1
|
Tan S, Yang J, Hu S, Lei W. Cell-cell interactions in the heart: advanced cardiac models and omics technologies. Stem Cell Res Ther 2024; 15:362. [PMID: 39396018 PMCID: PMC11470663 DOI: 10.1186/s13287-024-03982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
A healthy heart comprises various cell types, including cardiomyocytes, endothelial cells, fibroblasts, immune cells, and among others, which work together to maintain optimal cardiac function. These cells engage in complex communication networks, known as cell-cell interactions (CCIs), which are essential for homeostasis, cardiac structure, and efficient function. However, in the context of cardiac diseases, the heart undergoes damage, leading to alterations in the cellular composition. Such pathological conditions trigger significant changes in CCIs, causing cell rearrangement and the transition between cell types. Studying these interactions can provide valuable insights into cardiac biology and disease mechanisms, enabling the development of new therapeutic strategies. While the development of cardiac organoids and advanced 3D co-culture technologies has revolutionized in vitro studies of CCIs, recent advancements in single-cell and spatial multi-omics technologies provide researchers with powerful and convenient tools to investigate CCIs at unprecedented resolution. This article provides a concise overview of CCIs observed in both normal and injured heart, with an emphasis on the cutting-edge methods used to study these interactions. It highlights recent advancements such as 3D co-culture systems, single-cell and spatial omics technologies, that have enhanced the understanding of CCIs. Additionally, it summarizes the practical applications of CCI research in advancing cardiovascular therapies, offering potential solutions for treating heart disease by targeting intercellular communication.
Collapse
Affiliation(s)
- Shuai Tan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Jingsi Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
2
|
Di Russo S, Liberati FR, Riva A, Di Fonzo F, Macone A, Giardina G, Arese M, Rinaldo S, Cutruzzolà F, Paone A. Beyond the barrier: the immune-inspired pathways of tumor extravasation. Cell Commun Signal 2024; 22:104. [PMID: 38331871 PMCID: PMC10851599 DOI: 10.1186/s12964-023-01429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 02/10/2024] Open
Abstract
Extravasation is a fundamental step in the metastatic journey, where cancer cells exit the bloodstream and breach the endothelial cell barrier to infiltrate target tissues. The tactics cancer cells employ are sophisticated, closely reflecting those used by the immune system for tissue surveillance. Remarkably, tumor cells have been observed to form distinct associations or clusters with immune cells where neutrophils stand out as particularly crucial partners. These interactions are not accidental; they are critical for cancer cells to exploit the immune functions of neutrophils and successfully extravasate. In another strategy, tumor cells mimic the behavior and characteristics of immune cells. They release a suite of inflammatory mediators, which under normal circumstances, guide the processes of endothelium reshaping and facilitate the entry and movement of immune cells within tissues. In this review, we offer a new perspective on the tactics employed by cancer cells to extravasate and infiltrate target tissues. We delve into the myriad mechanisms that tumor cells borrow, adapt, and refine from the immune playbook. Video Abstract.
Collapse
Affiliation(s)
- Sara Di Russo
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Francesca Romana Liberati
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Agnese Riva
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Federica Di Fonzo
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Alberto Macone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Alessio Paone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy.
| |
Collapse
|
3
|
Stierschneider A, Wiesner C. Shedding light on the molecular and regulatory mechanisms of TLR4 signaling in endothelial cells under physiological and inflamed conditions. Front Immunol 2023; 14:1264889. [PMID: 38077393 PMCID: PMC10704247 DOI: 10.3389/fimmu.2023.1264889] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Toll-like receptor 4 (TLR4) are part of the innate immune system. They are capable of recognizing pathogen-associated molecular patterns (PAMPS) of microbes, and damage-associated molecular patterns (DAMPs) of damaged tissues. Activation of TLR4 initiates downstream signaling pathways that trigger the secretion of cytokines, type I interferons, and other pro-inflammatory mediators that are necessary for an immediate immune response. However, the systemic release of pro-inflammatory proteins is a powerful driver of acute and chronic inflammatory responses. Over the past decades, immense progress has been made in clarifying the molecular and regulatory mechanisms of TLR4 signaling in inflammation. However, the most common strategies used to study TLR4 signaling rely on genetic manipulation of the TLR4 or the treatment with agonists such as lipopolysaccharide (LPS) derived from the outer membrane of Gram-negative bacteria, which are often associated with the generation of irreversible phenotypes in the target cells or unintended cytotoxicity and signaling crosstalk due to off-target or pleiotropic effects. Here, optogenetics offers an alternative strategy to control and monitor cellular signaling in an unprecedented spatiotemporally precise, dose-dependent, and non-invasive manner. This review provides an overview of the structure, function and signaling pathways of the TLR4 and its fundamental role in endothelial cells under physiological and inflammatory conditions, as well as the advances in TLR4 modulation strategies.
Collapse
Affiliation(s)
| | - Christoph Wiesner
- Department Science & Technology, Institute Biotechnology, IMC Krems University of Applied Sciences, Krems, Austria
| |
Collapse
|
4
|
Sembajwe LF, Ssekandi AM, Namaganda A, Muwonge H, Kasolo JN, Kalyesubula R, Nakimuli A, Naome M, Patel KP, Masenga SK, Kirabo A. Glycocalyx-Sodium Interaction in Vascular Endothelium. Nutrients 2023; 15:2873. [PMID: 37447199 PMCID: PMC10343370 DOI: 10.3390/nu15132873] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The glycocalyx generally covers almost all cellular surfaces, where it participates in mediating cell-surface interactions with the extracellular matrix as well as with intracellular signaling molecules. The endothelial glycocalyx that covers the luminal surface mediates the interactions of endothelial cells with materials flowing in the circulating blood, including blood cells. Cardiovascular diseases (CVD) remain a major cause of morbidity and mortality around the world. The cardiovascular risk factors start by causing endothelial cell dysfunction associated with destruction or irregular maintenance of the glycocalyx, which may culminate into a full-blown cardiovascular disease. The endothelial glycocalyx plays a crucial role in shielding the cell from excessive exposure and absorption of excessive salt, which can potentially cause damage to the endothelial cells and underlying tissues of the blood vessels. So, in this mini review/commentary, we delineate and provide a concise summary of the various components of the glycocalyx, their interaction with salt, and subsequent involvement in the cardiovascular disease process. We also highlight the major components of the glycocalyx that could be used as disease biomarkers or as drug targets in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lawrence Fred Sembajwe
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Abdul M. Ssekandi
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Agnes Namaganda
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Haruna Muwonge
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Josephine N. Kasolo
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Robert Kalyesubula
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Annettee Nakimuli
- Department of Obstetrics and Gynecology, School of Medicine, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda;
| | - Mwesigwa Naome
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sepiso K. Masenga
- Department of Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Kabwe P.O. Box 80415, Zambia;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
5
|
Aditianingsih D, Soenarto RF, Puiantana AM, Pranata R, Lim MA, Raharja PAR, Birowo P, Meyer M. Dose response relationship between D-dimer level and mortality in critically ill COVID-19 patients: a retrospective observational study. F1000Res 2023; 11:269. [PMID: 38665691 PMCID: PMC11043662 DOI: 10.12688/f1000research.108972.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a global pandemic. Coagulopathy is one of the most common complications characterized by increased D-dimer level. We aimed to investigate the dose-response relationship between elevated D-dimer level and mortality in critically ill COVID-19 patients. METHODS This was a retrospective observational study in 259 critically ill COVID-19 patients requiring intensive care unit admission between March and December 2020. We compared the mortality rate between patients with and without elevated D-dimer. Receiver operating characteristic (ROC) curve analysis, Fagan's nomogram, and dose-response relationship were performed to determine the association between D-dimer level and mortality. RESULTS Overall mortality rate was 40.9% (106 patients). Median D-dimer level was higher in non-survivor group (10,170 ng/mL vs 4,050 ng/mL, p=0.028). The association remained significant after multivariate logistic regression analysis (p=0.046). The optimal cut-off for D-dimer level to predict mortality from ROC curve analysis was 9,020 ng/mL (OR (odds ratio) 3.73 [95% CI (confidence interval) 1.91 - 7.28], p<0.001). D-dimer level >9,020 ng/mL confers 67% posterior probability of mortality and D-dimer level <9,020 ng/mL had 35% probability of mortality. CONCLUSIONS There was a non-linear dose-response relationship between D-dimer level and mortality with P nonlinearity of 0.004. D-dimer level was associated with mortality in critically ill COVID-19 patients in the non-linear dose-response relationship.
