1
|
Chaddad Z, Kaddouri K, Smouni A, Missbah El Idrissi M, Taha K, Hayah I, Badaoui B. Meta-analysis of Arabidopsis thaliana microarray data in relation to heat stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1250728. [PMID: 38169825 PMCID: PMC10758499 DOI: 10.3389/fpls.2023.1250728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Introduction Increasing global warming has made heat stress a serious threat to crop productivity and global food security in recent years. One of the most promising solutions to address this issue is developing heat-stress-tolerant plants. Hence, a thorough understanding of heat stress response mechanisms, particularly molecular ones, is crucial. Methods Although numerous studies have used microarray expression profiling technology to explore this area, these experiments often face limitations, leading to inconsistent results. To overcome these limitations, a random effects meta-analysis was employed using advanced statistical methods. A meta-analysis of 16 microarray datasets related to heat stress response in Arabidopsis thaliana was conducted. Results The analysis revealed 1,972 significant differentially expressed genes between control and heat-stressed plants (826 over-expressed and 1,146 down-expressed), including 128 differentially expressed transcription factors from different families. The most significantly enriched biological processes, molecular functions, and KEGG pathways for over-expressed genes included heat response, mRNA splicing via spliceosome pathways, unfolded protein binding, and heat shock protein binding. Conversely, for down-expressed genes, the most significantly enriched categories included cell wall organization or biogenesis, protein phosphorylation, transmembrane transporter activity, ion transmembrane transporter, biosynthesis of secondary metabolites, and metabolic pathways. Discussion Through our comprehensive meta-analysis of heat stress transcriptomics, we have identified pivotal genes integral to the heat stress response, offering profound insights into the molecular mechanisms by which plants counteract such stressors. Our findings elucidate that heat stress influences gene expression both at the transcriptional phase and post-transcriptionally, thereby substantially augmenting our comprehension of plant adaptive strategies to heat stress.
Collapse
Affiliation(s)
- Zohra Chaddad
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Kaoutar Kaddouri
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdelaziz Smouni
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Mustapha Missbah El Idrissi
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Kaoutar Taha
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Ichrak Hayah
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Bouabid Badaoui
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| |
Collapse
|
2
|
Genome-Wide Identification of Hsp90 Gene Family in Perennial Ryegrass and Expression Analysis under Various Abiotic Stresses. PLANTS 2021; 10:plants10112509. [PMID: 34834872 PMCID: PMC8622807 DOI: 10.3390/plants10112509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022]
Abstract
The heat shock protein 90 (Hsp90) is a protein produced in plants in response to stress. This study identified and analyzed Hsp90 gene family members in the perennial ryegrass genome. From the results, eight Hsp90 proteins were obtained and their MW, pI and number of amino acid bases varied. The amino acid bases ranged from 526 to 862. The CDS also ranged from 20 (LpHsp0-4) to 1 (LpHsp90-5). The least number of CDS regions was 1 (LpHsp90-5) with 528 kb amino acids, while the highest was 20 (LpHsp90-4) with 862 kb amino acids, which showed diversity among the protein sequences. The phylogenetic tree revealed that Hsp90 genes in Lolium perenne, Arabidopsis thaliana, Oryza sativa and Brachypodium distachyon could be divided into two groups with five paralogous gene pairs and three orthologous gene pairs. The expression analysis after perennial ryegrass was subjected to heat, salt, chromium (Cr), cadmium (Cd), polyethylene glycol (PEG) and abscisic acid (ABA) revealed that LpHsp90 genes were generally highly expressed under heat stress, but only two LpHsp90 proteins were expressed under Cr stresses. Additionally, the expression of the LpHsp90 proteins differed at each time point in all treatments. This study provides the basis for an understanding of the functions of LpHsp90 proteins in abiotic stress studies and in plant breeding.
Collapse
|
3
|
Ali S, Khan N. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol Res 2021; 249:126771. [PMID: 33930840 DOI: 10.1016/j.micres.2021.126771] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/17/2021] [Indexed: 11/24/2022]
Abstract
Drought stress is expected to increase in intensity, frequency, and duration in many parts of the world, with potential negative impacts on plant growth and productivity. The plants have evolved complex physiological and biochemical mechanisms to respond and adjust to water-deficient environments. The physiological and biochemical mechanisms associated with water-stress tolerance and water-use efficiency have been extensively studied. Besides these adaptive and mitigating strategies, the plant growth-promoting rhizobacteria (PGPR) play a significant role in alleviating plant drought stress. These beneficial microorganisms colonize the endo-rhizosphere/rhizosphere of plants and enhance drought tolerance. The common mechanism by which these microorganisms improve drought tolerance included the production of volatile compounds, phytohormones, siderophores, exopolysaccharides, 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase), accumulation of antioxidant, stress-induced metabolites such as osmotic solutes proline, alternation in leaf and root morphology and regulation of the stress-responsive genes. The PGPR is an easy and efficient alternative approach to genetic manipulation and crop enhancement practices because plant breeding and genetic modification are time-consuming and expensive processes for obtaining stress-tolerant varieties. In this review, we will elaborate on PGPR's mechanistic approaches in enhancing the plant stress tolerance to cope with the drought stress.
