1
|
Samavarchi Tehrani S, Esmaeili F, Shirzad M, Goodarzi G, Yousefi T, Maniati M, Taheri-Anganeh M, Anushiravani A. The critical role of circular RNAs in drug resistance in gastrointestinal cancers. Med Oncol 2023; 40:116. [PMID: 36917431 DOI: 10.1007/s12032-023-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Nowadays, drug resistance (DR) in gastrointestinal (GI) cancers, as the main reason for cancer-related mortality worldwide, has become a serious problem in the management of patients. Several mechanisms have been proposed for resistance to anticancer drugs, including altered transport and metabolism of drugs, mutation of drug targets, altered DNA repair system, inhibited apoptosis and autophagy, cancer stem cells, tumor heterogeneity, and epithelial-mesenchymal transition. Compelling evidence has revealed that genetic and epigenetic factors are strongly linked to DR. Non-coding RNA (ncRNA) interferences are the most crucial epigenetic alterations explored so far, and among these ncRNAs, circular RNAs (circRNAs) are the most emerging members known to have unique properties. Due to the absence of 5' and 3' ends in these novel RNAs, the two ends are covalently bonded together and are generated from pre-mRNA in a process known as back-splicing, which makes them more stable than other RNAs. As far as the unique structure and function of circRNAs is concerned, they are implicated in proliferation, migration, invasion, angiogenesis, metastasis, and DR. A clear understanding of the molecular mechanisms responsible for circRNAs-mediated DR in the GI cancers will open a new window to the management of GI cancers. Hence, in the present review, we will describe briefly the biogenesis, multiple features, and different biological functions of circRNAs. Then, we will summarize current mechanisms of DR, and finally, discuss molecular mechanisms through which circRNAs regulate DR development in esophageal cancer, pancreatic cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Amir Anushiravani
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Grigoreva TA, Sagaidak AV, Vorona SV, Novikova DS, Tribulovich VG. ATP Mimetic Attack on the Nucleotide-Binding Domain to Overcome ABC Transporter Mediated Chemoresistance. ACS Med Chem Lett 2022; 13:1848-1855. [DOI: 10.1021/acsmedchemlett.2c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tatyana A. Grigoreva
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), Moskovskii pr., 26, St. Petersburg, 190013 Russia
| | - Aleksandra V. Sagaidak
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), Moskovskii pr., 26, St. Petersburg, 190013 Russia
| | - Svetlana V. Vorona
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), Moskovskii pr., 26, St. Petersburg, 190013 Russia
| | - Daria S. Novikova
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), Moskovskii pr., 26, St. Petersburg, 190013 Russia
| | - Vyacheslav G. Tribulovich
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), Moskovskii pr., 26, St. Petersburg, 190013 Russia
| |
Collapse
|
3
|
Inhibition of NLRP3 by Fermented Quercetin Decreases Resistin-Induced Chemoresistance to 5-Fluorouracil in Human Colorectal Cancer Cells. Pharmaceuticals (Basel) 2022; 15:ph15070798. [PMID: 35890097 PMCID: PMC9324057 DOI: 10.3390/ph15070798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023] Open
Abstract
The drug resistance of colorectal cancer (CRC) cells against 5-fluorouracil (5-FU) therapy is a major challenge to successful cancer treatment. While previous studies have proposed several 5-FU resistance mechanisms, the effects of the adipokines on cancer cells remain unclear. Thus, this study investigated the effect of resistin on 5-FU-treated CRC cell lines. The upregulation of NLRP3 can regulate the inflammatory responses in cancer cells and then enhance cancer progression. This study investigated the expression level and the function of NLRP3 on 5-FU-induced cytotoxicity in CRC cells and found that resistin-induced ERK activation and increased NLRP3 expression in CRC HCT-116 and DLD-1 cells were mediated by Toll-like receptor 4 (TLR4). The inhibition of TLR4 and ERK by pharmacological inhibitors attenuated the resistin-induced NLRP3 mRNA and protein levels. In contrast, the knockdown of NLRP3 enhanced the cytotoxic effects of 5-FU. Furthermore, quercetin is an effective chemopreventive compound. This study showed that quercetin fermented by Lactobacillus could exhibit low cytotoxicity on normal mucosa cells and improve the function of inhibiting CRC cells. The treatment of CRC cells with fermented quercetin increased the cytotoxicity and enhanced cell death in the presence of resistin. In this study, fermented quercetin induced the cytotoxicity and cell death of 5-FU in resistin-treated CRC cells, which is associated with the downregulation of NLRP3 expression and ERK phosphorylation. These results indicate the role of NLRP3 in the development of drug resistance to 5-FU in CRC cells. Elucidating the mechanism regarding the cytotoxicity effect of quercetin may provide another vision for the development of a chemotherapy strategy for CRC in the future.
