1
|
Zhang J, Liu C, Li J, Yu T, Ruan J, Yang F. Advanced Piezoelectric Materials, Devices, and Systems for Orthopedic Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410400. [PMID: 39665130 DOI: 10.1002/advs.202410400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Harnessing the robust electromechanical couplings, piezoelectric materials not only enable efficient bio-energy harvesting, physiological sensing and actuating but also open enormous opportunities for therapeutic treatments through surface polarization directly interacting with electroactive cells, tissues, and organs. Known for its highly oriented and hierarchical structure, collagen in natural bones produces local electrical signals to stimulate osteoblasts and promote bone formation, inspiring the application of piezoelectric materials in orthopedic medicine. Recent studies showed that piezoelectricity can impact microenvironments by regulating molecular sensors including ion channels, cytoskeletal elements, cell adhesion proteins, and other signaling pathways. This review thus focuses on discussing the pioneering applications of piezoelectricity in the diagnosis and treatment of orthopedic diseases, aiming to offer valuable insights for advancing next-generation medical technologies. Beginning with an introduction to the principles of piezoelectricity and various piezoelectric materials, this review paper delves into the mechanisms through which piezoelectric materials accelerated osteogenesis. A comprehensive overview of piezoelectric materials, devices, and systems enhancing bone tissue repair, alleviating inflammation at infection sites, and monitoring bone health is then provided, respectively. Finally, the major challenges faced by applications of piezoelectricity in orthopedic conditions are thoroughly discussed, along with a critical outlook on future development trends.
Collapse
Affiliation(s)
- Jingkai Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chang Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Jun Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tao Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Fan Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
2
|
Xu L, Ren W, Long Y, Yang B, Chen L, Chen W, Chen S, Cao Y, Wu D, Qu J, Li H, Yu Y, Zhang A, Wang S, Wang H, Chen T, Fan G, Li Q, Chen Z. Antisenescence Expansion of Mesenchymal Stem Cells Using Piezoelectric β-Poly(vinylidene fluoride) Film-Based Culture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63207-63224. [PMID: 39503875 DOI: 10.1021/acsami.4c12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Regenerative therapies based on mesenchymal stem cells (MSCs) show promise in treating a wide range of disorders. However, the replicative senescence of MSCs during in vitro expansion poses a challenge to obtaining a substantial quantity of high-quality MSCs. In this investigation, a piezoelectric β-poly(vinylidene fluoride) film-based culture plate (β-CP) was developed with an antisenescence effect on cultured human umbilical cord-derived MSCs. Compared to traditional tissue culture plates (TCPs) and α-poly(vinylidene fluoride) film-based culture plates, the senescence markers of p21, p53, interleukin-6 and insulin-like growth factor-binding protein-7, stemness markers of OCT4 and NANOG, and telomere length of MSCs cultured on β-CPs were significantly improved. Additionally, MSCs at passage 18 cultured on β-CPs showed significantly better multipotency and pro-angiogenic capacities in vitro, and higher wound healing abilities in a mouse model. Mechanistically, β-CPs rejuvenated senescent MSCs by improving mitochondrial functions and mitigating oxidative and glycoxidative stresses. Overall, this study presents β-CPs as a promising approach for efficient and straightforward antisenescence expansion of MSCs while preserving their stemness, thereby holding great potential for large-scale production of MSCs for clinical application in cell therapies.
Collapse
Affiliation(s)
- Liuyue Xu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenxiang Ren
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yaoying Long
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bianlei Yang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Chen
- Department of Hematology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Wenlan Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siyi Chen
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulin Cao
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Wu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiao Qu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - He Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yali Yu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anyuan Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shan Wang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongxiang Wang
- Department of Hematology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Ting Chen
- Hubei Engineering Research Center for Application of Extracellular Vesicles, Hubei University of Science and Technology, Xianning 437100, China
| | - Guifen Fan
- School of Optical and Electronic Information, Key Lab of Functional Materials for Electronic Information(B), MOE, Huazhong University of Science and Technology, Wuhan 430074, China
- Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou 325035, China
| | - Qiubai Li
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Application of Extracellular Vesicles, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhichao Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Carvalho EO, Marques-Almeida T, Cruz BDD, Correia DM, Esperança JMSS, Irastorza I, Silvan U, Fernandes MM, Lanceros-Mendez S, Ribeiro C. Piezoelectric biomaterials with embedded ionic liquids for improved orthopedic interfaces through osseointegration and antibacterial dual characteristics. BIOMATERIALS ADVANCES 2024; 164:213970. [PMID: 39106539 DOI: 10.1016/j.bioadv.2024.213970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Orthopedic implant failures, primarily attributed to aseptic loosening and implant site infections, pose significant challenges to patient recovery and lead to revision surgeries. Combining piezoelectric materials with ionic liquids as interfaces for orthopedic implants presents an innovative approach to addressing both issues simultaneously. In this study, films of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) incorporated with 1-ethyl-3-methylimidazolium hydrogen sulfate ([Emim][HSO4]) ionic liquid were developed. These films exhibited strong antibacterial properties, effectively reducing biofilm formation, thereby addressing implant-related infections. Furthermore, stem cell-based differentiation assays exposed the potential of the composite materials to induce osteogenesis. Interestingly, our findings also revealed the upregulation of calcium channel expression as a result of electromechanical stimulation, pointing to a mechanistic basis for the observed biological effects. This work highlights the potential of piezoelectric materials with ionic liquids to improve the longevity and biocompatibility of orthopedic implants. Offering dual-functionality for infection prevention and bone integration, these advancements hold significant potential for advancing orthopedic implant technologies and improving patient outcomes.
