.1186/s40104-019-0333-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background Previously, we showed that targeted disruption of viral receptor genes in avian leukosis virus (ALV) subgroups using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9))-based genome editing confers resistance to ALV subgroups B and J. Here, we used the same strategy to target the receptor expressed by ALV subgroup A (TVA) and generate chicken cells resistant to infection by this virus. Results CRISPR/Cas9-based disruption of exon 2 within the tva gene of DF-1 fibroblasts conferred resistance to infection by ALV subgroup A regardless of whether frameshift mutations were introduced during editing. Conversely, overexpression of the wild-type TVA receptor (wtTVA) by tva-modified DF-1 clones restored susceptibility to ALV subgroup A. The results confirm that exon 2, which contains the low-density lipoprotein receptor class A domain of TVA, is critical for virus entry. Furthermore, we sequentially modified DF-1 cells by editing the tva, tvb, and Na+/H+ exchange 1 (chNHE1) genes, which are the specific receptors for ALV subgroups A, B, and J, respectively. Conclusions Simultaneous editing of multiple receptors to block infection by different subgroups of ALV confirmed that ALV subgroups A, B, and J do not share host receptors. This strategy could be used to generate cells resistant to multiple viral pathogens that use distinct receptors for cell entry.
Collapse
Affiliation(s)
- Hong Jo Lee
- 1Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Kyung Je Park
- 1Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Kyung Youn Lee
- 1Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Yongxiu Yao
- 2The Pirbright Institute, Woking, Surrey GU24 0NF UK
| | | | - Jae Yong Han
- 1Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
7
|
Oishi I, Yoshii K, Miyahara D, Tagami T. Efficient production of human interferon beta in the white of eggs from ovalbumin gene-targeted hens. Sci Rep 2018; 8:10203. [PMID: 29976933 PMCID: PMC6033876 DOI: 10.1038/s41598-018-28438-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Transgenic chickens could potentially serve as bioreactors for commercial production of recombinant proteins in egg white. Many transgenic chickens have been generated by randomly integrating viral vectors into their genomes, but transgene expression has proved insufficient and/or limited to the initial cohort. Herein, we demonstrate the feasibility of integrating human interferon beta (hIFN-β) into the chicken ovalbumin locus and producing hIFN-β in egg white. We knocked in hIFN-β into primordial germ cells using a CRISPR/Cas9 protocol and then generated germline chimeric roosters by cell transplantation into recipient embryos. Two generation-zero founder roosters produced hIFN-β knock-in offspring, and all knock-in female offspring produced abundant egg-white hIFN-β (~3.5 mg/ml). Although female offspring of the first generation were sterile, their male counterparts were fertile and produced a second generation of knock-in hens, for which egg-white hIFN-β production was comparable with that of the first generation. The hIFN-β bioactivity represented only ~5% of total egg-white hIFN-β, but unfolding and refolding of hIFN-β in the egg white fully recovered the bioactivity. These results suggest that transgene insertion at the chicken ovalbumin locus can result in abundant and stable expression of an exogenous protein deposited into egg white and should be amenable to industrial applications.
Collapse
Affiliation(s)
- Isao Oishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31, Midorioka, Ikeda, Osaka, 563-8577, Japan.
| | - Kyoko Yoshii
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31, Midorioka, Ikeda, Osaka, 563-8577, Japan
| | - Daichi Miyahara
- Animal Breeding and Reproduction Research Division, National Agriculture and Food Research Organization, Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Takahiro Tagami
- Animal Breeding and Reproduction Research Division, National Agriculture and Food Research Organization, Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| |
Collapse
|
8
|
Freesmeyer M, Kuehnel C, Opfermann T, Niksch T, Wiegand S, Stolz R, Huonker R, Witte OW, Winkens T. The Use of Ostrich Eggs for In Ovo Research: Making Preclinical Imaging Research Affordable and Available. J Nucl Med 2018; 59:1901-1906. [PMID: 29934406 DOI: 10.2967/jnumed.118.210310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
In ovo studies are a valuable option in preclinical research, but imaging studies are severely limited by the costs of dedicated equipment needed for small-sized eggs. We sought to verify the feasibility of using larger, ostrich, eggs (Struthio camelus) for imaging on the PET/CT scanners used for routine clinical investigations. Methods: Ostrich eggs were incubated until shortly before hatching, prepared for intravitelline venous injection of contrast medium or radiotracer, and imaged using native CT, contrast-enhanced CT, and PET/CT. Any technical adaptations that were needed to improve the outcome were noted. Results: Of the 34 eggs initially incubated, 12 became fully available for imaging of embryonal development. In ovo imaging with conventional PET/CT not only was feasible but also provided images of good quality, including on dynamic PET imaging. Conclusion: In ovo imaging with ostrich eggs and routine clinical scanners may allow broader application of this field of preclinical research, obviating costly dedicated equipment and reducing the number of animals needed for classic animal research. Further experiments are warranted to refine this novel approach, especially to reduce motion artifacts and improve monitoring of viability.
Collapse
Affiliation(s)
| | | | - Thomas Opfermann
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
| | - Tobias Niksch
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
| | - Steffen Wiegand
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
| | - Ronny Stolz
- Leibniz Institute of Photonic Technology, Jena, Germany
| | - Ralph Huonker
- Biomagnetic Center, Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; and
| | - Otto W Witte
- Biomagnetic Center, Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; and.,Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Thomas Winkens
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|