Collapse
Affiliation(s)
- Dita Aditianingsih
- Division of Critical Care, Universitas Indonesia Hospita, Depok, Jawa Barat, Indonesia
- Department of Anesthesia and Intensive Care, Dr. Cipto Mangunkusumo Hospital – Universitas Indonesia Hospital, Jakarta, DKI Jakarta, Indonesia
| | - Ratna Farida Soenarto
- Department of Anesthesia and Intensive Care, Dr. Cipto Mangunkusumo Hospital – Universitas Indonesia Hospital, Jakarta, DKI Jakarta, Indonesia
| | - Artheta Mutiara Puiantana
- Department of Anesthesia and Intensive Care, Dr. Cipto Mangunkusumo Hospital – Universitas Indonesia Hospital, Jakarta, DKI Jakarta, Indonesia
| | - Raymond Pranata
- Faculty of Medicine, Pelita Harapan University, Tangerang, Banten, Indonesia
| | | | - Putu Angga Risky Raharja
- Department of Urology, Dr. Cipto Mangunkusumo Hospital – Universitas Indonesia Hospital, Jakarta, DKI Jakarta, Indonesia
| | - Ponco Birowo
- Department of Urology, Dr. Cipto Mangunkusumo Hospital – Universitas Indonesia Hospital, Jakarta, DKI Jakarta, Indonesia
| | - Markus Meyer
- Faculty of Medicine, Universitas Indonesia, Jakarta, DKI Jakarta, Indonesia
| |
Collapse
|
6
|
The Role of Connexin in Ophthalmic Neovascularization and the Interaction between Connexin and Proangiogenic Factors. J Ophthalmol 2022; 2022:8105229. [PMID: 35783340 PMCID: PMC9242797 DOI: 10.1155/2022/8105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/11/2022] [Indexed: 12/02/2022] Open
Abstract
The formation of new blood vessels is an important physiological process that occurs during development. When the body is injured, new blood vessel formation helps the body recuperate by supplying more oxygen and nutrients. However, this mechanism can have a negative effect. In ophthalmologic diseases, such as corneal new blood vessels, neonatal vascular glaucoma, and diabetes retinopathy, the formation of new blood vessels has become a critical component in patient survival. Connexin is a protein that regulates the cellular and molecular material carried by cells. It has been demonstrated that it is widely expressed in vascular endothelial cells, where it forms a slit connection between adjacent cells to promote cell-cell communication via hemichannels, as well as substance exchange into intracellular environments. Numerous studies have demonstrated that connexin in vascular endothelial cells plays an important role in angiogenesis and vascular leakage. The purpose of this study was to investigate the effect between the angiogenesis-associated factor and the connexin. It also reveals the effect of connexin on ophthalmic neovascularization.
Collapse
|
7
|
Omolaoye TS, Jalaleddine N, Cardona Maya WD, du Plessis SS. Mechanisms of SARS-CoV-2 and Male Infertility: Could Connexin and Pannexin Play a Role? Front Physiol 2022; 13:866675. [PMID: 35721552 PMCID: PMC9205395 DOI: 10.3389/fphys.2022.866675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on male infertility has lately received significant attention. SARS-CoV-2, the virus that causes coronavirus disease (COVID-19) in humans, has been shown to impose adverse effects on both the structural components and function of the testis, which potentially impact spermatogenesis. These adverse effects are partially explained by fever, systemic inflammation, oxidative stress, and an increased immune response leading to impaired blood-testis barrier. It has been well established that efficient cellular communication via gap junctions or functional channels is required for tissue homeostasis. Connexins and pannexins are two protein families that mediate autocrine and paracrine signaling between the cells and the extracellular environment. These channel-forming proteins have been shown to play a role in coordinating cellular communication in the testis and epididymis. Despite their role in maintaining a proper male reproductive milieu, their function is disrupted under pathological conditions. The involvement of these channels has been well documented in several physiological and pathological conditions and their designated function in infectious diseases. However, their role in COVID-19 and their meaningful contribution to male infertility remains to be elucidated. Therefore, this review highlights the multivariate pathophysiological mechanisms of SARS-CoV-2 involvement in male reproduction. It also aims to shed light on the role of connexin and pannexin channels in disease progression, emphasizing their unexplored role and regulation of SARS-CoV-2 pathophysiology. Finally, we hypothesize the possible involvement of connexins and pannexins in SARS-CoV-2 inducing male infertility to assist future research ideas targeting therapeutic approaches.
Collapse
Affiliation(s)
- Temidayo S. Omolaoye
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nour Jalaleddine
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Walter D. Cardona Maya
- Reproduction Group, Department of Microbiology and Parasitology, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Stefan S. du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- *Correspondence: Stefan S. du Plessis,
| |
Collapse
|
8
|
Ye J, Calvo IA, Cenzano I, Vilas A, Martinez-de-Morentin X, Lasaga M, Alignani D, Paiva B, Viñado AC, San Martin-Uriz P, Romero JP, Quilez Agreda D, Miñana Barrios M, Sancho-González I, Todisco G, Malcovati L, Planell N, Saez B, Tegner JN, Prosper F, Gomez-Cabrero D. Deconvolution of the hematopoietic stem cell microenvironment reveals a high degree of specialization and conservation. iScience 2022; 25:104225. [PMID: 35494238 PMCID: PMC9046238 DOI: 10.1016/j.isci.2022.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/14/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
Understanding the regulation of normal and malignant human hematopoiesis requires comprehensive cell atlas of the hematopoietic stem cell (HSC) regulatory microenvironment. Here, we develop a tailored bioinformatic pipeline to integrate public and proprietary single-cell RNA sequencing (scRNA-seq) datasets. As a result, we robustly identify for the first time 14 intermediate cell states and 11 stages of differentiation in the endothelial and mesenchymal BM compartments, respectively. Our data provide the most comprehensive description to date of the murine HSC-regulatory microenvironment and suggest a higher level of specialization of the cellular circuits than previously anticipated. Furthermore, this deep characterization allows inferring conserved features in human, suggesting that the layers of microenvironmental regulation of hematopoiesis may also be shared between species. Our resource and methodology is a stepping-stone toward a comprehensive cell atlas of the BM microenvironment.
Collapse
Affiliation(s)
- Jin Ye
- Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
| | - Isabel A. Calvo
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Itziar Cenzano
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
| | - Amaia Vilas
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Xabier Martinez-de-Morentin
- Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, 31008 Navarra, Spain
| | - Miren Lasaga
- Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, 31008 Navarra, Spain
| | - Diego Alignani
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Bruno Paiva
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Ana C. Viñado
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Patxi San Martin-Uriz
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
| | - Juan P. Romero
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
| | | | | | | | - Gabriele Todisco
- Department of Molecular Medicine, University of Pavia & Unit of Precision Hematology Oncology, IRCCS S. Matteo Hospital Foundation, 27100 Pavia, Italy
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia & Unit of Precision Hematology Oncology, IRCCS S. Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Nuria Planell
- Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, 31008 Navarra, Spain
| | - Borja Saez
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Jesper N. Tegner
- Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
- Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Stockholm, Sweden
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
| | - Felipe Prosper
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Service of Hematology and Cell Therapy, Clínica Universidad de Navarra; CCUN, Pamplona, Navarra, 31008; Spain
| | - David Gomez-Cabrero
- Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
- Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, 31008 Navarra, Spain
- Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Stockholm, Sweden
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College, London WC2R 2LS, UK
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
9
|
Connexin 43 Expression in Cutaneous Biopsies of Lupus Erythematosus. Am J Dermatopathol 2022; 44:664-668. [PMID: 35503887 DOI: 10.1097/dad.0000000000002217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Gap junctions are channels between adjacent cells formed by connexins (Cxs). Cxs also form hemichannels that connect the cell with its extracellular milieu. These channels allow the transport of ions, metabolites, and small molecules; therefore, Cxs, and more specifically, connexin (Cx) 43 has been demonstrated to be in control of several crucial events such as inflammation and cell death. MATERIAL AND METHODS We examined the immunostaining of Cx43 in the endothelia of the cutaneous blood vessels of biopsies from 28 patients with several variants of lupus erythematosus. RESULTS In 19 cases (67.86%), staining of more than half of the dermal vessels including both vessels of the papillary and of the reticular dermis was identified. Only in 4 cases (14.28%), less than 25% of the vessels in the biopsy showed expression of the marker. CONCLUSIONS Our results suggest a role of Cx43 in regulating the endothelial activity in lupus erythematosus, which also opens a door for targeted therapeutic options.
Collapse
|
10
|
Okue S, Yaguchi M, Miura A, Ozaki-Masuzawa Y, Hosono T, Seki T. The garlic-derived organosulfur compound diallyl trisulphide suppresses tissue factor function. Food Funct 2022; 13:1246-1255. [PMID: 35022635 DOI: 10.1039/d1fo02206g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue factor (TF) is a critical initiator of extrinsic coagulation that sometimes causes thromboembolism. Diallyl trisulphide (DATS) is a secondary metabolite of allicin generated in crushed garlic, with various pharmacological effects. This study aimed to clarify the effect of DATS on the extrinsic coagulation elicited by TF and arteriosclerosis. TF activity was measured using a clotting assay in TF-expressing HL60 cells. DATS inhibited TF activity in a dose-dependent manner. TF expression in TNF-α-stimulated human umbilical vein endothelial cells was examined using real-time PCR and western blotting. DATS inhibited TF mRNA and protein expression induced by TNF-α via inhibition of JNK signalling. The effect of DATS on arteriosclerosis was also examined in apolipoprotein E-deficient mice. DATS administration in these mice tended to decrease atherosclerotic lesion size. These results strongly suggest that DATS prevents thromboembolism triggered by atherosclerosis via the inhibition of plaque formation and TF function.