Collapse
Affiliation(s)
- E O Carvalho
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
| | - T Marques-Almeida
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
| | - B D D Cruz
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; Centre of Chemistry, University of Minho, Braga 4710-057, Portugal; Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| | - D M Correia
- Centre of Chemistry, University of Minho, Braga 4710-057, Portugal
| | - J M S S Esperança
- LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, 2829-516 Caparica, Portugal
| | - I Irastorza
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; BCMaterials, Basque Center Centre for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - U Silvan
- BCMaterials, Basque Center Centre for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - M M Fernandes
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; Centre for MicroElectroMechanics Systems (CMEMS), University of Minho, 4710-057 Guimarães, Portugal; LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - S Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; BCMaterials, Basque Center Centre for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - C Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
4
|
Martins LA, García-Parra N, Ródenas-Rochina J, Cordón L, Sempere A, Ribeiro C, Lanceros-Méndez S, Gómez-Ribelles JL. Assemblable 3D biomimetic microenvironment for hMSC osteogenic differentiation. Biomed Mater 2024; 19:065013. [PMID: 39303743 DOI: 10.1088/1748-605x/ad7dc4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Adequate simulation mimicking a tissue's native environment is one of the elemental premises in tissue engineering. Although various attempts have been made to induce human mesenchymal stem cells (hMSC) into an osteogenic pathway, they are still far from widespread clinical application. Most strategies focus primarily on providing a specific type of cue, inadequately replicating the complexity of the bone microenvironment. An alternative multifunctional platform for hMSC osteogenic differentiation has been produced. It is based on poly(vinylidene fluoride) (PVDF) and cobalt ferrites magnetoelectric microspheres, functionalized with collagen and gelatin, and packed in a 3D arrangement. This platform is capable of performing mechanical stimulation of piezoelectric PVDF, mimicking the bones electromechanical biophysical cues. Surface functionalization with extracellular matrix biomolecules and osteogenic medium complete this all-round approach. hMSC were cultured in osteogenic inducing conditions and tested for proliferation, surface biomarkers, and gene expression to evaluate their osteogenic commitment.
Collapse
Affiliation(s)
- Luis A Martins
- Center for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Nadia García-Parra
- Center for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Joaquín Ródenas-Rochina
- Center for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Lourdes Cordón
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe (IISLAFE), 46022 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| | - Amparo Sempere
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe (IISLAFE), 46022 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Clarisse Ribeiro
- CF-UM-UP-Physics Centre of Minho and Porto Universities, University of Minho, 4710-057 Braga, Portugal
- LaPMET-Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- CF-UM-UP-Physics Centre of Minho and Porto Universities, University of Minho, 4710-057 Braga, Portugal
- BCMaterials-Basque Center for Materials Applications and Nanostructures, University of the Basque Country, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - José Luis Gómez-Ribelles
- Center for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Tamaño-Machiavello M, Carvalho E, Correia D, Cordón L, Lanceros-Méndez S, Sempere A, Sabater i Serra R, Ribelles JG. Osteogenic differentiation of human mesenchymal stem cells on electroactive substrates. Heliyon 2024; 10:e28880. [PMID: 38601667 PMCID: PMC11004758 DOI: 10.1016/j.heliyon.2024.e28880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
This study investigates the effect of electroactivity and electrical charge distribution on the biological response of human bone marrow stem cells (hBMSCs) cultured in monolayer on flat poly(vinylidene fluoride), PVDF, substrates. Differences in cell behaviour, including proliferation, expression of multipotency markers CD90, CD105 and CD73, and expression of genes characteristic of different mesenchymal lineages, were observed both during expansion in basal medium before reaching confluence and in confluent cultures in osteogenic induction medium. The crystallisation of PVDF in the electrically neutral α-phase or in the electroactive phase β, both unpoled and poled, has been found to have an important influence on the biological response. In addition, the presence of a permanent positive or negative surface electrical charge distribution in phase β substrates has also shown a significant effect on cell behaviour.
Collapse
Affiliation(s)
- M.N. Tamaño-Machiavello
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 València, Spain
| | - E.O. Carvalho
- Centre of Physics, Universidade do Minho, 4710-057, Braga, Portugal
| | - D. Correia
- Centre of Chemistry, University of Minho, 4710-057, Braga, Portugal
| | - L. Cordón
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, València, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - S. Lanceros-Méndez
- Centre of Physics, Universidade do Minho, 4710-057, Braga, Portugal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - A. Sempere
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, València, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
- Hematology Department, Hospital Universitario y Politécnico La Fe, València, Spain
| | - R. Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - J.L. Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| |
Collapse
|
6
|
Omer SA, McKnight KH, Young LI, Song S. Stimulation strategies for electrical and magnetic modulation of cells and tissues. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:21. [PMID: 37391680 DOI: 10.1186/s13619-023-00165-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/01/2023] [Indexed: 07/02/2023]
Abstract
Electrical phenomena play an important role in numerous biological processes including cellular signaling, early embryogenesis, tissue repair and remodeling, and growth of organisms. Electrical and magnetic effects have been studied on a variety of stimulation strategies and cell types regarding cellular functions and disease treatments. In this review, we discuss recent advances in using three different stimulation strategies, namely electrical stimulation via conductive and piezoelectric materials as well as magnetic stimulation via magnetic materials, to modulate cell and tissue properties. These three strategies offer distinct stimulation routes given specific material characteristics. This review will evaluate material properties and biological response for these stimulation strategies with respect to their potential applications in neural and musculoskeletal research.
Collapse
Affiliation(s)
- Suleyman A Omer
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Kaitlyn H McKnight
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Lucas I Young
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Shang Song
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.
- Departments of Neuroscience GIDP, Materials Science and Engineering, BIO5 Institute, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
7
|
Mori T, Igarashi M, Onodera Y, Takehara T, Itokazu M, Teramura T. Fibrinogen supports self-renewal of mesenchymal stem cells under serum-reduced condition through autophagy activation. Biochem Biophys Res Commun 2023; 651:70-78. [PMID: 36796212 DOI: 10.1016/j.bbrc.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/05/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Mesenchymal stem cells (MSCs) are somatic stem cells used in cell transplantation therapy for tissue injuries and inflammatory diseases because of their ability to support tissue regeneration and to suppress inflammation. While their applications are expanding, needs for automation of culture procedures with reduction of animal-derived materials to meet stable quality and suppliability are also increasing. On the other hand, the development of molecules that safely support cell adherence and expansion on a variety of interfaces under the serum-reduced culture condition remains a challenge. We report here that fibrinogen enables MSC culture on various materials with low cell adhesion property even under serum-reduced culture conditions. Fibrinogen promoted MSC adhesion and proliferation by stabilizing basic fibroblast growth factor (bFGF), which was secreted in the culture medium by autocrine, and also activated autophagy to suppress cellar senescence. Fibrinogen coating allowed MSCs expansion even on the polyether sulfone membrane that represents very low cell adhesion, and the MSCs showed therapeutic effects in a pulmonary fibrosis model. This study demonstrates that fibrinogen is currently the safest and most widely available extracellular matrix and can be used as a versatile scaffold for cell culture in regenerative medicine.