Collapse
|
4
|
Eltoukhy L, Loderer C. A Multi-enzyme Cascade for the Biosynthesis of AICA Ribonucleoside Di- and Triphosphate. Chembiochem 2022; 23:e202100596. [PMID: 34859954 PMCID: PMC9299608 DOI: 10.1002/cbic.202100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/01/2021] [Indexed: 11/10/2022]
Abstract
AICA (5'-aminoimidazole-4-carboxamide) ribonucleotides with different phosphorylation levels are the pharmaceutically active metabolites of AICA nucleoside-based drugs. The chemical synthesis of AICA ribonucleotides with defined phosphorylation is challenging and expensive. In this study, we describe two enzymatic cascades to synthesize AICA derivatives with defined phosphorylation levels from the corresponding nucleobase and the co-substrate phosphoribosyl pyrophosphate. The cascades are composed of an adenine phosphoribosyltransferase from Escherichia coli (EcAPT) and different polyphosphate kinases: polyphosphate kinase from Acinetobacter johnsonii (AjPPK), and polyphosphate kinase from Meiothermus ruber (MrPPK). The role of the EcAPT is to bind the nucleobase to the sugar moiety, while the kinases are responsible for further phosphorylation of the nucleotide to produce the desired phosphorylated AICA ribonucleotide. The selected enzymes were characterized, and conditions were established for two enzymatic cascades. The diphosphorylated AICA ribonucleotide derivative ZDP, synthesized from the cascade EcAPT/AjPPK, was produced with a conversion up to 91 %. The EcAPT/MrPPK cascade yielded ZTP with conversion up to 65 % with ZDP as a side product.
Collapse
Affiliation(s)
- Lobna Eltoukhy
- Chair of Molecular Biotechnology Institute for MicrobiologyTechnische Universität DresdenZellescher Weg 20b01217DresdenGermany
| | - Christoph Loderer
- Chair of Molecular Biotechnology Institute for MicrobiologyTechnische Universität DresdenZellescher Weg 20b01217DresdenGermany
| |
Collapse
|
5
|
AICAR enhances the cytotoxicity of PFKFB3 inhibitor in an AMPK signaling-independent manner in colorectal cancer cells. Med Oncol 2021; 39:10. [PMID: 34761330 DOI: 10.1007/s12032-021-01601-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/21/2021] [Indexed: 12/09/2022]
Abstract
Numerous studies have shown that 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 (PFKFB3), a pivotal enzyme in modulating glycolysis, plays vital roles in various physiological processes. PFKFB3 activity could be regulated by several factors, such as hypoxia and AMPK signaling; however, it could also function as upstream of AMPK signaling. Here, we showed that PFKFB3 inhibitor PFK-15 induced cell viability loss and apoptosis. Deprivation of PFKFB3 inhibited autophagy, while enhanced the ubiquitin-proteasome degradation pathway. Furthermore, PFK-15 reduced both the AMPK and AKT-mTORC1 signaling pathways, as the attenuated phosphorylation level of kinases themselves and their substrates. The addition of AICAR rescued the AMPK activity and autophagy, but enhanced PFK-15-induced cell viability loss. In fact, AICAR promoted the cytotoxicity of PFK-15 even in the AMPKα1/2-silenced cells, indicating AICAR might function in an AMPK-independent manner. Nevertheless, AICAR further reduced the AKT-mTORC1 activity down-regulated by PFK-15. Moreover, it failed to enhance PFK-15's cytotoxicity in the AKT1/2-silenced cells, indicating AKT-mTORC1 participated during these processes. Collectively, the presented data demonstrated that PFK-15 inhibited cell viability, AMPK, and AKT-mTORC1 signaling, and AICAR probably enhanced the cell viability loss aroused by PFK-15 in an AKT-dependent and AMPK-independent manner, thereby revealing a more intimate relationship among PFKFB3, AMPK, and AKT-mTORC1 signaling pathways.
Collapse
|
6
|
Lee KC, Yen CK, Chen CN, Chang SF, Lu YC, Huang WS. Drug Resistance of CPT-11 in Human DLD-1 Colorectal Cancer Cells through MutS Homolog 2 Upregulation. Int J Med Sci 2021; 18:1269-1276. [PMID: 33526988 PMCID: PMC7847627 DOI: 10.7150/ijms.52620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/18/2020] [Indexed: 11/20/2022] Open
Abstract
Colorectal cancers (CRCs) is the most commonly diagnosed and deadly cancer types in the world. Despite advances in chemotherapy for CRCs, drug resistance remains a major challenge to high incurable and eventually deadly rates for patients. CPT-11 is one of the current chemotherapy agents for CRC patients and the CPT-11 resistance development of CRCs is also inevitable. Recently, accumulating data has suggested that DNA repair system might be an inducer of chemotherapy resistance in cancer cells. Thus, this study was aimed to examine whether MutS homolog (MSH) 2, one member of DNA repair system, plays a role to affect the cytotoxicity of CPT-11 to CRCs. Human DLD-1 CRC cells were used in this study. It was shown that MSH2 gene and protein expression could be upregulated in DLD-1 cells under CPT-11 treatment and this upregulation subsequently attenuates the sensitivity of DLD-1 cells to CPT-11. Moreover, ERK1/2 and Akt signaling and AP-1 transcription factor have been found to modulate these effects. These results elucidate the drug resistance role of MSH2 upregulation in the CPT-11-treated DLD-1 CRC cells. Our findings may provide a useful thought for new adjuvant drug development by controlling the DNA repair system.