Collapse
Affiliation(s)
- Sachiko Okue
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan.
| | - Manami Yaguchi
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan.
| | - Atsushi Miura
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan.
| | - Yori Ozaki-Masuzawa
- Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Takashi Hosono
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan. .,Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Taiichiro Seki
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan. .,Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| |
Collapse
|
11
|
Botts SR, Fish JE, Howe KL. Dysfunctional Vascular Endothelium as a Driver of Atherosclerosis: Emerging Insights Into Pathogenesis and Treatment. Front Pharmacol 2021; 12:787541. [PMID: 35002720 PMCID: PMC8727904 DOI: 10.3389/fphar.2021.787541] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis, the chronic accumulation of cholesterol-rich plaque within arteries, is associated with a broad spectrum of cardiovascular diseases including myocardial infarction, aortic aneurysm, peripheral vascular disease, and stroke. Atherosclerotic cardiovascular disease remains a leading cause of mortality in high-income countries and recent years have witnessed a notable increase in prevalence within low- and middle-income regions of the world. Considering this prominent and evolving global burden, there is a need to identify the cellular mechanisms that underlie the pathogenesis of atherosclerosis to discover novel therapeutic targets for preventing or mitigating its clinical sequelae. Despite decades of research, we still do not fully understand the complex cell-cell interactions that drive atherosclerosis, but new investigative approaches are rapidly shedding light on these essential mechanisms. The vascular endothelium resides at the interface of systemic circulation and the underlying vessel wall and plays an essential role in governing pathophysiological processes during atherogenesis. In this review, we present emerging evidence that implicates the activated endothelium as a driver of atherosclerosis by directing site-specificity of plaque formation and by promoting plaque development through intracellular processes, which regulate endothelial cell proliferation and turnover, metabolism, permeability, and plasticity. Moreover, we highlight novel mechanisms of intercellular communication by which endothelial cells modulate the activity of key vascular cell populations involved in atherogenesis, and discuss how endothelial cells contribute to resolution biology - a process that is dysregulated in advanced plaques. Finally, we describe important future directions for preclinical atherosclerosis research, including epigenetic and targeted therapies, to limit the progression of atherosclerosis in at-risk or affected patients.
Collapse
Affiliation(s)
- Steven R. Botts
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Tittarelli A. Connexin channels modulation in pathophysiology and treatment of immune and inflammatory disorders. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166258. [PMID: 34450245 DOI: 10.1016/j.bbadis.2021.166258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Connexin-mediated intercellular communication mechanisms include bidirectional cell-to-cell coupling by gap junctions and release/influx of molecules by hemichannels. These intercellular communications have relevant roles in numerous immune system activities. Here, we review the current knowledge about the function of connexin channels, mainly those formed by connexin-43, on immunity and inflammation. Focusing on those evidence that support the design and development of therapeutic tools to modulate connexin expression and/or channel activities with treatment potential for infections, wounds, cancer, and other inflammatory conditions.
Collapse
Affiliation(s)
- Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile.
| |
Collapse
|
13
|
Miao H, Chen S, Ding R. Evaluation of the Molecular Mechanisms of Sepsis Using Proteomics. Front Immunol 2021; 12:733537. [PMID: 34745104 PMCID: PMC8566982 DOI: 10.3389/fimmu.2021.733537] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a complex syndrome promoted by pathogenic and host factors; it is characterized by dysregulated host responses and multiple organ dysfunction, which can lead to death. However, its underlying molecular mechanisms remain unknown. Proteomics, as a biotechnology research area in the post-genomic era, paves the way for large-scale protein characterization. With the rapid development of proteomics technology, various approaches can be used to monitor proteome changes and identify differentially expressed proteins in sepsis, which may help to understand the pathophysiological process of sepsis. Although previous reports have summarized proteomics-related data on the diagnosis of sepsis and sepsis-related biomarkers, the present review aims to comprehensively summarize the available literature concerning “sepsis”, “proteomics”, “cecal ligation and puncture”, “lipopolysaccharide”, and “post-translational modifications” in relation to proteomics research to provide novel insights into the molecular mechanisms of sepsis.
Collapse
Affiliation(s)
- He Miao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, China
| | - Song Chen
- Department of Trauma Intensive Care Unit, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Hansen FB, Esteves GV, Mogensen S, Prat-Duran J, Secher N, Løfgren B, Granfeldt A, Simonsen U. Increased cerebral endothelium-dependent vasodilation in rats in the postcardiac arrest period. J Appl Physiol (1985) 2021; 131:1311-1327. [PMID: 34435510 DOI: 10.1152/japplphysiol.00373.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular lability is common after cardiac arrest. We investigated whether altered endothelial function is present in cerebral and mesenteric arteries 2 and 4 h after resuscitation. Male Sprague-Dawley rats were anesthetized, intubated, ventilated, and intravascularly catheterized whereupon rats were randomized into four groups. Following 7 min of asphyxial cardiac arrest and subsequent resuscitation, cardiac arrest and sham rats were observed for either 2 or 4 h. Neuron-specific enolase levels were measured in blood samples. Middle cerebral artery segments and small mesenteric arteries were isolated and examined in microvascular myographs. qPCR and immunofluorescence analysis were performed on cerebral arteries. In cerebral arteries, bradykinin-induced vasodilation was inhibited in the presence of either calcium-activated K+ channel blockers (UCL1684 and senicapoc) or the nitric oxide (NO) synthase inhibitor, Nω-nitro-L-arginine methyl ester hydrochloride (l-NAME), whereas the combination abolished bradykinin-induced vasodilation across groups. Neuron-specific enolase levels were significantly increased in cardiac arrest rats. Cerebral vasodilation was comparable between the 2-h groups, but markedly enhanced in response to bradykinin, NS309 (an opener of small and intermediate calcium-activated K+ channels), and sodium nitroprusside 4 h after cardiac arrest. Endothelial NO synthase and guanylyl cyclase subunit α-1 mRNA expression was unaltered after 2 h, but significantly decreased 4 h after resuscitation. In mesenteric arteries, the endothelium-dependent vasodilation was comparable between corresponding groups at both 2 and 4 h. Our findings show enhanced cerebral endothelium-dependent vasodilation 4 h after cardiac arrest mediated by potentiated endothelial-derived hyperpolarization and NO pathways. Altered cerebral endothelium-dependent vasodilation may contribute to disturbed cerebral perfusion after cardiac arrest.NEW & NOTEWORTHY This is the first study, to our knowledge, to demonstrate enhanced endothelium-dependent vasodilation in middle cerebral arteries in a cardiac arrest rat model. The increased endothelium-dependent vasodilation was a result of potentiated endothelium-derived hyperpolarization and endothelial nitric oxide pathways. Immunofluorescence microscopy confirmed the presence of relevant receptors and eNOS in cerebral arteries, whereas qPCR showed altered expression of genes related to guanylyl cyclase and eNOS. Altered endothelium-dependent vasoregulation may contribute to disturbed cerebral blood flow in the postcardiac arrest period.
Collapse
Affiliation(s)
- Frederik Boe Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Susie Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Niels Secher
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Bo Løfgren
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Asger Granfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Raghavan S, Kenchappa DB, Leo MD. SARS-CoV-2 Spike Protein Induces Degradation of Junctional Proteins That Maintain Endothelial Barrier Integrity. Front Cardiovasc Med 2021; 8:687783. [PMID: 34179146 PMCID: PMC8225996 DOI: 10.3389/fcvm.2021.687783] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses the Angiotensin converting enzyme 2 (ACE2) receptor present on the cell surface to enter cells. Angiotensin converting enzyme 2 is present in many cell types including endothelial cells, where it functions to protect against oxidative damage. There is growing evidence to suggest that coronavirus disease (COVID-19) patients exhibit a wide range of post-recovery symptoms and shows signs related to cardiovascular and specifically, endothelial damage. We hypothesized that these vascular symptoms might be associated with disrupted endothelial barrier integrity. This was investigated in vitro using endothelial cell culture and recombinant SARS-CoV-2 spike protein S1 Receptor-Binding Domain (Spike). Mouse brain microvascular endothelial cells from normal (C57BL/6 mice) and diabetic (db/db) mice were used. An endothelial transwell permeability assay revealed increased permeability in diabetic cells as well as after Spike treatment. The expression of VE-Cadherin, an endothelial adherens junction protein, JAM-A, a tight junctional protein, Connexin-43, a gap junctional protein, and PECAM-1, were all decreased significantly after Spike treatment in control and to a greater extent, in diabetic cells. In control cells, Spike treatment increased association of endothelial junctional proteins with Rab5a, a mediator of the endocytic trafficking compartment. In cerebral arteries isolated from control and diabetic animals, Spike protein had a greater effect in downregulating expression of endothelial junctional proteins in arteries from diabetic animals than from control animals. In conclusion, these experiments reveal that Spike-induced degradation of endothelial junctional proteins affects endothelial barrier function and is the likely cause of vascular damage observed in COVID-19 affected individuals.
Collapse
Affiliation(s)
| | | | - M. Dennis Leo
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
16
|
Okamoto T, Park EJ, Kawamoto E, Usuda H, Wada K, Taguchi A, Shimaoka M. Endothelial connexin-integrin crosstalk in vascular inflammation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166168. [PMID: 33991620 DOI: 10.1016/j.bbadis.2021.166168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/18/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases including blood vessel disorders represent a major cause of death globally. The essential roles played by local and systemic vascular inflammation in the pathogenesis of cardiovascular diseases have been increasingly recognized. Vascular inflammation triggers the aberrant activation of endothelial cells, which leads to the functional and structural abnormalities in vascular vessels. In addition to humoral mediators such as pro-inflammatory cytokines and prostaglandins, the alteration of physical and mechanical microenvironment - including vascular stiffness and shear stress - modify the gene expression profiles and metabolic profiles of endothelial cells via mechano-transduction pathways, thereby contributing to the pathogenesis of vessel disorders. Notably, connexins and integrins crosstalk each other in response to the mechanical stress, and, thereby, play an important role in regulating the mechano-transduction of endothelial cells. Here, we provide an overview on how the inter-play between connexins and integrins in endothelial cells unfold during the mechano-transduction in vascular inflammation.