Collapse
Affiliation(s)
| | | | - Yuta Onodera
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan
| | - Toshiyuki Takehara
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan
| | - Maki Itokazu
- Department of Rehabilitation Medicine, Kindai University Faculty of Medicine, Japan
| | - Takeshi Teramura
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan.
| |
Collapse
|
8
|
Bhaskar N, Basu B. Osteogenesis, hemocompatibility, and foreign body response of polyvinylidene difluoride-based composite reinforced with carbonaceous filler and higher volume of piezoelectric ceramic phase. Biomaterials 2023; 297:122100. [PMID: 37004426 DOI: 10.1016/j.biomaterials.2023.122100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Hybrid polymer-ceramic composites have been widely investigated for bone tissue engineering applications. The incorporation of a large amount of inorganic phase, like barium titanate (BaTiO3) with good dispersion, in a polymeric matrix using a conventional processing approach has always been challenging. Also, the comprehensive study encompassing the interactions of key components of living organisms (cell, blood, tissue) with such hybrid composites is not well explored in many published studies. Built on our earlier studies and recognizing the importance of poly(vinylidene fluoride) (PVDF) as a widely used polymer for a wide spectrum of biomedical applications, the present study reports the qualitative and quantitative analysis of the biocompatibility of PVDF composite (PVDF/30BT/3MWCNT) reinforced with large amounts of BaTiO3 (30 wt %) and tailored addition of multiwalled carbon nanotubes (MWCNT; 3 wt %). The melt mixing-extrusion-compression moulding-based processing approach resulted in an enhancement of β-phase content, thermal stability, and wettability in the semi-crystalline PVDF composite. The enhanced hemocompatibility of PVDF/30BT/3MWCNT has been established conclusively by a series of in vitro blood-material interaction assays, including haemolysi, analysis of platelets attachment and activation, dynamic blood coagulation, and plasma recalcification time. The cytocompatibility study confirms an improved adhesion, proliferation, and migration of osteoprogenitor cells (preosteoblasts; MC3T3-E1) on PVDF/30BT/3MWCNT, in a manner better than neat PVDF, in vitro. When these cells were cultured in osteogenic differentiating media, the modulated osteogenesis, in terms of alkaline phosphatase activity, intracellular Ca2+ concentration, and calcium deposition on the PVDF/30BT/3MWCNT, was recorded. Following subcutaneous implantation of PVDF/30BT/3MWCNT in rat model, no apparent variation was recorded in the complete hemogram (blood hematology analysis) or serum biochemistry, post 30-, 60-, and 90-days surgery. Importantly, 90-days post-implantation, the fibrous capsule thickness was significantly reduced in the composites w.r.t PVDF alone, together with better blood vessel formation, indicating improved neovascularization around the composite. This study establishes the efficacy of inorganic fillers in enhancing the biocompatibility of PVDF, which could open up a wide range of biomedical applications.
Collapse
|
9
|
Cell surface markers for mesenchymal stem cells related to the skeletal system: A scoping review. Heliyon 2023; 9:e13464. [PMID: 36865479 PMCID: PMC9970931 DOI: 10.1016/j.heliyon.2023.e13464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have been described as bone marrow stromal cells, which can form cartilage, bone or hematopoietic supportive stroma. In 2006, the International Society for Cell Therapy (ISCT) established a set of minimal characteristics to define MSCs. According to their criteria, these cells must express CD73, CD90 and CD105 surface markers; however, it is now known they do not represent true stemness epitopes. The objective of the present work was to determine the surface markers for human MSCs associated with skeletal tissue reported in the literature (1994-2021). To this end, we performed a scoping review for hMSCs in axial and appendicular skeleton. Our findings determined the most widely used markers were CD105 (82.9%), CD90 (75.0%) and CD73 (52.0%) for studies performed in vitro as proposed by the ISCT, followed by CD44 (42.1%), CD166 (30.9%), CD29 (27.6%), STRO-1 (17.7%), CD146 (15.1%) and CD271 (7.9%) in bone marrow and cartilage. On the other hand, only 4% of the articles evaluated in situ cell surface markers. Even though most studies use the ISCT criteria, most publications in adult tissues don't evaluate the characteristics that establish a stem cell (self-renewal and differentiation), which will be necessary to distinguish between a stem cell and progenitor populations. Collectively, MSCs require further understanding of their characteristics if they are intended for clinical use.
Collapse
|
10
|
Marques-Almeida T, Fernandes HJR, Lanceros-Mendez S, Ribeiro C. Surface charge and dynamic mechanoelectrical stimuli improves adhesion, proliferation and differentiation of neuron-like cells. J Mater Chem B 2022; 11:144-153. [PMID: 36441601 DOI: 10.1039/d2tb01933g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neuronal diseases and trauma are among the current major health-care problems. Patients frequently develop an irreversible state of neuronal disfunction that lacks treatment, strongly reducing life quality and expectancy. Novel strategies are thus necessary and tissue engineering research is struggling to provide alternatives to current treatments, making use of biomaterials capable to provide cell supports and active stimuli to develop permissive environments for neural regeneration. As neuronal cells are naturally found in electrical microenvironments, the electrically active materials can pave the way for new and effective neuroregenerative therapies. In this work the influence of piezoelectric poly(vinylidene fluoride) with different surface charges and dynamic mechanoelectrical stimuli on neuron-like cells adhesion, proliferation and differentiation was addressed. It is successfully demonstrated that both surface charge and electrically active dynamic microenvironments can be suitable to improve neuron-like cells adhesion, proliferation, and differentiation. These findings provide new knowledge to develop effective approaches for preclinical applications.
