1
|
Ahmadzadeh AM, Pourbagher-Shahri AM, Forouzanfar F. Neuroprotective effects of phytochemicals through autophagy modulation in ischemic stroke. Inflammopharmacology 2025; 33:729-757. [PMID: 39884996 DOI: 10.1007/s10787-024-01606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/14/2024] [Indexed: 02/01/2025]
Abstract
Stroke is a serious life-threatening medical condition. Understanding the underlying molecular mechanisms of this condition is crucial to identifying novel therapeutic targets that can improve patient outcomes. Autophagy is an essential mechanism for the destruction of damaged intracellular components that maintains homeostasis in physiological or pathological conditions. This process is involved in the pathophysiology of stroke. Phytochemicals are bioactive naturally occurring compounds present in plants. This paper reviews the neuroprotective roles of phytochemicals in ischemic stroke through autophagy modulation. It summarizes the interactions of various phytochemicals with key molecular targets of the autophagy pathway in ischemic stroke, including PI3K/Akt/mTOR, Beclin-1, and AMPK. Due to the ability of various phytochemicals to alter autophagic flux, they may provide promising opportunities in the development of new treatments and the improvement of stroke management.
Collapse
Affiliation(s)
- Amir Mahmoud Ahmadzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fatemeh Forouzanfar
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Yao X, Kang J, Li Y, Zhang H, Zhang H, Chen E. Melittin protects against neural cell damage in rats following ischemic stroke. Neuropeptides 2024; 107:102462. [PMID: 39197274 DOI: 10.1016/j.npep.2024.102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/20/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVE In this study, we explored the neuroprotective effect of melittin (MEL) after brain ischemia using a rat model. METHODS The rats underwent middle cerebral artery occlusion (MCAO) for 60 min and were randomly divided into the control group, saline group, and MEL group. Rats in each group were injected intraperitoneally with MEL one day before MCAO until sacrificed. Morris water maze and rotation test were used to assess locomotor function and cognitive ability. The 9.4 Tesla MRI was used to scan and assess the infarct volume of the rat brains. Immunohistochemistry was used to detect the sites of action of MEL on microglia. Western blot and ELISA were used to measure the effect of MEL on the production of pro-inflammatory cytokines. The effect of MEL on neuronal cell apoptosis was observed by flow cytometry. RESULTS Compared with the saline group, MEL treatment significantly increased the density of neurons in the cerebral cortical and reduced the cerebral infarct size after MCAO (33.9 ± 8.8% vs. 15.8 ± 3.9%, P < 0.05). Meanwhile, the time for MEL-treated rats to complete the water maze task on the 11th day after MCAO was significantly shorter than that of rats in the saline group (P < 0.05). MEL treatment also prolonged the rotarod retention time on day 14 after MCAO. Immunohistochemistry analysis showed that MEL inhibited the activation of microglia and suppressed the expression of TNF-α, IL-6, and IL-1β in the brain after ischemia. MEL treatment resulted in a significant decrease in TLR4, MyD88, and NF-κB p65 levels in extracts from the ischemic cerebral cortex. Finally, MEL reduced neuronal apoptosis induced by ischemic stroke (P < 0.05). CONCLUSION MEL treatment promotes neurological function recovery after cerebral ischemia in rats. These effects are potentially mediated through anti-inflammatory and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Xiang Yao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Junlong Kang
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xia Men, China
| | - Yufei Li
- The High School Affiliated to Soochow University, Suzhou, China
| | - Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haoran Zhang
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xia Men, China.
| | - E Chen
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xia Men, China.