Collapse
Affiliation(s)
- Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan.
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Haruki Usuda
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan
| | - Koichiro Wada
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan.
| |
Collapse
|
17
|
Park YL, Park K, Cha JM. 3D-Bioprinting Strategies Based on In Situ Bone-Healing Mechanism for Vascularized Bone Tissue Engineering. MICROMACHINES 2021; 12:mi12030287. [PMID: 33800485 PMCID: PMC8000586 DOI: 10.3390/mi12030287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Over the past decades, a number of bone tissue engineering (BTE) approaches have been developed to address substantial challenges in the management of critical size bone defects. Although the majority of BTE strategies developed in the laboratory have been limited due to lack of clinical relevance in translation, primary prerequisites for the construction of vascularized functional bone grafts have gained confidence owing to the accumulated knowledge of the osteogenic, osteoinductive, and osteoconductive properties of mesenchymal stem cells and bone-relevant biomaterials that reflect bone-healing mechanisms. In this review, we summarize the current knowledge of bone-healing mechanisms focusing on the details that should be embodied in the development of vascularized BTE, and discuss promising strategies based on 3D-bioprinting technologies that efficiently coalesce the abovementioned main features in bone-healing systems, which comprehensively interact during the bone regeneration processes.
Collapse
Affiliation(s)
- Ye Lin Park
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Korea
| | - Kiwon Park
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- Correspondence: (K.P.); (J.M.C.); Tel.: +82-32-835-8685 (K.P.); +82-32-835-8686 (J.M.C.)
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Korea
- Correspondence: (K.P.); (J.M.C.); Tel.: +82-32-835-8685 (K.P.); +82-32-835-8686 (J.M.C.)
| |
Collapse
|
18
|
Aung MT, Yu Y, Ferguson KK, Cantonwine DE, Zeng L, McElrath TF, Pennathur S, Mukherjee B, Meeker JD. Cross-Sectional Estimation of Endogenous Biomarker Associations with Prenatal Phenols, Phthalates, Metals, and Polycyclic Aromatic Hydrocarbons in Single-Pollutant and Mixtures Analysis Approaches. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37007. [PMID: 33761273 PMCID: PMC7990518 DOI: 10.1289/ehp7396] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Humans are exposed to mixtures of toxicants that can impact several biological pathways. We investigated the associations between multiple classes of toxicants and an extensive panel of biomarkers indicative of lipid metabolism, inflammation, oxidative stress, and angiogenesis. METHODS We conducted a cross-sectional study of 173 participants (median 26 wk gestation) from the LIFECODES birth cohort. We measured exposure analytes of multiple toxicant classes [metals, phthalates, phenols, and polycyclic aromatic hydrocarbons (PAHs)] in urine samples. We also measured endogenous biomarkers (eicosanoids, cytokines, angiogenic markers, and oxidative stress markers) in either plasma or urine. We estimated pair-wise associations between exposure analytes and endogenous biomarkers using multiple linear regression after adjusting for covariates. We used adaptive elastic net regression, hierarchical Bayesian kernel machine regression, and sparse-group LASSO regression to evaluate toxicant mixtures associated with individual endogenous biomarkers. RESULTS After false-discovery adjustment (q<0.2), single-pollutant models yielded 19 endogenous biomarker signals associated with phthalates, 13 with phenols, 17 with PAHs, and 18 with trace metals. Notably, adaptive elastic net revealed that phthalate metabolites were selected for several positive signals with the cyclooxygenase (n=7), cytochrome p450 (n=7), and lipoxygenase (n=8) pathways. Conversely, the toxicant classes that exhibited the greatest number of negative signals overall in adaptive elastic net were phenols (n=20) and metals (n=21). DISCUSSION This study characterizes cross-sectional endogenous biomarker signatures associated with individual and mixtures of prenatal toxicant exposures. These results can help inform the prioritization of specific pairs or clusters of endogenous biomarkers and exposure analytes for investigating health outcomes. https://doi.org/10.1289/EHP7396.
Collapse
Affiliation(s)
- Max T. Aung
- Department of Biostatistics, University of Michigan (U-M) School of Public Health, Ann Arbor, Michigan, USA
| | - Youfei Yu
- Department of Biostatistics, University of Michigan (U-M) School of Public Health, Ann Arbor, Michigan, USA
| | - Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - David E. Cantonwine
- Division of Maternal and Fetal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lixia Zeng
- Department of Internal Medicine-Nephrology, U-M, Ann Arbor, Michigan, USA
| | - Thomas F. McElrath
- Division of Maternal and Fetal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine-Nephrology, U-M, Ann Arbor, Michigan, USA
- Michigan Regional Comprehensive Metabolomics Resource Core, U-M, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, U-M, Ann Arbor, Michigan, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan (U-M) School of Public Health, Ann Arbor, Michigan, USA
- Department of Epidemiology, U-M School of Public Health, Ann Arbor, Michigan, USA
| | - John D. Meeker
- Department of Environmental Health Sciences, U-M School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Fosse JH, Haraldsen G, Falk K, Edelmann R. Endothelial Cells in Emerging Viral Infections. Front Cardiovasc Med 2021; 8:619690. [PMID: 33718448 PMCID: PMC7943456 DOI: 10.3389/fcvm.2021.619690] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
There are several reasons to consider the role of endothelial cells in COVID-19 and other emerging viral infections. First, severe cases of COVID-19 show a common breakdown of central vascular functions. Second, SARS-CoV-2 replicates in endothelial cells. Third, prior deterioration of vascular function exacerbates disease, as the most common comorbidities of COVID-19 (obesity, hypertension, and diabetes) are all associated with endothelial dysfunction. Importantly, SARS-CoV-2's ability to infect endothelium is shared by many emerging viruses, including henipaviruses, hantavirus, and highly pathogenic avian influenza virus, all specifically targeting endothelial cells. The ability to infect endothelium appears to support generalised dissemination of infection and facilitate the access to certain tissues. The disturbed vascular function observed in severe COVID-19 is also a prominent feature of many other life-threatening viral diseases, underscoring the need to understand how viruses modulate endothelial function. We here review the role of vascular endothelial cells in emerging viral infections, starting with a summary of endothelial cells as key mediators and regulators of vascular and immune responses in health and infection. Next, we discuss endotheliotropism as a possible virulence factor and detail features that regulate viruses' ability to attach to and enter endothelial cells. We move on to review how endothelial cells detect invading viruses and respond to infection, with particular focus on pathways that may influence vascular function and the host immune system. Finally, we discuss how endothelial cell function can be dysregulated in viral disease, either by viral components or as bystander victims of overshooting or detrimental inflammatory and immune responses. Many aspects of how viruses interact with the endothelium remain poorly understood. Considering the diversity of such mechanisms among different emerging viruses allows us to highlight common features that may be of general validity and point out important challenges.
Collapse
Affiliation(s)
| | - Guttorm Haraldsen
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Department of Pathology, University of Oslo, Oslo, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway.,AquaMed Consulting AS, Oslo, Norway
| | - Reidunn Edelmann
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| |
Collapse
|
20
|
Gap Junctions between Endothelial Cells Are Disrupted by Circulating Extracellular Vesicles from Sickle Cell Patients with Acute Chest Syndrome. Int J Mol Sci 2020; 21:ijms21238884. [PMID: 33255173 PMCID: PMC7727676 DOI: 10.3390/ijms21238884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Intercellular junctions maintain the integrity of the endothelium. We previously found that the adherens and tight junctions between endothelial cells are disrupted by plasma extracellular vesicles from patients with sickle cell disease (especially those with Acute Chest Syndrome). In the current study, we evaluated the effects of these vesicles on endothelial gap junctions. The vesicles from sickle cell patients (isolated during episodes of Acute Chest Syndrome) disrupted gap junction structures earlier and more severely than the other classes of intercellular junctions (as detected by immunofluorescence). These vesicles were much more potent than those isolated at baseline from the same subject. The treatment of endothelial cells with these vesicles led to reduced levels of connexin43 mRNA and protein. These vesicles severely reduced intercellular communication (transfer of microinjected Neurobiotin). Our data suggest a hierarchy of progressive disruption of different intercellular connections between endothelial cells by circulating extracellular vesicles that may contribute to the pathophysiology of the endothelial disturbances in sickle cell disease.