Collapse
Affiliation(s)
- T Marques-Almeida
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057, Braga, Portugal. .,LaPMET-Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057, Braga, Portugal
| | - H J R Fernandes
- UK Dementia Research Institute, University of Cambridge, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge, CB2 0AH, UK
| | - S Lanceros-Mendez
- BCMaterials, Basque Centre for Materials and Applications, UPV/EHU Science Park, Leioa, 48940, Spain. .,IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - C Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057, Braga, Portugal. .,LaPMET-Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057, Braga, Portugal
| |
Collapse
|
11
|
Guillot-Ferriols M, García-Briega MI, Tolosa L, Costa CM, Lanceros-Méndez S, Gómez Ribelles JL, Gallego Ferrer G. Magnetically Activated Piezoelectric 3D Platform Based on Poly(Vinylidene) Fluoride Microspheres for Osteogenic Differentiation of Mesenchymal Stem Cells. Gels 2022; 8:680. [PMID: 36286181 PMCID: PMC9602007 DOI: 10.3390/gels8100680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) osteogenic commitment before injection enhances bone regeneration therapy results. Piezoelectric stimulation may be an effective cue to promote MSCs pre-differentiation, and poly(vinylidene) fluoride (PVDF) cell culture supports, when combined with CoFe2O4 (CFO), offer a wireless in vitro stimulation strategy. Under an external magnetic field, CFO shift and magnetostriction deform the polymer matrix varying the polymer surface charge due to the piezoelectric effect. To test the effect of piezoelectric stimulation on MSCs, our approach is based on a gelatin hydrogel with embedded MSCs and PVDF-CFO electroactive microspheres. Microspheres were produced by electrospray technique, favouring CFO incorporation, crystallisation in β-phase (85%) and a crystallinity degree of around 55%. The absence of cytotoxicity of the 3D construct was confirmed 24 h after cell encapsulation. Cells were viable, evenly distributed in the hydrogel matrix and surrounded by microspheres, allowing local stimulation. Hydrogels were stimulated using a magnetic bioreactor, and no significant changes were observed in MSCs proliferation in the short or long term. Nevertheless, piezoelectric stimulation upregulated RUNX2 expression after 7 days, indicating the activation of the osteogenic differentiation pathway. These results open the door for optimising a stimulation protocol allowing the application of the magnetically activated 3D electroactive cell culture support for MSCs pre-differentiation before transplantation.
Collapse
Affiliation(s)
- Maria Guillot-Ferriols
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| | - María Inmaculada García-Briega
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| | - Laia Tolosa
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
- Experimental Hepatology Unit, Health Research Institute La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Carlos M. Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - José Luis Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| |
Collapse
|
12
|
Martins L, Ródenas-Rochina J, Salazar D, Cardoso VF, Gómez Ribelles JL, Lanceros-Mendez S. Microfluidic Processing of Piezoelectric and Magnetic Responsive Electroactive Microspheres. ACS APPLIED POLYMER MATERIALS 2022; 4:5368-5379. [PMID: 36824683 PMCID: PMC9940114 DOI: 10.1021/acsapm.2c00380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/05/2022] [Indexed: 06/18/2023]
Abstract
Poly(vinylidene fluoride) (PVDF) combined with cobalt ferrite (CFO) particles is one of the most common and effective polymeric magnetoelectric composites. Processing PVDF into its electroactive phase is a mandatory condition for featuring electroactive behavior and specific (post)processing may be needed to achieve this state, although electroactive phase crystallization is favored at processing temperatures below 60 °C. Different techniques are used to process PVDF-CFO nanocomposite structures into microspheres with high CFO dispersion, with microfluidics adding the advantages of high reproducibility, size tunability, and time and resource efficiency. In this work, magnetoelectric microspheres are produced in a one-step approach. We describe the production of high content electroactive phase PVDF and PVDF-CFO microspheres using microfluidic technology. A flow-focusing polydimethylsiloxane device is fabricated based on a 3D printed polylactic acid master, which enables the production of spherical microspheres with mean diameters ranging from 80 to 330 μm. The microspheres feature internal and external cavernous structures and good CFO distribution with an encapsulation efficacy of 80% and prove to be in the electroactive γ-phase with a mean content of 75%. The microspheres produced using this approach show suitable characteristics as active materials for tissue regeneration strategies and other piezoelectric polymer applications.
Collapse
Affiliation(s)
- Luís
Amaro Martins
- CBIT—Centre
for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia 46022, Spain
| | - Joaquín Ródenas-Rochina
- CBIT—Centre
for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia 46022, Spain
| | - Daniel Salazar
- BCMaterials,
Basque Center for Materials Applications and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - Vanessa F. Cardoso
- Department
of Physics, Universidade do Minho, Braga 4710-057, Portugal
- CMEMS-UMinho, Universidade do Minho, Guimarães 4800-058, Portugal
| | - José Luis Gómez Ribelles
- CBIT—Centre
for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia 46022, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), Madrid 28029, Spain
| | - Senentxu Lanceros-Mendez
- BCMaterials,
Basque Center for Materials Applications and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- IKERBASQUE,
Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
13
|
Qiao Z, Lian M, Liu X, Zhang X, Han Y, Ni B, Xu R, Yu B, Xu Q, Dai K. Electreted Sandwich Membranes with Persistent Electrical Stimulation for Enhanced Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31655-31666. [PMID: 35797478 DOI: 10.1021/acsami.2c06665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Physiologically relevant electrical microenvironments play an indispensable role in manipulating bone metabolism. Although implanted biomaterials that simulate the electrical properties of natural tissues using conductive or piezoelectric materials have been introduced in the field of bone regeneration, the application of electret materials to provide stable and persistent electrical stimulation has rarely been studied in biomaterial design. In this study, a silicon dioxide electret-incorporated poly(dimethylsiloxane) (SiO2/PDMS) composite electroactive membrane was designed and fabricated to explore its bone regeneration efficacy. SiO2 electrets were homogeneously dispersed in the PDMS matrix, and sandwich-like composite membranes were fabricated using a facile layer-by-layer blade-coating method. Following the encapsulation, electret polarization was conducted to obtain the electreted composite membranes. The surface potential of the composite membrane could be adjusted to a bone-promotive biopotential by tuning the electret concentration, and the prepared membranes exhibited favorable electrical stability during an observation period of up to 42 days. In vitro biological experiments indicated that the electreted SiO2/PDMS membrane promoted cellular activity and osteogenic differentiation of mesenchymal stem cells. In vivo, the electreted composite membrane remarkably facilitated bone regeneration through persistent endogenous electrical stimulation. These findings suggest that the electreted sandwich-like membranes, which maintain a stable and physiological electrical microenvironment, are promising candidates for enhancing bone regeneration.