| |
Collapse
|
3
|
Owjfard M, Rahimian Z, Karimi F, Borhani-Haghighi A, Mallahzadeh A. A comprehensive review on the neuroprotective potential of resveratrol in ischemic stroke. Heliyon 2024; 10:e34121. [PMID: 39082038 PMCID: PMC11284444 DOI: 10.1016/j.heliyon.2024.e34121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Stroke is the second leading cause of death and the third leading cause of disability worldwide. Globally, 68 % of all strokes are ischemic, with 32 % being hemorrhagic. Ischemic stroke (IS) poses significant challenges globally, necessitating the development of effective therapeutic strategies. IS is among the deadliest illnesses. Major functions are played by neuroimmunity, inflammation, and oxidative stress in the multiple intricate pathways of IS. Secondary brain damage is specifically caused by the early pro-inflammatory activity that follows cerebral ischemia, which is brought on by excessive activation of local microglia and the infiltration of circulating monocytes and macrophages. Resveratrol, a natural polyphenol found in grapes and berries, has shown promise as a neuroprotective agent in IS. This review offers a comprehensive overview of resveratrol's neuroprotective role in IS, focusing on its mechanisms of action and therapeutic potential. Resveratrol exerts neuroprotective effects by activating nuclear factor erythroid 2-related factor 2 (NRF2) and sirtuin 1 (SIRT1) pathways. SIRT1 activation by resveratrol triggers the deacetylation and activation of downstream targets like peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and forkhead box protein O (FOXO), regulating mitochondrial biogenesis, antioxidant defense, and cellular stress response. Consequently, resveratrol promotes cellular survival and inhibits apoptosis in IS. Moreover, resveratrol activates the NRF2 pathway, a key mediator of the cellular antioxidant response. Activation of NRF2 through resveratrol enhances the expression of antioxidant enzymes, like heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), which neutralize reactive oxygen species and mitigate oxidative stress in the ischemic brain. Combined, the activation of SIRT1 and NRF2 pathways contributes to resveratrol's neuroprotective effects by reducing oxidative stress, inflammation, and apoptosis in IS. Preclinical studies demonstrate that resveratrol improves functional outcomes, reduces infarct size, regulates cerebral blood flow and preserves neuronal integrity. Gaining a comprehensive understanding of these mechanisms holds promise for the development of targeted therapeutic interventions aimed at promoting neuronal survival and facilitating functional recovery in IS patients and to aid future studies in this matter.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rahimian
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Arashk Mallahzadeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
López-Morales MA, Castelló-Ruiz M, Burguete MC, Hervás D, Pérez-Pinzón MA, Salom JB. Effect and mechanisms of resveratrol in animal models of ischemic stroke: A systematic review and Bayesian meta-analysis. J Cereb Blood Flow Metab 2023; 43:2013-2028. [PMID: 37802493 PMCID: PMC10925864 DOI: 10.1177/0271678x231206236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/03/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Resveratrol (RSV) holds promise as cerebroprotective treatment in cerebral ischemia. This systematic review aims to assess the effects and mechanisms of RSV in animal models of ischemic stroke. We searched Medline, Embase and Web of Science to identify 75 and 57 eligible rodent studies for qualitative and quantitative syntheses, respectively. Range of evidence met 10 of 13 STAIR criteria. Median (Q1, Q3) quality score was 7 (5, 8) on the CAMARADES 15-item checklist. Bayesian meta-analysis showed SMD estimates (95% CI) favoring RSV: infarct size (-1.72 [-2.03; -1.41]), edema size (-1.61 [-2.24; -0.98]), BBB impairment (-1.85 [-2.54; -1.19]), neurofunctional impairment (-1.60 [-1.92; -1.29]), and motor performance (1.39 [0.64; 2.08]); and less probably neuronal survival (0.63 [-1.40; 2.48]) and apoptosis (-0.96 [-2.87; 1.02]). Species (rat vs mouse) was associated to a larger benefit. Sensitivity analyses confirmed robustness of the estimates. Reduction of oxidative stress, inflammation, and apoptosis underlie these effects. Our results quantitatively state the beneficial effects of RSV on structural and functional outcomes in rodent stroke models, update the evidence on the mechanisms of action, and provide an exhaustive list of targeted signaling pathways. Current evidence highlights the need for conducting further high-quality preclinical research to better inform clinical research.