Collapse
|
21
|
Kameritsch P, Pogoda K. The Role of Connexin 43 and Pannexin 1 During Acute Inflammation. Front Physiol 2020; 11:594097. [PMID: 33192611 PMCID: PMC7658380 DOI: 10.3389/fphys.2020.594097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022] Open
Abstract
During acute inflammation, the recruitment of leukocytes from the blood stream into the inflamed tissue is a well-described mechanism encompassing the interaction of endothelial cells with leukocytes allowing leukocytes to reach the site of tissue injury or infection where they can fulfill their function such as phagocytosis. This process requires a fine-tuned regulation of a plethora of signaling cascades, which are still incompletely understood. Here, connexin 43 (Cx43) and pannexin 1 (Panx1) are known to be pivotal for the correct communication of endothelial cells with leukocytes. Pharmacological as well as genetic approaches provide evidence that endothelial Cx43-hemichannels and Panx1-channels release signaling molecules including ATP and thereby regulate vessel function and permeability as well as the recruitment of leukocytes during acute inflammation. Furthermore, Cx43 hemichannels and Panx1-channels in leukocytes release signaling molecules and can mediate the activation and function of leukocytes in an autocrine manner. The focus of the present review is to summarize the current knowledge of the role of Cx43 and Panx1 in endothelial cells and leukocytes in the vasculature during acute inflammation and to discuss relevant molecular mechanisms regulating Cx43 and Panx1 function.
Collapse
Affiliation(s)
- Petra Kameritsch
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kristin Pogoda
- Medical Faculty, Department of Physiology, Augsburg University, Augsburg, Germany
| |
Collapse
|
22
|
Sakka M, Connors JM, Hékimian G, Martin-Toutain I, Crichi B, Colmegna I, Bonnefont-Rousselot D, Farge D, Frere C. Association between D-Dimer levels and mortality in patients with coronavirus disease 2019 (COVID-19): a systematic review and pooled analysis. JOURNAL DE MEDECINE VASCULAIRE 2020; 45:268-274. [PMID: 32862984 PMCID: PMC7250752 DOI: 10.1016/j.jdmv.2020.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Several observational studies have reported elevated baseline D-dimer levels in patients hospitalized for moderate to severe coronavirus disease 2019 (COVID-19). These elevated baseline D-dimer levels have been associated with disease severity and mortality in retrospective cohorts. OBJECTIVES To review current available data on the association between D-Dimer levels and mortality in patients admitted to hospital for COVID-19. METHODS We performed a systematic review of published studies using MEDLINE and EMBASE through 13 April 2020. Two authors independently screened all records and extracted the outcomes. A random effects model was used to estimate the standardized mean difference (SMD) with 95% confidence intervals (CI). RESULTS Six original studies enrolling 1355 hospitalized patients with moderate to critical COVID-19 (391 in the non-survivor group and 964 in the survivor group) were considered for the final pooled analysis. When pooling together the results of these studies, D-Dimer levels were found to be higher in non-survivors than in-survivors. The SMD in D-Dimer levels between non-survivors and survivors was 3.59μg/L (95% CI 2.79-4.40μg/L), and the Z-score for overall effect was 8.74 (P<0.00001), with a high heterogeneity across studies (I2=95%). CONCLUSIONS Despite high heterogeneity across included studies, the present pooled analysis indicates that D-Dimer levels are significantly associated with the risk of mortality in COVID-19 patients. Early integration of D-Dimer testing, which is a rapid, inexpensive, and easily accessible biological test, can be useful to better risk stratification and management of COVID-19 patients.
Collapse
Affiliation(s)
- M Sakka
- Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Metabolic Biochemistry, 75013 Paris, France
| | - J M Connors
- Hematology Division, Brigham and Women's Hospital, Dana Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - G Hékimian
- Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Intensive Care Unit, 75013 Paris, France
| | - I Martin-Toutain
- Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Hematology, 75013 Paris, France
| | - B Crichi
- Assistance Publique Hôpitaux de Paris, Saint-Louis Hospital, Department of Internal Medicine, Autoimmune and Vascular Disease Unit, 75010 Paris, France
| | - I Colmegna
- McGill University, Department of Medicine, Montreal, Québec, Canada
| | - D Bonnefont-Rousselot
- Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Metabolic Biochemistry, 75013 Paris, France; Paris University, UTCBS, INSERM U1267, CNRS UMR 8258, 75006 Paris, France
| | - D Farge
- Assistance Publique Hôpitaux de Paris, Saint-Louis Hospital, Department of Internal Medicine, Autoimmune and Vascular Disease Unit, 75010 Paris, France; McGill University, Department of Medicine, Montreal, Québec, Canada; Paris University, EA 3518, University Institute of Hematology, 75010 Paris, France
| | - C Frere
- Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Hematology, 75013 Paris, France; Sorbonne University, INSERM UMRS_1166, Institute of Cardiometabolism And Nutrition, 75013 Paris, France.
| |
Collapse
|
23
|
Shin SJ, Hang HT, Thang BQ, Shimoda T, Sakamoto H, Osaka M, Hiramatsu Y, Yamashiro Y, Yanagisawa H. Role of PAR1-Egr1 in the Initiation of Thoracic Aortic Aneurysm in Fbln4-Deficient Mice. Arterioscler Thromb Vasc Biol 2020; 40:1905-1917. [DOI: 10.1161/atvbaha.120.314560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective:
Remodeling of the extracellular matrix plays a vital role in cardiovascular diseases. Using a mouse model of postnatal ascending aortic aneurysms (termed
Fbln4
SMKO
), we have reported that abnormal mechanosensing led to aneurysm formation in
Fbln4
SMKO
with an upregulation of the mechanosensitive transcription factor, Egr1 (Early growth response 1). However, the role of Egr1 and its upstream regulator(s) in the initiation of aneurysm development and their relationship to an aneurysmal microenvironment are unknown.
Approach and Results:
To investigate the contribution of Egr1 in the aneurysm development, we deleted
Egr1
in
Fbln4
SMKO
mice and generated double knockout mice (
DKO
,
Fbln4
SMKO
;
Egr1
−/−
). Aneurysms were prevented in
DKO
mice (42.8%) and
Fbln4
SMKO
;
Egr1
+/−
mice (26%). Ingenuity Pathway Analysis identified PAR1 (protease-activated receptor 1) as a potential Egr1 upstream gene. Protein and transcript levels of PAR1 were highly increased in
Fbln4
SMKO
aortas at postnatal day 1 before aneurysm formed, together with active thrombin and MMP (matrix metalloproteinase)-9, both of which serve as a PAR1 activator. Concordantly, protein levels of PAR1, Egr1, and thrombin were significantly increased in human thoracic aortic aneurysms. In vitro cyclic stretch assays (1.0 Hz, 20% strain, 8 hours) using mouse primary vascular smooth muscle cells induced marked expression of PAR1 and secretion of prothrombin in response to mechanical stretch. Thrombin was sufficient to induce Egr1 expression in a PAR1-dependent manner.
Conclusions:
We propose that thrombin, MMP-9, and mechanical stimuli in the
Fbln4
SMKO
aorta activate PAR1, leading to the upregulation of Egr1 and initiation of ascending aortic aneurysms.
Collapse
Affiliation(s)
- Seung Jae Shin
- From the Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA) (S.J.S., H.T.H., T.S., Y.Y., H.Y.), University of Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences (S.J.S.), University of Tsukuba, Ibaraki, Japan
| | - Huynh Thuy Hang
- From the Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA) (S.J.S., H.T.H., T.S., Y.Y., H.Y.), University of Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences (H.T.H.), University of Tsukuba, Ibaraki, Japan
| | - Bui Quoc Thang
- Department of Cardiovascular Surgery (B.Q.T., H.S., M.O., Y.H.), University of Tsukuba, Ibaraki, Japan
| | - Tomonari Shimoda
- From the Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA) (S.J.S., H.T.H., T.S., Y.Y., H.Y.), University of Tsukuba, Ibaraki, Japan
- School of Medicine (T.S.), University of Tsukuba, Ibaraki, Japan
| | - Hiroaki Sakamoto
- Department of Cardiovascular Surgery (B.Q.T., H.S., M.O., Y.H.), University of Tsukuba, Ibaraki, Japan
| | - Motoo Osaka
- Department of Cardiovascular Surgery (B.Q.T., H.S., M.O., Y.H.), University of Tsukuba, Ibaraki, Japan
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery (B.Q.T., H.S., M.O., Y.H.), University of Tsukuba, Ibaraki, Japan
| | - Yoshito Yamashiro
- From the Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA) (S.J.S., H.T.H., T.S., Y.Y., H.Y.), University of Tsukuba, Ibaraki, Japan
| | - Hiromi Yanagisawa
- From the Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA) (S.J.S., H.T.H., T.S., Y.Y., H.Y.), University of Tsukuba, Ibaraki, Japan
- Division of Biomedical Science, Faculty of Medicine (H.Y.), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
24
|
Okamoto T, Kawamoto E, Usuda H, Tanaka T, Nikai T, Asanuma K, Suzuki K, Shimaoka M, Wada K. Recombinant Human Soluble Thrombomodulin Suppresses Monocyte Adhesion by Reducing Lipopolysaccharide-Induced Endothelial Cellular Stiffening. Cells 2020; 9:cells9081811. [PMID: 32751580 PMCID: PMC7463703 DOI: 10.3390/cells9081811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 11/24/2022] Open
Abstract
Endothelial cellular stiffening has been observed not only in inflamed cultured endothelial cells but also in the endothelium of atherosclerotic regions, which is an underlying cause of monocyte adhesion and accumulation. Although recombinant soluble thrombomodulin (rsTM) has been reported to suppress the inflammatory response of endothelial cells, its role in regulating endothelial cellular stiffness remains unclear. The purpose of this study was to investigate the impact of anticoagulant rsTM on lipopolysaccharide (LPS)-induced endothelial cellular stiffening. We show that LPS increases endothelial cellular stiffness by using atomic force microscopy and that rsTM reduces LPS-induced cellular stiffening not only through the attenuation of actin fiber and focal adhesion formation but also via the improvement of gap junction functionality. Moreover, post-administration of rsTM, after LPS stimulation, attenuated LPS-induced cellular stiffening. We also found that endothelial cells regulate leukocyte adhesion in a substrate- and cellular stiffness-dependent manner. Our result show that LPS-induced cellular stiffening enhances monocytic THP-1 cell line adhesion, whereas rsTM suppresses THP-1 cell adhesion to inflamed endothelial cells by reducing cellular stiffness. Endothelial cells increase cellular stiffness in reaction to inflammation, thereby promoting monocyte adhesion. Treatment of rsTM reduced LPS-induced cellular stiffening and suppressed monocyte adhesion in a cellular stiffness-dependent manner.