Collapse
Affiliation(s)
- Zhiguang Qiao
- Department of Orthopaedic Surgery, Renji Hospital, South Campus, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, China
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Meifei Lian
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xingzhou Liu
- Department of Rehabilitation, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Xing Zhang
- State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Han
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bing Ni
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Ruida Xu
- Department of Orthopaedic Surgery, Renji Hospital, South Campus, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, China
| | - Bin Yu
- State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, College of Materials Science & Engineering, Donghua University, Shanghai 201620, China
| | - Qingrong Xu
- Department of Orthopaedic Surgery, Renji Hospital, South Campus, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, China
| | - Kerong Dai
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| |
Collapse
|
14
|
Guillot-Ferriols M, Lanceros-Méndez S, Gómez Ribelles JL, Gallego Ferrer G. Electrical stimulation: Effective cue to direct osteogenic differentiation of mesenchymal stem cells? BIOMATERIALS ADVANCES 2022; 138:212918. [PMID: 35913228 DOI: 10.1016/j.bioadv.2022.212918] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Mesenchymal stem cells (MSCs) play a major role in bone tissue engineering (BTE) thanks to their capacity for osteogenic differentiation and being easily available. In vivo, MSCs are exposed to an electroactive microenvironment in the bone niche, which has piezoelectric properties. The correlation between the electrically active milieu and bone's ability to adapt to mechanical stress and self-regenerate has led to using electrical stimulation (ES) as physical cue to direct MSCs differentiation towards the osteogenic lineage in BTE. This review summarizes the different techniques to electrically stimulate MSCs to induce their osteoblastogenesis in vitro, including general electrical stimulation and substrate mediated stimulation by means of conductive or piezoelectric cell culture supports. Several aspects are covered, including stimulation parameters, treatment times and cell culture media to summarize the best conditions for inducing MSCs osteogenic commitment by electrical stimulation, from a critical point of view. Electrical stimulation activates different signaling pathways, including bone morphogenetic protein (BMP) Smad-dependent or independent, regulated by mitogen activated protein kinases (MAPK), extracellular signal-regulated kinases (ERK) and p38. The roles of voltage gate calcium channels (VGCC) and integrins are also highlighted according to their application technique and parameters, mainly converging in the expression of RUNX2, the master regulator of the osteogenic differentiation pathway. Despite the evident lack of homogeneity in the approaches used, the ever-increasing scientific evidence confirms ES potential as an osteoinductive cue, mimicking aspects of the in vivo microenvironment and moving one step forward to the translation of this approach into clinic.
Collapse
Affiliation(s)
- M Guillot-Ferriols
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| | - S Lanceros-Méndez
- Centre of Physics of Minho and Porto Universities, Universidade do Minho, 4710-058 Braga, Portugal; BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - J L Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - G Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| |
Collapse
|
15
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Integration of a fiber-based cell culture and biosensing system for monitoring of multiple protein markers secreted from stem cells. Biosens Bioelectron 2021; 193:113531. [PMID: 34333363 DOI: 10.1016/j.bios.2021.113531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022]
Abstract
We propose a new platform that can integrate three-dimensional cell culture scaffold and a surface-enhanced Raman spectroscopy (SERS)-based biosensor by stacking them to form a multilayer system, which would allow monitoring of the protein markers secreted from cultured stem cells without periodic cell and/or media collection. The cell culture scaffold supported the proliferation and osteogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs). The SERS capture substrate detected protein markers in combination with SERS tag made with Au-Ag alloy nanoboxes. Incorporating the different Raman reporters into the SERS tag allowed easy identification of target proteins for multiplex assays. The resultant SERS-based immunoassay could detect the pg/mL levels of protein markers without crosstalk and interference. When one ADSC culture scaffold and multiple SERS capture substrates were integrated and incubated in differentiation culture media, our system was sufficiently sensitive to monitor time-dependent secretion of three different osteogenic protein markers from ADSCs during their osteogenic differentiation. Since the sensor and cell culture scaffold can be manipulated independently, various cell and biomarker combinations are possible to obtain relevant information regarding the actual state of the different types of cells.
Collapse
|
17
|
Xue G, Zhang Y, Xie T, Zhang Z, Liu Q, Li X, Gou X. Cell Adhesion-Mediated Piezoelectric Self-Stimulation on Polydopamine-Modified Poly(vinylidene fluoride) Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17361-17371. [PMID: 33823586 DOI: 10.1021/acsami.1c02457] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cell adhesion-mediated piezoelectric stimulation provides a noninvasive method for in situ electrical regulation of cell behavior, offering new opportunities for the design of smart materials for tissue engineering and bioelectronic medicines. In particular, the surface potential is mainly dominated by the inherent piezoelectricity of the biomaterial and the dynamic adhesion state of cells. The development of an efficient and optimized material interface would have important implications in cell regulation. Herein, we modified the surface of poled poly(vinylidene fluoride) (PVDF) membranes through polymerization of dopamine and investigated their influence on cell adhesion and electromechanical self-stimulation. Our results demonstrated that mesenchymal stem cells seeded on the poled PVDF membrane exhibited stronger cell spreading and adhesion. Meanwhile, the surface modification through polydopamine significantly improved the hydrophilicity of the samples and contributed to the formation of cell actin bundles and maturation of focal adhesions, which further positively modulated cell piezoelectric self-stimulation and induced intracellular calcium transients. Combining with theoretical simulations, we found that the self-stimulation was enhanced mainly due to the increase of the adhesion site and adhesion force magnitude. These findings provide new insights for probing the cell regulation mechanism on piezoelectric substrates, offering more opportunities for the rational design of piezoelectric biomaterial interfaces for biomedical engineering.
Collapse
Affiliation(s)
- Guilan Xue
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Yimeng Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Tianpeng Xie
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Zhanlin Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Qingjie Liu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Xue Gou
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| |
Collapse
|
18
|
Effective elastin-like recombinamers coating on poly(vinylidene) fluoride membranes for mesenchymal stem cell culture. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Guillot-Ferriols M, Rodríguez-Hernández J, Correia D, Carabineiro S, Lanceros-Méndez S, Gómez Ribelles J, Gallego Ferrer G. Poly(vinylidene) fluoride membranes coated by heparin/collagen layer-by-layer, smart biomimetic approaches for mesenchymal stem cell culture. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111281. [DOI: 10.1016/j.msec.2020.111281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
|
20
|
Marques-Almeida T, Cardoso VF, Gama M, Lanceros-Mendez S, Ribeiro C. Patterned Piezoelectric Scaffolds for Osteogenic Differentiation. Int J Mol Sci 2020; 21:E8352. [PMID: 33171761 PMCID: PMC7672637 DOI: 10.3390/ijms21218352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/02/2023] Open
Abstract
The morphological clues of scaffolds can determine cell behavior and, therefore, the patterning of electroactive polymers can be a suitable strategy for bone tissue engineering. In this way, this work reports on the influence of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroactive micropatterned scaffolds on the proliferation and differentiation of bone cells. For that, micropatterned P(VDF-TrFE) scaffolds were produced by lithography in the form of arrays of lines and hexagons and then tested for cell proliferation and differentiation of pre-osteoblast cell line. Results show that more anisotropic surface microstructures promote bone differentiation without the need of further biochemical stimulation. Thus, the combination of specific patterns with the inherent electroactivity of materials provides a promising platform for bone regeneration.