Collapse
Affiliation(s)
- Shahid Ali
- Plant Epigenetic and Development, Northeast Forestry University, Harbin, 150040, China
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
4
|
Zhang J, Li H, Jiang Y, Li H, Zhang Z, Xu Z, Xu B, Huang B. Natural variation of physiological traits, molecular markers, and chlorophyll catabolic genes associated with heat tolerance in perennial ryegrass accessions. BMC PLANT BIOLOGY 2020; 20:520. [PMID: 33198630 PMCID: PMC7667755 DOI: 10.1186/s12870-020-02695-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/12/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Identification of genetic diversity in heat tolerance and associated traits is of great importance for improving heat tolerance in cool-season grass species. The objectives of this study were to determine genetic variations in heat tolerance associated with phenotypic and physiological traits and to identify molecular markers associated with heat tolerance in a diverse collection of perennial ryegrass (Lolium perenne L.). RESULTS Plants of 98 accessions were subjected to heat stress (35/30 °C, day/night) or optimal growth temperature (25/20 °C) for 24 d in growth chambers. Overall heat tolerance of those accessions was ranked by principal component analysis (PCA) based on eight phenotypic and physiological traits. Among these traits, electrolyte leakage (EL), chlorophyll content (Chl), relative water content (RWC) had high correlation coefficients (- 0.858, 0.769, and 0.764, respectively) with the PCA ranking of heat tolerance. We also found expression levels of four Chl catabolic genes (CCGs), including LpNYC1, LpNOL, LpSGR, and LpPPH, were significant higher in heat sensitive ryegrass accessions then heat tolerant ones under heat stress. Furthermore, 66 pairs of simple sequence repeat (SSR) markers were used to perform association analysis based on the PCA result. The population structure of ryegrass can be grouped into three clusters, and accessions in cluster C were relatively more heat tolerant than those in cluster A and B. SSR markers significantly associated with above-mentioned traits were identified (R2 > 0.05, p < 0.01)., including two pairs of markers located on chromosome 4 in association with Chl content and another four pairs of markers in association with EL. CONCLUSION The result not only identified useful physiological parameters, including EL, Chl content, and RWC, and their associated SSR markers for heat-tolerance breeding of perennial ryegrass, but also highlighted the involvement of Chl catabolism in ryegrass heat tolerance. Such knowledge is of significance for heat-tolerance breeding and heat tolerance mechanisms in perennial ryegrass as well as in other cool-season grass species.
Collapse
Affiliation(s)
- Jing Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 P.R. China
| | - Hui Li
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 P.R. China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907 USA
| | - Huibin Li
- College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, 071001 Hebei China
| | - Zhipeng Zhang
- Shanghai Biotechnology Corporation, Zhangjiang Hi-tech Park, Shanghai, 201203 P.R. China
| | - Zhipeng Xu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 P.R. China
| | - Bin Xu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 P.R. China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901 USA
| |
Collapse
|
5
|
Chen J, Cao F, Li H, Shan S, Tao Z, Lei T, Liu Y, Xiao Z, Zou Y, Huang M, Abou-Elwafa SF. Genotypic variation in the grain photosynthetic contribution to grain filling in rice. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153269. [PMID: 32906075 DOI: 10.1016/j.jplph.2020.153269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Grain filling in rice, a staple cereal crop worldwide, is a critical determinant of grain yield and quality. However, there is little available information on the relationship between grain filling and grain photosynthetic capacity in rice. This study evaluated the genetic diversity among six rice cultivars for their grain filling rate (GR0) and the relationships with the grain chlorophyll contents and grain net photosynthetic rate (PN). Significant variations in GR0, PN, and the chlorophyll contents (a, b, and total) in the grains of the cultivars were observed. Approximately 90 % of the variation in GR0 was explained by the grain PN. General linear model regression revealed significant positive correlations between PN/GR0 and the chlorophyll contents (a, b, and total) in the grains. There was also a significant positive correlation between PN and GR0. These positive correlations suggest a direct positive relationship between the grain filling rate and grain chlorophyll contents, which is indicative of the high photosynthetic capacity of the grains during the early grain filling period. These results suggest that the grain chlorophyll contents could be used as a molecular marker in marker-assisted breeding programs for rice cultivars with high grain net photosynthetic capacity during the early period of grain filling to improve grain yield.