Collapse
Affiliation(s)
- Ko-Chao Lee
- Department of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital; Kaohsiung Medical Center, Kaohsiung 833, Taiwan
| | - Chia-Kung Yen
- Department of Food Science, National Chiayi University, Chiayi 600, Taiwan
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ying-Chen Lu
- Department of Food Science, National Chiayi University, Chiayi 600, Taiwan
| | - Wen-Shih Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Division of Colon and Rectal Surgery, Department of Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| |
Collapse
|
7
|
Sinner HF, Johnson J, Rychahou PG, Watt DS, Zaytseva YY, Liu C, Evers BM. Novel chemotherapeutic agent, FND-4b, activates AMPK and inhibits colorectal cancer cell proliferation. PLoS One 2019; 14:e0224253. [PMID: 31648230 PMCID: PMC6812860 DOI: 10.1371/journal.pone.0224253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer deaths in the US with the majority of deaths due to metastatic disease. Current chemotherapeutic regimens involve highly toxic agents, which limits their utility; therefore, more effective and less toxic agents are required to see a reduction in CRC mortality. Novel fluorinated N,N’-diarylureas (FND) were developed and characterized by our group as potent activators of adenosine monophosphate-activated kinase (AMPK) that inhibit cell cycle progression. The purpose of this study was to determine the effect of a lead FND compound, FND-4b, either alone or combined with PI-103 (a dual PI3K/mTOR inhibitor) or SN-38 (active metabolite of irinotecan) on cell cycle arrest and apoptosis of CRC cell lines (both commercially-available and novel lines established from our patient population). Treatment with FND-4b for 24h resulted in a marked induction of phosphorylated AMPK expression and a concomitant reduction in markers of cell proliferation, such as cyclin D1, in all CRC cell lines. Apoptosis was also notably increased in CRC cells treated with FND-4b. Regardless of the genetic profile of the CRC cells, FND-4b treatment alone resulted in decreased cell proliferation. Moreover, the combination of FND-4b with PI-103 resulted in increased cell death in all cell lines, while the combination of FND-4b with SN-38 resulted in increased cell death in select cell lines. Our findings identify FND-4b, which activates AMPK at micromolar concentrations, as a novel and effective inhibitor of CRC growth either alone or in combination with PI-103 and SN-38.
Collapse
Affiliation(s)
- Heather F. Sinner
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jeremy Johnson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Piotr G. Rychahou
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - David S. Watt
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
- Center for Molecular Medicine, Organic Synthesis Core, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yekaterina Y. Zaytseva
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Chunming Liu
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - B. Mark Evers
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
8
|
Tung SY, Lin CT, Chen CN, Huang WS. Effect of mitomycin C on X-ray repair cross complementing group 1 expression and consequent cytotoxicity regulation in human gastric cancer cells. J Cell Biochem 2019; 120:8333-8342. [PMID: 30614038 DOI: 10.1002/jcb.28116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
Abstract
Gastric cancer is the fourth most common cancer and ranks as the second leading cause of cancer-related deaths across the world. The combination therapy of surgery with chemotherapeutic drugs, that is, mitomycin C (MMC), is becoming a major strategy for patients with advanced gastric cancer. However, drug resistance is a major factor that limits the effectiveness of chemotherapy, which ultimately leads to the failure of cancer chemotherapy. X-ray repair cross complementing group 1 (XRCC1), a scaffold protein of the base excision repair process, has been implicated in the development of tumor chemoresistance. Thus, this study aimed to explore whether XRCC1 expression could be regulated, its role in gastric AGS cancer cells treated with MMC, and the underlying mechanism. The results of this study demonstrate that XRCC1 expression could be upregulated in AGS cells treated with MMC, and this upregulation could subsequently reduce the cytotoxicity of MMC in AGS cells. Furthermore, MMC-upregulated XRCC1 expression was regulated by MAPK signaling through activating the transcription factor Sp1. These results indicate the role of XRCC1 in the development of drug resistance to MMC in gastric AGS cells. Elucidating the mechanism concerning the MAPKs and transcription factor Sp1 may provide another notion for the development of a clinical chemotherapy strategy for gastric cancers in the future.