Collapse
Affiliation(s)
- Teresa Marques-Almeida
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (T.M.-A.); (V.F.C.)
- CEB, Centro de Engenharia Biológica, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal;
| | - Vanessa F. Cardoso
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (T.M.-A.); (V.F.C.)
- CMEMS-UMinho, Campus de Azurém, Universidade do Minho, 4800-058 Guimarães, Portugal
| | - Miguel Gama
- CEB, Centro de Engenharia Biológica, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal;
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Clarisse Ribeiro
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (T.M.-A.); (V.F.C.)
- CEB, Centro de Engenharia Biológica, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal;
| |
Collapse
|
21
|
Zheng T, Huang Y, Zhang X, Cai Q, Deng X, Yang X. Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. J Mater Chem B 2020; 8:10221-10256. [PMID: 33084727 DOI: 10.1039/d0tb01601b] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The process of bone tissue repair and regeneration is complex and requires a variety of physiological signals, including biochemical, electrical and mechanical signals, which collaborate to ensure functional recovery. The inherent piezoelectric properties of bone tissues can convert mechanical stimulation into electrical effects, which play significant roles in bone maturation, remodeling and reconstruction. Electroactive materials, including conductive materials, piezoelectric materials and electret materials, can simulate the physiological and electrical microenvironment of bone tissue, thereby promoting bone regeneration and reconstruction. In this paper, the structures and performances of different types of electroactive materials and their applications in the field of bone repair and regeneration are reviewed, particularly by providing the results from in vivo evaluations using various animal models. Their advantages and disadvantages as bone repair materials are discussed, and the methods for tuning their performances are also described, with the aim of providing an up-to-date account of the proposed topics.
Collapse
Affiliation(s)
- Tianyi Zheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
22
|
Popkov D, Popkov A, Dučić S, Lazović M, Lascombes P. Combined technique with hydroxyapatite coated intramedullary nails in treatment of anterolateral bowing of congenital pseudarthrosis of tibia. J Orthop 2020; 19:189-193. [PMID: 32025131 DOI: 10.1016/j.jor.2019.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/03/2019] [Indexed: 11/30/2022] Open
Abstract
Purpose The goal of this study is to evaluate the treatment outcomes of anterolateral bowing and residual deformities of distal tibia in patients with CPT using circular external fixation and hydroxyapatite coated flexible intramedullary nailing without excision of affected part of tibia. Patients and methods Six patients (4 boys and 2 girls, mean age 12.4 ± 4.1 years) were included in the study. Mean follow-up is 2.1 years. In 4 patients with early onset of disease initial surgical treatment (at age of 5-8 years) was dysplastic zone or pseudarthrosis resection with proximal metaphyseal osteotomy for bone transport. Children with unbroken bowed tibia (2 cases of type II according to Crawford classification) had no previous surgery. Neurofibromatosis type I was diagnosed in 4 cases. Surgical technique for residual deformity correction consisted of percutaneous osteotomy, application of circular external frame and composite hydroxyapatite-coated intramedullary nailing. Results Mean external fixation time was 95.3 ± 17.5 days. All patients never get fractured after frame removal. At the present time, they are considered to be healed, in 2.1 years, in average, without fractures or deformity recurrence. Mean lower limb length discrepancy varied from 2 to 10 mm at the latest follow-up control. After realignment procedure, patients didn't require additional surgery but one. Intramedullary nails were removed in two years after deformity correction for individual reason. Conclusion Correction of anterolateral bowing or residual deformity in children with CPT is indicated. Association of external fixation with intramedullary nailing/rodding left in situ after frame removal ensure stability and accuracy of deformity correction. Biological methods of stimulation of bone formation in dysplastic zone are obligatory to ensure bone union. Intramedullary nailing with composite hydroxyapatite-coated surface provides mechanical and biological advantages in patients with CPT.
Collapse
Affiliation(s)
- Dmitry Popkov
- Clinic of Neuroorthopaedics and Systemic Diseases of the Russian Ilizarov Scientific Centre for Restorative Traumatology and Orthopaedics, 6, M. Ulyanova Street, 640014, Kurgan, Russian Federation
| | - Arnold Popkov
- Clinic of Neuroorthopaedics and Systemic Diseases of the Russian Ilizarov Scientific Centre for Restorative Traumatology and Orthopaedics, 6, M. Ulyanova Street, 640014, Kurgan, Russian Federation
| | - Siniša Dučić
- Orthopaedic Department, Children's University Hospital, Tiršova 10, Belgrade, Serbia
| | - Mikan Lazović
- Orthopaedic Department, Children's University Hospital, Tiršova 10, Belgrade, Serbia
| | - Pierre Lascombes
- Division of Paediatric Orthopaedics, Hôpitaux Universitaires de Genève, Rue Willy Donzé 6, CH - 1211, Geneva, 14, Switzerland
| |
Collapse
|
23
|
Electric Phenomenon: A Disregarded Tool in Tissue Engineering and Regenerative Medicine. Trends Biotechnol 2020; 38:24-49. [DOI: 10.1016/j.tibtech.2019.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
|
24
|
Azadian E, Arjmand B, Ardeshirylajimi A, Hosseinzadeh S, Omidi M, Khojasteh A. Polyvinyl alcohol modified polyvinylidene fluoride-graphene oxide scaffold promotes osteogenic differentiation potential of human induced pluripotent stem cells. J Cell Biochem 2019; 121:3185-3196. [PMID: 31886565 DOI: 10.1002/jcb.29585] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022]
Abstract
Tissue engineering is fast becoming a key approach in bone medicine studies. Designing the ideally desirable combination of stem cells and scaffolds are at the hurt of efforts for producing implantable bone substitutes. Clinical application of stem cells could be associated with serious limitations, and engineering scaffolds that are able to imitate the important features of extracellular matrix is a major area of challenges within the field. In this study, electrospun scaffolds of polyvinylidene fluoride (PVDF), PVDF-graphene oxide (GO), PVDF-polyvinyl alcohol (PVA) and PVDF-PVA-GO were fabricated to study the osteogenic differentiation potential of human induced pluripotent stem cells (iPSCs) while cultured on fabricated scaffolds. Scanning electron microscopy study, viability assay, relative gene expression analysis, immunocytochemistry, alkaline phosphates activity, and calcium content assays confirmed that the osteogenesis rate of hiPSCs cultured on PVDF-PVA-Go is significantly higher than other scaffolds. Here, we showed that the biocompatible, nontoxic, flexible, piezoelectric, highly porous and interconnected three-dimensional structure of electrospun PVDF-PVA-Go scaffold in combination with hiPSCs (as the stem cells with significant advantageous in comparison to other types) makes them a highly promising scaffold-stem cell system for bone remodeling medicine. There was no evidence for the superiority of PVDF-GO or PVDF-PVA scaffold for osteogenesis, compared to each other; however both of them showed better potentials as to PVDF scaffold.