Collapse
Affiliation(s)
- Jiana Chen
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Fangbo Cao
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Hailin Li
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Shuanglü Shan
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zui Tao
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Tao Lei
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yu Liu
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zhengwu Xiao
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yingbin Zou
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Min Huang
- Crop and Environment Research Center, College of Agronomy, Hunan Agricultural University, Changsha, China.
| | | |
Collapse
|
6
|
Nguyen LTT, Sanchez-Mahecha O, Almadrones-Reyes KJ, Redeña-Santos JC, Dagamac NHA. Occurrence of leaf litter inhabiting myxomycetes from lowland forest patches of Northern and Central Vietnam. Trop Ecol 2020. [DOI: 10.1007/s42965-020-00059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractDuring the last years, much of the diversity studies of myxomycetes (plasmodial slime molds) have been concentrated mostly in the Southern region of Vietnam. Moreover, information on leaf litter inhabiting myxomycetes for the country is still in scarcity. Hence, this study aims to assess the occurrence and distribution of leaf litter inhabiting myxomycetes in different forest types in the subtropical northern and coastal tropical monsoon central part of the country. Samples of aerial and ground leaf litter that were used to prepare moist chamber cultures in the laboratory were collected in (1) Ba Vi National Park, Ha Noi, (2) Ho Nui Coc, Thai Nguyen, and (3) coastal forest patches in Da Nang. A total of 24 species belonging to 10 genera, wherein the majority of these myxomycete species appeared abundantly (11 species) is reported for this study. Based on species richness, Ha Noi harbored the highest number of myxomycete species. Leaf litter inhabiting myxomycete communities between aerial and ground substrates shared a high level of similarity based on their species composition and relative abundance. Highest level of similarity of leaf litter inhabiting myxomycete asssemblages is also reported between Ha Noi and Da Nang (CC = 0.78, PS = 0.56). This research study is the first step in understanding the complex myxomycete ecology of leaf inhabiting myxomycetes and would help filling now the large gap in one of the unexplored tropical areas of the world.
Collapse
|
7
|
Cultrera NGM, Sarri V, Lucentini L, Ceccarelli M, Alagna F, Mariotti R, Mousavi S, Ruiz CG, Baldoni L. High Levels of Variation Within Gene Sequences of Olea europaea L. FRONTIERS IN PLANT SCIENCE 2019; 9:1932. [PMID: 30671076 PMCID: PMC6331486 DOI: 10.3389/fpls.2018.01932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/12/2018] [Indexed: 05/08/2023]
Abstract
Gene sequence variation in cultivated olive (Olea europaea L. subsp. europaea var. europaea), the most important oil tree crop of the Mediterranean basin, has been poorly evaluated up to now. A deep sequence analysis of fragments of four genes, OeACP1, OeACP2, OeLUS and OeSUT1, in 90 cultivars, revealed a wide range of polymorphisms along all recognized allele forms and unexpected allele frequencies and genotype combinations. High linkage values among most polymorphisms were recorded within each gene fragment. The great sequence variability corresponded to a low number of alleles and, surprisingly, to a small fraction of genotype combinations. The distribution, frequency, and combination of the different alleles at each locus is possibly due to natural and human pressures, such as selection, ancestrality, or fitness. Phylogenetic analyses of allele sequences showed distant and complex patterns of relationships among cultivated olives, intermixed with other related forms, highlighting an evolutionary connection between olive cultivars and the O. europaea subspecies cuspidata and cerasiformis. This study demonstrates how a detailed and complete sequence analysis of a few gene portions and a thorough genotyping on a representative set of cultivars can clarify important issues related to sequence polymorphisms, reconstructing the phylogeny of alleles, as well as the genotype combinations. The identification of regions representing blocks of recombination could reveal polymorphisms that represent putatively functional markers. Indeed, specific mutations found on the analyzed OeACP1 and OeACP2 fragments seem to be correlated to the fruit weight.