Collapse
Affiliation(s)
- Mikahela A López-Morales
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María Castelló-Ruiz
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
| | - María C Burguete
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - David Hervás
- Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain
| | - Miguel A Pérez-Pinzón
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Miller School of Medicine, University of Miami, Miami, USA
| | - Juan B Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
5
|
Fang Z, Chen M, Qian J, Wang C, Zhang J. The Bridge Between Ischemic Stroke and Gut Microbes: Short-Chain Fatty Acids. Cell Mol Neurobiol 2023; 43:543-559. [PMID: 35347532 PMCID: PMC11415173 DOI: 10.1007/s10571-022-01209-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/17/2022] [Indexed: 11/03/2022]
Abstract
Short-chain fatty acids (SCFAs) are monocarboxylates produced by the gut microbiota (GM) and result from the interaction between diet and GM. An increasing number of studies about the microbiota-gut-brain axis (MGBA) indicated that SCFAs may be a crucial mediator in the MGBA, but their roles have not been fully clarified. In addition, there are few studies directly exploring the role of SCFAs as a potential regulator of microbial targeted interventions in ischemic stroke, especially for clinical studies. This review summarizes the recent studies concerning the relationship between ischemic stroke and GM and outlines the role of SCFAs as a bridge between them. The potential mechanisms by which SCFAs affect ischemic stroke are described. Finally, the beneficial effects of SFCAs-mediated therapeutic measures such as diet, dietary supplements (e.g., probiotics and prebiotics), fecal microbiota transplantation, and drugs on ischemic brain injury are also discussed.
Collapse
Affiliation(s)
- Zongwei Fang
- Department of Pharmacy, Fujian Medical University Union Hospital, #29 Xinquan Road, Fuzhou, China
| | - Mingrong Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, #29 Xinquan Road, Fuzhou, China
| | - Jiafen Qian
- Department of Pharmacy, Fujian Medical University Union Hospital, #29 Xinquan Road, Fuzhou, China
| | - Chunhua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Medical University Union Hospital, #29 Xinquan Road, Fuzhou, China.
| |
Collapse
|
6
|
Abdelsalam SA, Renu K, Zahra HA, Abdallah BM, Ali EM, Veeraraghavan VP, Sivalingam K, Ronsard L, Ammar RB, Vidya DS, Karuppaiya P, Al-Ramadan SY, Rajendran P. Polyphenols Mediate Neuroprotection in Cerebral Ischemic Stroke-An Update. Nutrients 2023; 15:nu15051107. [PMID: 36904106 PMCID: PMC10005012 DOI: 10.3390/nu15051107] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Stroke is one of the main causes of mortality and disability, and it is due to be included in monetary implications on wellbeing frameworks around the world. Ischemic stroke is caused by interference in cerebral blood flow, leading to a deficit in the supply of oxygen to the affected region. It accounts for nearly 80-85% of all cases of stroke. Oxidative stress has a significant impact on the pathophysiologic cascade in brain damage leading to stroke. In the acute phase, oxidative stress mediates severe toxicity, and it initiates and contributes to late-stage apoptosis and inflammation. Oxidative stress conditions occur when the antioxidant defense in the body is unable to counteract the production and aggregation of reactive oxygen species (ROS). The previous literature has shown that phytochemicals and other natural products not only scavenge oxygen free radicals but also improve the expressions of cellular antioxidant enzymes and molecules. Consequently, these products protect against ROS-mediated cellular injury. This review aims to give an overview of the most relevant data reported in the literature on polyphenolic compounds, namely, gallic acid, resveratrol, quercetin, kaempferol, mangiferin, epigallocatechin, and pinocembrin, in terms of their antioxidant effects and potential protective activity against ischemic stroke.