Collapse
Affiliation(s)
- Esmaeel Azadian
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahar Arjmand
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Omidi
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, Wisconsin
| | - Arash Khojasteh
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
He Q, Zhang J, Liao Y, Alakpa EV, Bunpetch V, Zhang J, Ouyang H. Current advances in microsphere based cell culture and tissue engineering. Biotechnol Adv 2019; 39:107459. [PMID: 31682922 DOI: 10.1016/j.biotechadv.2019.107459] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Qiulin He
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jingwei Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Youguo Liao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China.; Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Enateri Verissarah Alakpa
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiayan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongwei Ouyang
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China.; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; China Orthopedic Regenerative Medicine Group (CORMed), China..
| |
Collapse
|
26
|
Morales-Román RM, Guillot-Ferriols M, Roig-Pérez L, Lanceros-Mendez S, Gallego-Ferrer G, Gómez Ribelles JL. Freeze-extraction microporous electroactive supports for cell culture. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Poudel A, Fernandez MA, Tofail SAM, Biggs MJP. Boron Nitride Nanotube Addition Enhances the Crystallinity and Cytocompatibility of PVDF-TrFE. Front Chem 2019; 7:364. [PMID: 31165067 PMCID: PMC6536595 DOI: 10.3389/fchem.2019.00364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Analysis of the cellular response to piezoelectric materials has been driven by the discovery that many tissue components exhibit piezoelectric behavior ex vivo. In particular, polyvinylidene fluoride and the trifluoroethylene co-polymer (PVDF-TrFE) have been identified as promising piezo and ferroelectric materials with applications in energy harvesting and biosensor devices. Critically, the modulation of the structural and crystalline properties of PVDF-TrFE through annealing processes and the addition of particulate or fibrous fillers has been shown to modulate significantly the materials electromechanical properties. In this study, a PVDF-TrFE/boron-nitride nanotube composite was evaluated by modulated differential scanning calorimetry to assess the effects of boron nitride nanotube addition and thermal annealing on the composite structure and crystal behavior. An increased beta crystal formation [f(β) = 0.71] was observed following PVDF-TrFE annealing at the first crystallization temperature of 120°C. In addition, the inclusion of boron nitride nanotubes significantly increased the crystal formation behavior [f(β) = 0.76] and the mechanical properties of the material. Finally, it was observed that BNNT incorporation enhance the adherence and proliferation of human tenocyte cells in vitro.
Collapse
Affiliation(s)
- Anup Poudel
- CURAM, SFI Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Marc A Fernandez
- CURAM, SFI Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Syed A M Tofail
- Department of Physics, and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Manus J P Biggs
- CURAM, SFI Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
28
|
Mirzaei A, Moghadam AS, Abazari MF, Nejati F, Torabinejad S, Kaabi M, Enderami SE, Ardeshirylajimi A, Darvish M, Soleimanifar F, Saburi E. Comparison of osteogenic differentiation potential of induced pluripotent stem cells on 2D and 3D polyvinylidene fluoride scaffolds. J Cell Physiol 2019; 234:17854-17862. [PMID: 30851069 DOI: 10.1002/jcp.28415] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
In recent decades, tissue engineering has been the most contributor for introducing 2D and 3D biocompatible osteoinductive scaffolds as bone implants. Polyvinylidene fluoride (PVDF), due to the unique mechanical strength and piezoelectric properties, can be a good choice for making a bone bioimplant. In the present study, PVDF nanofibers and film were fabricated as 3D and 2D scaffolds, and then, osteogenic differentiation potential of the human induced pluripotent stem cells (iPSCs) was investigated when grown on the scaffolds by evaluating the common osteogenic markers in comparison with tissue culture plate. Biocompatibility of the fabricated scaffolds was confirmed qualitatively and quantitatively by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and scanning electron microscopy assays. Human iPSCs cultured on PVDF nanofibers showed a significantly higher alkaline phosphate activity and calcium content compared with the iPSCs cultured on PVDF film. Osteogenic-related genes and proteins were also expressed in the iPSCs seeded on PVDF nanofibers significantly higher than iPSCs seeded on PVDF film, when investigated by real-time reverse transcription polymerase chain reaction and western blot analysis, respectively. According to the results, the PVDF nanofibrous scaffold showed a greater osteoinductive property compared with the PVDF film and due to the material similarity of the scaffolds, it could be concluded that the 3D structure could lead to better bone differentiation. Taken together, the obtained results demonstrated that human iPSC-seeded PVDF nanofibrous scaffold could be considered as a promising candidate for use in bone tissue engineering applications.