Collapse
Affiliation(s)
- Nicolò G. M. Cultrera
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Vania Sarri
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Livia Lucentini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Marilena Ceccarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Fiammetta Alagna
- ENEA Italian National Agency for New Technologies Energy and Sustainable Economic Development, Trisaia Research Center, Rotondella, Italy
| | - Roberto Mariotti
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Soraya Mousavi
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | | | - Luciana Baldoni
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| |
Collapse
|
8
|
Zhu X, Wang Y, Liu Y, Zhou W, Yan B, Yang J, Shen Y. Overexpression of BcHsfA1 transcription factor from Brassica campestris improved heat tolerance of transgenic tobacco. PLoS One 2018; 13:e0207277. [PMID: 30427910 PMCID: PMC6235349 DOI: 10.1371/journal.pone.0207277] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 10/29/2018] [Indexed: 01/31/2023] Open
Abstract
Heat shock proteins (HSPs) are a type of conserved molecular chaperone. They exist extensively in plants and greatly contribute to their survival under heat stress. The transcriptional regulation factor heat shock factor (HSF) is thought to regulate the expression of Hsps. In this study, a novel gene designated BcHsfA1 was cloned and characterized from Brassica campestris. Bioinformatic analysis implied that BcHsfA1 belongs to the HsfA gene family and is most closely related to HsfA1 from other plants. Constitutive overexpression of BcHsfA1 significantly improved heat tolerance of tobacco seedlings by affecting physiological and biochemical processes. Moreover, the chlorophyll content of transgenic tobacco plants was significantly increased compared with wild type after heat stress, as were the activities of the important enzymatic antioxidants superoxide dismutase and peroxidase. BcHsfA1 overexpression also resulted in decreased malondialdehyde content and comparative electrical conductivity and increased soluble sugar content in transgenic tobacco plants than wild-type plants exposed to heat stress. Furthermore, we identified 11 candidate heat response genes that were significantly up-regulated in the transgenic lines exposed to heat stress. Together, these results suggested that BcHsfA1 is effective in improving heat tolerance of tobacco seedlings, which may be useful in the development of new heat-resisitant B. campestris strains by genetic engineering.
Collapse
Affiliation(s)
- Xiangtao Zhu
- College of Jiyang, Zhejiang A&F University, Zhuji,China
| | - Yang Wang
- School of Agriculture and Food Science, Key Laboratory of Agricultural Products Quality Improvement Technology in Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Yunhui Liu
- School of Agriculture and Food Science, Key Laboratory of Agricultural Products Quality Improvement Technology in Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Wei Zhou
- School of Agriculture and Food Science, Key Laboratory of Agricultural Products Quality Improvement Technology in Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Bin Yan
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai,China
| | - Jian Yang
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yafang Shen
- School of Agriculture and Food Science, Key Laboratory of Agricultural Products Quality Improvement Technology in Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
9
|
Ye W, Zhang W, Liu T, Huang Z, Zhu M, Chen Y, Li H, Li S. De Novo Transcriptome Sequencing of the Deep-Sea-Derived Fungus Dichotomomyces cejpii and Analysis of Gliotoxin Biosynthesis Genes. Int J Mol Sci 2018; 19:E1910. [PMID: 29966253 PMCID: PMC6073683 DOI: 10.3390/ijms19071910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/17/2018] [Accepted: 06/26/2018] [Indexed: 12/03/2022] Open
Abstract
Gliotoxin, produced by fungi, is an epipolythiodioxopiperazine (ETP) toxin with bioactivities such as anti-liver fibrosis, antitumor, antifungus, antivirus, antioxidation, and immunoregulation. Recently, cytotoxic gliotoxins were isolated from a deep-sea-derived fungus, Dichotomomyces cejpii. However, the biosynthetic pathway for gliotoxins in D. cejpii remains unclear. In this study, the transcriptome of D. cejpii was sequenced using an Illumina Hiseq 2000. A total of 19,125 unigenes for D. cejpii were obtained from 9.73 GB of clean reads. Ten genes related to gliotoxin biosynthesis were annotated. The expression levels of gliotoxin-related genes were detected through quantitative real-time polymerase chain reaction (qRT-PCR). The GliG gene, encoding a glutathione S-transferase (DC-GST); GliI, encoding an aminotransferase (DC-AI); and GliO, encoding an aldehyde reductase (DC-AR), were cloned and expressed, purified, and characterized. The results suggested the important roles of DC-GST, DC-AT, and DC-AR in the biosynthesis of gliotoxins. Our study on the genes related to gliotoxin biosynthesis establishes a molecular foundation for the wider application of gliotoxins from D. cejpii in the biomedical industry in the future.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China.
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China.
| | - Taomei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China.
| | - Zilei Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China.
| | - Muzi Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China.
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China.
| | - Haohua Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China.
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China.
| |
Collapse
|