Collapse
Affiliation(s)
- Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan; (H.U.); (T.T.); (K.W.)
- Correspondence: ; Tel.: +81-853-20-2132
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan; (E.K.); (M.S.)
- Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Haruki Usuda
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan; (H.U.); (T.T.); (K.W.)
| | - Tetsuya Tanaka
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan; (H.U.); (T.T.); (K.W.)
- Department of Human Nutrition, Faculty of Contemporary Life Science, Chugoku Gakuen University, 83 Niwase, Kita-ku, Okayama-city, Okayama 701-0197, Japan
| | - Tetsuro Nikai
- Department of Anesthesiology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan;
| | - Kunihiro Asanuma
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan;
| | - Koji Suzuki
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki-cho, Suzuka-city, Mie 513-8679, Japan;
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan; (E.K.); (M.S.)
| | - Koichiro Wada
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan; (H.U.); (T.T.); (K.W.)
| |
Collapse
|
25
|
Zhang F, Zarkada G, Yi S, Eichmann A. Lymphatic Endothelial Cell Junctions: Molecular Regulation in Physiology and Diseases. Front Physiol 2020; 11:509. [PMID: 32547411 PMCID: PMC7274196 DOI: 10.3389/fphys.2020.00509] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Lymphatic endothelial cells (LECs) lining lymphatic vessels develop specialized cell-cell junctions that are crucial for the maintenance of vessel integrity and proper lymphatic vascular functions. Successful lymphatic drainage requires a division of labor between lymphatic capillaries that take up lymph via open "button-like" junctions, and collectors that transport lymph to veins, which have tight "zipper-like" junctions that prevent lymph leakage. In recent years, progress has been made in the understanding of these specialized junctions, as a result of the application of state-of-the-art imaging tools and novel transgenic animal models. In this review, we discuss lymphatic development and mechanisms governing junction remodeling between button and zipper-like states in LECs. Understanding lymphatic junction remodeling is important in order to unravel lymphatic drainage regulation in obesity and inflammatory diseases and may pave the way towards future novel therapeutic interventions.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Georgia Zarkada
- Department of Cellular and Molecular Physiology, Cardiovascular Research Center, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Sanjun Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Cardiovascular Research Center, Yale School of Medicine, Yale University, New Haven, CT, United States.,INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
26
|
Chandra A, Jahangiri A, Chen W, Nguyen AT, Yagnik G, Pereira MP, Jain S, Garcia JH, Shah SS, Wadhwa H, Joshi RS, Weiss J, Wolf KJ, Lin JMG, Müller S, Rick JW, Diaz AA, Gilbert LA, Kumar S, Aghi MK. Clonal ZEB1-Driven Mesenchymal Transition Promotes Targetable Oncologic Antiangiogenic Therapy Resistance. Cancer Res 2020; 80:1498-1511. [PMID: 32041837 PMCID: PMC7236890 DOI: 10.1158/0008-5472.can-19-1305] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/16/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) responses to bevacizumab are invariably transient with acquired resistance. We profiled paired patient specimens and bevacizumab-resistant xenograft models pre- and post-resistance toward the primary goal of identifying regulators whose targeting could prolong the therapeutic window, and the secondary goal of identifying biomarkers of therapeutic window closure. Bevacizumab-resistant patient specimens and xenografts exhibited decreased vessel density and increased hypoxia versus pre-resistance, suggesting that resistance occurs despite effective therapeutic devascularization. Microarray analysis revealed upregulated mesenchymal genes in resistant tumors correlating with bevacizumab treatment duration and causing three changes enabling resistant tumor growth in hypoxia. First, perivascular invasiveness along remaining blood vessels, which co-opts vessels in a VEGF-independent and neoangiogenesis-independent manner, was upregulated in novel biomimetic 3D bioengineered platforms modeling the bevacizumab-resistant microenvironment. Second, tumor-initiating stem cells housed in the perivascular niche close to remaining blood vessels were enriched. Third, metabolic reprogramming assessed through real-time bioenergetic measurement and metabolomics upregulated glycolysis and suppressed oxidative phosphorylation. Single-cell sequencing of bevacizumab-resistant patient GBMs confirmed upregulated mesenchymal genes, particularly glycoprotein YKL-40 and transcription factor ZEB1, in later clones, implicating these changes as treatment-induced. Serum YKL-40 was elevated in bevacizumab-resistant versus bevacizumab-naïve patients. CRISPR and pharmacologic targeting of ZEB1 with honokiol reversed the mesenchymal gene expression and associated stem cell, invasion, and metabolic changes defining resistance. Honokiol caused greater cell death in bevacizumab-resistant than bevacizumab-responsive tumor cells, with surviving cells losing mesenchymal morphology. Employing YKL-40 as a resistance biomarker and ZEB1 as a target to prevent resistance could fulfill the promise of antiangiogenic therapy. SIGNIFICANCE: Bevacizumab resistance in GBM is associated with mesenchymal/glycolytic shifts involving YKL-40 and ZEB1. Targeting ZEB1 reduces bevacizumab-resistant GBM phenotypes. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/7/1498/F1.large.jpg.
Collapse
Affiliation(s)
- Ankush Chandra
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Arman Jahangiri
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - William Chen
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Alan T Nguyen
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Garima Yagnik
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Matheus P Pereira
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Saket Jain
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Joseph H Garcia
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Sumedh S Shah
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Harsh Wadhwa
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Rushikesh S Joshi
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Jacob Weiss
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Kayla J Wolf
- Department of Bioengineering, University of California Berkeley, Berkeley, California
| | - Jung-Ming G Lin
- Department of Bioengineering, University of California Berkeley, Berkeley, California
| | - Sören Müller
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Jonathan W Rick
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Aaron A Diaz
- Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Luke A Gilbert
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Sanjay Kumar
- Department of Bioengineering, University of California Berkeley, Berkeley, California
| | - Manish K Aghi
- Department of Neurosurgery, University of California San Francisco, San Francisco, California.
| |
Collapse
|
27
|
Ascolani G, Skerry TM, Lacroix D, Dall'Ara E, Shuaib A. Revealing hidden information in osteoblast's mechanotransduction through analysis of time patterns of critical events. BMC Bioinformatics 2020; 21:114. [PMID: 32183690 PMCID: PMC7079370 DOI: 10.1186/s12859-020-3394-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Mechanotransduction in bone cells plays a pivotal role in osteoblast differentiation and bone remodelling. Mechanotransduction provides the link between modulation of the extracellular matrix by mechanical load and intracellular activity. By controlling the balance between the intracellular and extracellular domains, mechanotransduction determines the optimum functionality of skeletal dynamics. Failure of this relationship was suggested to contribute to bone-related diseases such as osteoporosis. RESULTS A hybrid mechanical and agent-based model (Mech-ABM), simulating mechanotransduction in a single osteoblast under external mechanical perturbations, was utilised to simulate and examine modulation of the activation dynamics of molecules within mechanotransduction on the cellular response to mechanical stimulation. The number of molecules and their fluctuations have been analysed in terms of recurrences of critical events. A numerical approach has been developed to invert subordination processes and to extract the direction processes from the molecular signals in order to derive the distribution of recurring events. These predict that there are large fluctuations enclosing information hidden in the noise which is beyond the dynamic variations of molecular baselines. Moreover, studying the system under different mechanical load regimes and altered dynamics of feedback loops, illustrate that the waiting time distributions of each molecule are a signature of the system's state. CONCLUSIONS The behaviours of the molecular waiting times change with the changing of mechanical load regimes and altered dynamics of feedback loops, presenting the same variation of patterns for similar interacting molecules and identifying specific alterations for key molecules in mechanotransduction. This methodology could be used to provide a new tool to identify potent molecular candidates to modulate mechanotransduction, hence accelerate drug discovery towards therapeutic targets for bone mass upregulation.
Collapse
Affiliation(s)
- Gianluca Ascolani
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Timothy M Skerry
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Damien Lacroix
- Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Aban Shuaib
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.
- Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
28
|
(-)-Epicatechin metabolites promote vascular health through epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation. Biochem Pharmacol 2019; 173:113699. [PMID: 31756325 DOI: 10.1016/j.bcp.2019.113699] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022]
Abstract
Ingestion of (-)-epicatechin flavanols reverses endothelial dysfunction by increasing flow mediated dilation and by reducing vascular inflammation and oxidative stress, monocyte-endothelial cell adhesion and transendothelial monocyte migration in vitro and in vivo. This involves multiple changes in gene expression and epigenetic DNA methylation by poorly understood mechanisms. By in silico docking and molecular modeling we demonstrate favorable binding of different glucuronidated, sulfated or methylated (-)-epicatechin metabolites to different DNA methyltransferases (DNMT1/DNMT3A). In favor of this model, genome-wide DNA methylation profiling of endothelial cells treated with TNF and different (-)-epicatechin metabolites revealed specific DNA methylation changes in gene networks controlling cell adhesion-extravasation endothelial hyperpermeability as well as gamma-aminobutyric acid, renin-angiotensin and nitric oxide hypertension pathways. Remarkably, blood epigenetic profiles of an 8 weeks intervention with monomeric and oligomeric flavanols (MOF) including (-)-epicatechin in male smokers revealed individual epigenetic gene changes targeting similar pathways as the in vitro exposure experiments in endothelial cells. Furthermore, epigenetic changes following MOF diet intervention oppose atherosclerosis associated epigenetic changes. In line with biological data, the individual epigenetic response to a MOF diet is associated with different vascular health parameters (glutathione peroxidase 1 and endothelin-1 expression, acetylcholine-mediated microvascular response), in part involving systemic shifts in blood immune cell types which reduce the neutrophil-lymphocyte ratio (NLR). Altogether, our study suggests that different (-)-epicatechin metabolites promote vascular health in part via epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation.
Collapse
|
29
|
Espenhain Landgrebe L, Schlosser Mose L, Palarasah Y, Sidelmann JJ, Bladbjerg EM. The effects of sampling from a peripheral venous catheter compared to repeated venepunctures on markers of coagulation, inflammation, and endothelial function. Scand J Clin Lab Invest 2019; 79:584-589. [DOI: 10.1080/00365513.2019.1680861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Line Espenhain Landgrebe
- Unit for Thrombosis Research, Department of Clinical Biochemistry, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
| | - Louise Schlosser Mose
- Department of Neurology, University Hospital of Southern Denmark, Esbjerg, Denmark, and Research Unit of Health Sciences, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Yaseelan Palarasah
- Unit for Thrombosis Research, Department of Clinical Biochemistry, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Cancer & Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Johannes Jakobsen Sidelmann
- Unit for Thrombosis Research, Department of Clinical Biochemistry, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
| | - Else-Marie Bladbjerg
- Unit for Thrombosis Research, Department of Clinical Biochemistry, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
| |
Collapse
|
30
|
Wettschureck N, Strilic B, Offermanns S. Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiol Rev 2019; 99:1467-1525. [PMID: 31140373 DOI: 10.1152/physrev.00037.2018] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A central function of the vascular endothelium is to serve as a barrier between the blood and the surrounding tissue of the body. At the same time, solutes and cells have to pass the endothelium to leave or to enter the bloodstream to maintain homeostasis. Under pathological conditions, for example, inflammation, permeability for fluid and cells is largely increased in the affected area, thereby facilitating host defense. To appropriately function as a regulated permeability filter, the endothelium uses various mechanisms to allow solutes and cells to pass the endothelial layer. These include transcellular and paracellular pathways of which the latter requires remodeling of intercellular junctions for its regulation. This review provides an overview on endothelial barrier regulation and focuses on the endothelial signaling mechanisms controlling the opening and closing of paracellular pathways for solutes and cells such as leukocytes and metastasizing tumor cells.
Collapse
Affiliation(s)
- Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| |
Collapse
|
31
|
Yu H, Kalogeris T, Korthuis RJ. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic Biol Med 2019; 135:182-197. [PMID: 30849489 PMCID: PMC6503659 DOI: 10.1016/j.freeradbiomed.2019.02.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cells line the inner surface of the entire cardiovascular system as a single layer and are involved in an impressive array of functions, ranging from the regulation of vascular tone in resistance arteries and arterioles, modulation of microvascular barrier function in capillaries and postcapillary venules, and control of proinflammatory and prothrombotic processes, which occur in all segments of the vascular tree but can be especially prominent in postcapillary venules. When tissues are subjected to ischemia/reperfusion (I/R), the endothelium of resistance arteries and arterioles, capillaries, and postcapillary venules become dysfunctional, resulting in impaired endothelium-dependent vasodilator and enhanced endothelium-dependent vasoconstrictor responses along with increased vulnerability to thrombus formation, enhanced fluid filtration and protein extravasation, and increased blood-to-interstitium trafficking of leukocytes in these functionally distinct segments of the microcirculation. The number of capillaries open to flow upon reperfusion also declines as a result of I/R, which impairs nutritive perfusion. All of these pathologic microvascular events involve the formation of reactive species (RS) derived from molecular oxygen and/or nitric oxide. In addition to these effects, I/R-induced RS activate NLRP3 inflammasomes, alter connexin/pannexin signaling, provoke mitochondrial fission, and cause release of microvesicles in endothelial cells, resulting in deranged function in arterioles, capillaries, and venules. It is now apparent that this microvascular dysfunction is an important determinant of the severity of injury sustained by parenchymal cells in ischemic tissues, as well as being predictive of clinical outcome after reperfusion therapy. On the other hand, RS production at signaling levels promotes ischemic angiogenesis, mediates flow-induced dilation in patients with coronary artery disease, and instigates the activation of cell survival programs by conditioning stimuli that render tissues resistant to the deleterious effects of prolonged I/R. These topics will be reviewed in this article.
Collapse
Affiliation(s)
- Hong Yu
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ted Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA.
| |
Collapse
|
32
|
The Functional Implications of Endothelial Gap Junctions and Cellular Mechanics in Vascular Angiogenesis. Cancers (Basel) 2019; 11:cancers11020237. [PMID: 30781714 PMCID: PMC6406946 DOI: 10.3390/cancers11020237] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
Angiogenesis—the sprouting and growth of new blood vessels from the existing vasculature—is an important contributor to tumor development, since it facilitates the supply of oxygen and nutrients to cancer cells. Endothelial cells are critically affected during the angiogenic process as their proliferation, motility, and morphology are modulated by pro-angiogenic and environmental factors associated with tumor tissues and cancer cells. Recent in vivo and in vitro studies have revealed that the gap junctions of endothelial cells also participate in the promotion of angiogenesis. Pro-angiogenic factors modulate gap junction function and connexin expression in endothelial cells, whereas endothelial connexins are involved in angiogenic tube formation and in the cell migration of endothelial cells. Several mechanisms, including gap junction function-dependent or -independent pathways, have been proposed. In particular, connexins might have the potential to regulate cell mechanics such as cell morphology, cell migration, and cellular stiffness that are dynamically changed during the angiogenic processes. Here, we review the implication for endothelial gap junctions and cellular mechanics in vascular angiogenesis.
Collapse
|
33
|
Cao L, Zhao C, Cong H, Hou K, Wan L, Wang J, Zhao L, Yan H. The effect of Telmisartan on the expression of connexin43 and neointimal hyperplasia in a rabbit iliac artery restenosis model. Heart Vessels 2019; 34:1230-1239. [PMID: 30671641 DOI: 10.1007/s00380-018-01338-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
We established a rabbit iliac artery restenosis model to explore the impact of Telmisartan on the expression of Connexin43 (Cx43) and neointimal hyperplasia. Thirty New Zealand white rabbits were randomly divided into three groups: control group (n = 10), restenosis group (n = 10), and Telmisartan group (n = 10). The restenosis model was established by high-cholesterol diet combined with double-balloon injury of iliac arteries. In addition, Telmisartan at 5 mg/(kg day) was administered to the rabbits of Telmisartan group on the second day after the second balloon injury. All rabbits were killed at the end of the experiment followed by institution policy. Before sacrifice, blood samples were obtained to test serum angiotensinII (AngII). Iliac arteries were isolated for morphological analysis and determining the expression of Cx43 by HE staining, immunohistochemical analysis, reverse transcription-polymerase chain reaction (RT-PCR), and Western Blotting analysis. Then, the local AngII levels of arteries were measured by radioimmunoassay. As compared with controls, the expression of Cx43 mRNA (0.98 ± 0.08) vs. (1.27 ± 0.17), P < 0.01), and Cx43 protein [(0.75 ± 0.08) vs. (0.90 ± 0.08), P < 0.05] of restenosis group were increased, which were significantly higher than those of Telmisartan group [Cx43 mRNA: (1.27 ± 0.17) vs. (1.00 ± 0.20), P < 0.01; Cx43 protein: (0.90 ± 0.08) vs. (0.82 ± 0.05), P < 0.05]. Furthermore, The intima thickness [(266.12 ± 70.27) vs. (2.85 ± 0.19) μm, P < 0.01] and the local AngII [(115.6 ± 15.7) vs. (90.1 ± 7.7), P < 0.05] of restenosis group were raised when compared with controls. Telmisartan group exhibited thinner intima compared with restenosis group [(68.22 ± 24.37) vs. (266.12 ± 70.27), P < 0.01]. However, the local AngII levels between these two groups were approximate. In addition, the plasma concentration of AngII was not significantly different among three groups. In conclusion, Telmisartan can inhibit the expression of connexin43 and neointimal hyperplasia in iliac artery restenosis model.