Collapse
Affiliation(s)
- Ali Mirzaei
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Abbas Shapouri Moghadam
- Department of Immunogenetics, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad Foad Abazari
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nejati
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sepehr Torabinejad
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohamad Kaabi
- Department of Biotechnology, University of Tehran, Tehran, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Darvish
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Fatemeh Soleimanifar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ehsan Saburi
- Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Stratakis E. Novel Biomaterials for Tissue Engineering 2018. Int J Mol Sci 2018; 19:ijms19123960. [PMID: 30544860 PMCID: PMC6321414 DOI: 10.3390/ijms19123960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, Heraklion, Crete, GR-70013, Greece.
| |
Collapse
|
30
|
Lembong J, Lerman MJ, Kingsbury TJ, Civin CI, Fisher JP. A Fluidic Culture Platform for Spatially Patterned Cell Growth, Differentiation, and Cocultures. Tissue Eng Part A 2018; 24:1715-1732. [PMID: 29845891 PMCID: PMC6302678 DOI: 10.1089/ten.tea.2018.0020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023] Open
Abstract
Stem cell cultures within perfusion bioreactors, while efficient in obtaining cell numbers, often lack the similarity to native tissues and consequently cell phenotype. We develop a three-dimensional (3D)-printed fluidic chamber for dynamic stem cell culture, with emphasis on control over flow and substrate curvature in a 3D environment, two physiologic features of native tissues. The chamber geometry, consisting of an array of vertical cylindrical pillars, facilitates actin-mediated localization of human mesenchymal stem cells (hMSCs) within ∼200 μm distance from the pillars, enabling spatial patterning of hMSCs and endothelial cells in cocultures and subsequent modulation of calcium signaling between these two essential cell types in the bone marrow microenvironment. Flow-enhanced osteogenic differentiation of hMSCs in growth media imposes spatial variations of alkaline phosphatase expression, which positively correlates with local shear stress. Proliferation of hMSCs is maintained within the chamber, exceeding the cell expansion in conventional static culture. The capability to manipulate cell spatial patterning, differentiation, and 3D tissue formation through geometry and flow demonstrates the culture chamber's relevant chemomechanical cues in stem cell microenvironments, thus providing an easy-to-implement tool to study interactions among substrate curvature, shear stress, and intracellular actin machinery in the tissue-engineered construct.
Collapse
Affiliation(s)
- Josephine Lembong
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
- NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Max J. Lerman
- NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland
- Surface and Trace Chemical Analysis Group, Materials Measurement Lab, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Tami J. Kingsbury
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I. Civin
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
- NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| |
Collapse
|
31
|
Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater 2018; 73:1-20. [PMID: 29673838 DOI: 10.1016/j.actbio.2018.04.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 04/15/2018] [Indexed: 12/14/2022]
Abstract
The process of bone repair and regeneration requires multiple physiological cues including biochemical, electrical and mechanical - that act together to ensure functional recovery. Myriad materials have been explored as bioactive scaffolds to deliver these cues locally to the damage site, amongst these piezoelectric materials have demonstrated significant potential for tissue engineering and regeneration, especially for bone repair. Piezoelectric materials have been widely explored for power generation and harvesting, structural health monitoring, and use in biomedical devices. They have the ability to deform with physiological movements and consequently deliver electrical stimulation to cells or damaged tissue without the need of an external power source. Bone itself is piezoelectric and the charges/potentials it generates in response to mechanical activity are capable of enhancing bone growth. Piezoelectric materials are capable of stimulating the physiological electrical microenvironment, and can play a vital role to stimulate regeneration and repair. This review gives an overview of the association of piezoelectric effect with bone repair, and focuses on state-of-the-art piezoelectric materials (polymers, ceramics and their composites), the fabrication routes to produce piezoelectric scaffolds, and their application in bone repair. Important characteristics of these materials from the perspective of bone tissue engineering are highlighted. Promising upcoming strategies and new piezoelectric materials for this application are presented. STATEMENT OF SIGNIFICANCE Electrical stimulation/electrical microenvironment are known effect the process of bone regeneration by altering the cellular response and are crucial in maintaining tissue functionality. Piezoelectric materials, owing to their capability of generating charges/potentials in response to mechanical deformations, have displayed great potential for fabricating smart stimulatory scaffolds for bone tissue engineering. The growing interest of the scientific community and compelling results of the published research articles has been the motivation of this review article. This article summarizes the significant progress in the field with a focus on the fabrication aspects of piezoelectric materials. The review of both material and cellular aspects on this topic ensures that this paper appeals to both material scientists and tissue engineers.
Collapse
|
32
|
Zhang C, Liu W, Cao C, Zhang F, Tang Q, Ma S, Zhao J, Hu L, Shen Y, Chen L. Modulating Surface Potential by Controlling the β Phase Content in Poly(vinylidene fluoridetrifluoroethylene) Membranes Enhances Bone Regeneration. Adv Healthc Mater 2018; 7:e1701466. [PMID: 29675849 DOI: 10.1002/adhm.201701466] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/07/2018] [Indexed: 12/11/2022]
Abstract
Bioelectricity plays a vital role in living organisms. Although electrical stimulation is introduced in the field of bone regeneration, the concept of a dose-response relationship between surface potential and osteogenesis is not thoroughly studied. To optimize the osteogenic properties of different surface potentials, a flexible piezoelectric membrane, poly(vinylidene fluoridetrifluoroethylene) [P(VDF-TrFE)], is fabricated by annealing treatment to control its β phases. The surface potential and piezoelectric coefficients (d33 ) of the membranes can be regulated by increasing β phase contents. Compared with d33 = 20 pC N-1 (surface potential = -78 mV) and unpolarized membranes, bone marrow mesenchymal stem cells (BM-MSCs) cultured on the d33 = 10 pC N-1 (surface potential = -53 mV) membranes have better osteogenic properties. In vivo, d33 = 10 pC N-1 membranes result in rapid bone regeneration and complete mature bone-structure formation. BM-MSCs on d33 = 10 pC N-1 membranes have the lowest reactive oxygen species level and the highest mitochondrial membrane electric potential, implying that these membranes provide the best electrical qunantity for BM-MSCs' proliferation and energy metabolism. This study establishes an effective method to control the surface potential of P(VDF-Trfe) membranes and highlights the importance of optimized electrical stimulation in bone regeneration.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Wenwen Liu
- Department of Geriatric Dentistry; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - Cen Cao
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Fengyi Zhang
- Department of Geriatric Dentistry; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - Qingming Tang
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Siqin Ma
- Department of Geriatric Dentistry; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - JiaJia Zhao
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Li Hu
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Yang Shen
- State Key Laboratory of New Ceramics and Fine Processing; Department of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Lili Chen
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| |
Collapse
|
33
|
Ribeiro C, Correia DM, Ribeiro S, Fernandes MM, Lanceros-Mendez S. Piezo- and Magnetoelectric Polymers as Biomaterials for Novel Tissue Engineering Strategies. ACTA ACUST UNITED AC 2018. [DOI: 10.1557/adv.2018.223] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|