Collapse
Affiliation(s)
- Shui-Yi Tung
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan, ROC.,Chang Gung University College of Medicine, Taoyuan, Taiwan, ROC
| | - Chien-Tsong Lin
- Center for General Education, National Formosa University, Yunlin, Taiwan, ROC.,Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan, ROC
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan, ROC
| | - Wen-Shih Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan, ROC
| |
Collapse
|
9
|
AICAR Induces Apoptosis and Inhibits Migration and Invasion in Prostate Cancer Cells Through an AMPK/mTOR-Dependent Pathway. Int J Mol Sci 2019; 20:ijms20071647. [PMID: 30987073 PMCID: PMC6480054 DOI: 10.3390/ijms20071647] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/21/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023] Open
Abstract
Current clinical challenges of prostate cancer management are to restrict tumor growth and prohibit metastasis. AICAR (5-aminoimidazole-4-carbox-amide-1-β-d-ribofuranoside), an AMP-activated protein kinase (AMPK) agonist, has demonstrated antitumor activities for several types of cancers. However, the activity of AICAR on the cell growth and metastasis of prostate cancer has not been extensively studied. Herein we examine the effects of AICAR on the cell growth and metastasis of prostate cancer cells. Cell growth was performed by MTT assay and soft agar assay; cell apoptosis was examined by Annexin V/propidium iodide (PI) staining and poly ADP ribose polymerase (PARP) cleavage western blot, while cell migration and invasion were evaluated by wound-healing assay and transwell assay respectively. Epithelial–mesenchymal transition (EMT)-related protein expression and AMPK/mTOR-dependent signaling axis were analyzed by western blot. In addition, we also tested the effect of AICAR on the chemosensitivity to docetaxel using MTT assay. Our results indicated that AICAR inhibits cell growth in prostate cancer cells, but not in non-cancerous prostate cells. In addition, our results demonstrated that AICAR induces apoptosis, attenuates transforming growth factor (TGF)-β-induced cell migration, invasion and EMT-related protein expression, and enhances the chemosensitivity to docetaxel in prostate cancer cells through regulating the AMPK/mTOR-dependent pathway. These findings support AICAR as a potential therapeutic agent for the treatment of prostate cancer.
Collapse
|
10
|
Cao W, Li J, Hao Q, Vadgama JV, Wu Y. AMP-activated protein kinase: a potential therapeutic target for triple-negative breast cancer. Breast Cancer Res 2019; 21:29. [PMID: 30791936 PMCID: PMC6385460 DOI: 10.1186/s13058-019-1107-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subset of breast carcinomas that lack expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2). Unlike other breast cancer subtypes, targeted therapy is presently unavailable for patients with TNBC. In spite of initial responses to chemotherapy, drug resistance tends to develop rapidly and the prognosis of metastatic TNBC is poor. Hence, there is an urgent need for novel-targeted treatment methods or development of safe and effective alternatives with recognized mechanism(s) of action. AMP-activated protein kinase (AMPK), an energy sensor, can regulate protein and lipid metabolism responding to alterations in energy supply. In the past 10 years, interest in AMPK has increased widely since it appeared as an attractive targeting molecule for cancer therapy. There has been a deep understanding of the possible role of abnormal AMPK signaling pathways in the regulation of growth and survival and the development of drug resistance in TNBC. The increasing popularity of using AMPK regulators for TNBC-targeted therapy is supported by a considerable development in ascertaining the molecular pathways implicated. This review highlights the available evidence for AMPK-targeted anti-TNBC activity of various agents or treatment strategies, with special attention placed on recent preclinical and clinical advances in the manipulation of AMPK in TNBC. The elaborative analysis of these AMPK-related signaling pathways will have a noteworthy impact on the development of AMPK regulators, resulting in efficacious treatments for this lethal disease.
Collapse
Affiliation(s)
- Wei Cao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine, and UCLA Jonsson Comprehensive Cancer Center, 1748 E. 118th Street, Los Angeles, CA, 90059, USA
| | - Jieqing Li
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine, and UCLA Jonsson Comprehensive Cancer Center, 1748 E. 118th Street, Los Angeles, CA, 90059, USA
- Department of Breast Surgery, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
| | - Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine, and UCLA Jonsson Comprehensive Cancer Center, 1748 E. 118th Street, Los Angeles, CA, 90059, USA
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine, and UCLA Jonsson Comprehensive Cancer Center, 1748 E. 118th Street, Los Angeles, CA, 90059, USA.
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine, and UCLA Jonsson Comprehensive Cancer Center, 1748 E. 118th Street, Los Angeles, CA, 90059, USA.
| |
Collapse
|