Collapse
Affiliation(s)
- Lu Cao
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China.
| | - Cui Zhao
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Hongliang Cong
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China
| | - Kai Hou
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Lianghui Wan
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China
| | - Jixiang Wang
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China
| | - Lili Zhao
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China
| | - Haiyang Yan
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Affiliated Hospital of Logistics University of the Chinese People's Armed Police Forces, Tianjin, 300162, People's Republic of China
| |
Collapse
|
34
|
Hansson E, Björklund U, Skiöldebrand E, Rönnbäck L. Anti-inflammatory effects induced by pharmaceutical substances on inflammatory active brain astrocytes-promising treatment of neuroinflammation. J Neuroinflammation 2018; 15:321. [PMID: 30447700 PMCID: PMC6240424 DOI: 10.1186/s12974-018-1361-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023] Open
Abstract
Background Pharmaceutical treatment with probable anti-inflammatory substances that attack cells in various ways including receptors, ion channels, or transporter systems may slow down the progression of inflammatory conditions. Astrocytes and microglia are the most prominent target cells for inflammation in the central nervous system. Their responses upon inflammatory stimuli work through the NO/cyclic GMP/protein kinase G systems that can downregulate the ATP-induced Ca2+ signaling, as well as G protein activities which alter Na+ transporters including Na+/K+-ATPase pump activity, Toll-like receptor 4 (TLR4), glutamate-induced Ca2+ signaling, and release of pro-inflammatory cytokines. The rationale for this project was to investigate a combination of pharmaceutical substances influencing the NO and the Gi/Gs activations of inflammatory reactive cells in order to make the cells return into a more physiological state. The ATP-evoked Ca2+ signaling is important maybe due to increased ATP release and subsequent activation of purinergic receptors. A balance between intercellular Ca2+ signaling through gap junctions and extracellular signaling mediated by extracellular ATP may be important for physiological function. Methods Astrocytes in primary cultures were incubated with lipopolysaccharide in a physiological glucose concentration for 24 h to induce inflammatory reactivity. The probable anti-inflammatory substances sildenafil and 1α,25-Dihydroxyvitamin D3 together with endomorphin-1, naloxone, and levetiracetam, were used in the presence of high glucose concentration in the medium to restore the cells. Glutamate-, 5-HT-, and ATP-evoked intracellular Ca2+ release, Na+/K+-ATPase expression, expression of inflammatory receptors, and release of tumor necrosis factor alpha were measured. Results Sildenafil in ultralow concentration together with 1α,25-Dihydroxyvitamin D3 showed most prominent effects on the ATP-evoked intracellular Ca2+ release. The μ-opioid agonist endomorphin-1, the μ-opioid antagonist naloxone in ultralow concentration, and the antiepileptic agent levetiracetam downregulated the glutamate-evoked intracellular Ca2+ release and TLR4. The combination of the pharmaceutical substances in high glucose concentration downregulated the glutamate- and ATP-evoked Ca2+ signaling and the TLR4 expression and upregulated the Na+/K+-ATPase pump. Conclusion Pharmaceutical treatment with the combination of substances that have potential anti-inflammatory effects, which attack different biochemical mechanisms in the cells may exert decisive effects to downregulate neuroinflammation in the nervous system.
Collapse
Affiliation(s)
- Elisabeth Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd floor, SE 413 45, Gothenburg, Sweden.
| | - Ulrika Björklund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd floor, SE 413 45, Gothenburg, Sweden
| | - Eva Skiöldebrand
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Lars Rönnbäck
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd floor, SE 413 45, Gothenburg, Sweden
| |
Collapse
|
35
|
Lai Y, Liang X, Zhong F, Wu W, Zeng T, Huang J, Duan X, Li S, Zeng G, Wu W. Allicin attenuates calcium oxalate crystal deposition in the rat kidney by regulating gap junction function. J Cell Physiol 2018; 234:9640-9651. [PMID: 30378099 DOI: 10.1002/jcp.27651] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Yongchang Lai
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Xiongfa Liang
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Fangling Zhong
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Weizhou Wu
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Tao Zeng
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Jian Huang
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Xiaolu Duan
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Shujue Li
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Guohua Zeng
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Wenqi Wu
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| |
Collapse
|
36
|
Li P, Bai Y, Zhao X, Tian T, Tang L, Ru J, An Y, Wang J. NR4A1 contributes to high-fat associated endothelial dysfunction by promoting CaMKII-Parkin-mitophagy pathways. Cell Stress Chaperones 2018; 23:749-761. [PMID: 29470798 PMCID: PMC6045535 DOI: 10.1007/s12192-018-0886-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 12/11/2022] Open
Abstract
Parkin-related mitophagy is vital for endothelial cell viability and the development of atherosclerosis, although the upstream regulatory factor underlying Parkin-mediated mitophagy in endothelial apoptosis and atherosclerosis progression remains unknown. In the present study, we demonstrated that nuclear receptor subfamily 4 group A member 1 (NR4A1) is actually expressed in aortic endothelial cells (AECs) under oxidized low-density lipoprotein (ox-LDL) treatment in vitro or isolated from high-fat treated mice in vivo. Higher NR4A1 levels were associated with AEC apoptosis, mitochondrial dysfunction, and energy disorder. At the molecular level, ox-LDL stimulation increased NR4A1 expression, which evoked Parkin-mediated mitophagy. Excessive mitophagy overtly consumed mitochondrial mass, leading to an energy shortage and mitochondrial dysfunction. However, loss of NR4A1 protected AECs against ox-LDL induced apoptosis by inhibiting excessive mitophagy. Furthermore, we also identified that NR4A1 regulated Parkin activation via post-transcriptional modification by Ca2+/calmodulin-dependent protein kinase II (CaMKII). Activated CaMKII via NR4A1 induced the phosphorylated activation of Parkin. In summary, our data support the role of NR4A1/CaMKII/Parkin/mitophagy in AEC apoptosis and atherosclerosis formation and provide new insights into treating atherosclerosis with respect to endothelial viability, mitophagy, and NR4A1.
Collapse
Affiliation(s)
- Pei Li
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100043, China
| | - Yuzhi Bai
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100043, China
| | - Xia Zhao
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100043, China
| | - Tian Tian
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100043, China
| | - Liying Tang
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100043, China
| | - Jing Ru
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100043, China
| | - Yun An
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100043, China
| | - Jing Wang
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100043, China.
| |
Collapse
|
37
|
Hassan GS, Jacques D, D'Orléans-Juste P, Magder S, Bkaily G. Physical contact between human vascular endothelial and smooth muscle cells modulates cytosolic and nuclear calcium homeostasis. Can J Physiol Pharmacol 2018; 96:655-661. [PMID: 29756482 DOI: 10.1139/cjpp-2018-0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction between vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) plays an important role in the modulation of vascular tone. There is, however, no information on whether direct physical communication regulates the intracellular calcium levels of human VECs (hVECs) and (or) human VSMCs (hVSMCs). Thus, the objective of the study is to verify whether co-culture of hVECs and hVSMCs modulates cytosolic ([Ca2+]c) and nuclear calcium ([Ca2+]n) levels via physical contact and (or) factors released by both cell types. Quantitative 3D confocal microscopy for [Ca2+]c and [Ca2+]n measurement was performed in cultured hVECs or hVSMCs or in co-culture of hVECs-hVSMCs. Our results show that: (1) physical contact between hVECs-hVECs or hVSMCs-hVSMCs does not affect [Ca2+]c and [Ca2+]n in these 2 cell types; (2) physical contact between hVECs and hVSMCs induces a significant increase only of [Ca2+]n of hVECs without affecting the level of [Ca2+]c and [Ca2+]n of hVSMCs; and (3) preconditioned culture medium of hVECs or hVSMCs does not affect [Ca2+]c and [Ca2+]n of both types of cells. We concluded that physical contact between hVECs and hVSMCs only modulates [Ca2+]n in hVECs. The increase of [Ca2+]n in hVECs may modulate nuclear functions that are calcium dependent.
Collapse
Affiliation(s)
- Ghada S Hassan
- a Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- a Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pedro D'Orléans-Juste
- b Department of Pharmacology and Physiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sheldon Magder
- c McGill University Health Centre, Montreal, QC H3A 1A1, Canada
| | - Ghassan Bkaily
- a Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
38
|
Ji X, Chou X, Ge Z, Ding F, Gao H, Wu Q. Benzo[a
]pyrene-decreased gap junctional intercellular communication via calcium/calmodulin signaling increases apoptosis in TM4 cells. J Appl Toxicol 2018; 38:1091-1103. [DOI: 10.1002/jat.3618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaoli Ji
- School of Public Health; Fudan University and Key Laboratory of Public Health Safety, Ministry of Education; 130 Dong An Road Shanghai 200032 China
| | - Xin Chou
- School of Public Health; Fudan University and Key Laboratory of Public Health Safety, Ministry of Education; 130 Dong An Road Shanghai 200032 China
| | - Zehe Ge
- School of Public Health; Fudan University and Key Laboratory of Public Health Safety, Ministry of Education; 130 Dong An Road Shanghai 200032 China
| | - Fan Ding
- School of Public Health; Fudan University and Key Laboratory of Public Health Safety, Ministry of Education; 130 Dong An Road Shanghai 200032 China
| | - Hui Gao
- School of Public Health; Fudan University and Key Laboratory of Public Health Safety, Ministry of Education; 130 Dong An Road Shanghai 200032 China
| | - Qing Wu
- School of Public Health; Fudan University and Key Laboratory of Public Health Safety, Ministry of Education; 130 Dong An Road Shanghai 200032 China
| |
Collapse
|