Collapse
Affiliation(s)
- Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Hamad Abu Zahra
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Kalaiselvi Sivalingam
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Larance Ronsard
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Devanathadesikan Seshadri Vidya
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| | - Palaniyandi Karuppaiya
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - S. Y. Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
- Correspondence: ; Tel.: +966-0135899543
| |
Collapse
|
7
|
Parrella E, Porrini V, Scambi I, Gennari MM, Gussago C, Bankole O, Benarese M, Mariotti R, Pizzi M. Synergistic association of resveratrol and histone deacetylase inhibitors as treatment in amyotrophic lateral sclerosis. Front Pharmacol 2022; 13:1017364. [PMID: 36339574 PMCID: PMC9633661 DOI: 10.3389/fphar.2022.1017364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with motor neuron degeneration, progressive paralysis and finally death. Despite the research efforts, currently there is no cure for ALS. In recent years, multiple epigenetic mechanisms have been associated with neurodegenerative diseases. A pathological role for histone hypoacetylation and the abnormal NF-κB/RelA activation involving deacetylation of lysines, with the exclusion of lysine 310, has been established in ALS. Recent findings indicate that the pathological acetylation state of NF-κB/RelA and histone 3 (H3) occurring in the SOD1(G93A) murine model of ALS can be corrected by the synergistic combination of low doses of the AMP-activated kinase (AMPK)-sirtuin 1 pathway activator resveratrol and the histone deacetylase (HDAC) inhibitors MS-275 (entinostat) or valproate. The combination of the epigenetic drugs, by rescuing RelA and the H3 acetylation state, promotes a beneficial and sexually dimorphic effect on disease onset, survival and motor neurons degeneration. In this mini review, we discuss the potential of the epigenetic combination of resveratrol with HDAC inhibitors in the ALS treatment.
Collapse
Affiliation(s)
- Edoardo Parrella
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vanessa Porrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ilaria Scambi
- Section of Anatomy and Histology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele M. Gennari
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Gussago
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Oluwamolakun Bankole
- Section of Anatomy and Histology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Benarese
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Mariotti
- Section of Anatomy and Histology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
8
|
Chiang MC, Nicol CJB, Lo SS, Hung SW, Wang CJ, Lin CH. Resveratrol Mitigates Oxygen and Glucose Deprivation-Induced Inflammation, NLRP3 Inflammasome, and Oxidative Stress in 3D Neuronal Culture. Int J Mol Sci 2022; 23:ijms231911678. [PMID: 36232980 PMCID: PMC9570351 DOI: 10.3390/ijms231911678] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Oxygen glucose deprivation (OGD) can produce hypoxia-induced neurotoxicity and is a mature in vitro model of hypoxic cell damage. Activated AMP-activated protein kinase (AMPK) regulates a downstream pathway that substantially increases bioenergy production, which may be a key player in physiological energy and has also been shown to play a role in regulating neuroprotective processes. Resveratrol is an effective activator of AMPK, indicating that it may have therapeutic potential as a neuroprotective agent. However, the mechanism by which resveratrol achieves these beneficial effects in SH-SY5Y cells exposed to OGD-induced inflammation and oxidative stress in a 3D gelatin scaffold remains unclear. Therefore, in the present study, we investigated the effect of resveratrol in 3D gelatin scaffold cells to understand its neuroprotective effects on NF-κB signaling, NLRP3 inflammasome, and oxidative stress under OGD conditions. Here, we show that resveratrol improves the expression levels of cell viability, inflammatory cytokines (TNF-α, IL-1β, and IL-18), NF-κB signaling, and NLRP3 inflammasome, that OGD increases. In addition, resveratrol rescued oxidative stress, nuclear factor-erythroid 2 related factor 2 (Nrf2), and Nrf2 downstream antioxidant target genes (e.g., SOD, Gpx GSH, catalase, and HO-1). Treatment with resveratrol can significantly normalize OGD-induced changes in SH-SY5Y cell inflammation, oxidative stress, and oxidative defense gene expression; however, these resveratrol protective effects are affected by AMPK antagonists (Compounds C) blocking. These findings improve our understanding of the mechanism of the AMPK-dependent protective effect of resveratrol under 3D OGD-induced inflammation and oxidative stress-mediated cerebral ischemic stroke conditions.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei 242304, Taiwan
| | - Christopher J. B. Nicol
- Departments of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
- Departments of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
- Cancer Biology and Genetics Division, Cancer Research Institute, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Shy-Shyong Lo
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei 242304, Taiwan
| | - Shiang-Wei Hung
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei 242304, Taiwan
| | - Chieh-Ju Wang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei 242304, Taiwan
| | - Chien-Hung Lin
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Pediatrics, Zhongxing Branch, Taipei City Hospital, Taipei 10341, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- College of Science and Engineering, Fu Jen Catholic University, New Taipei 242304, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Micro- and Nanosized Carriers for Nose-to-Brain Drug Delivery in Neurodegenerative Disorders. Biomedicines 2022; 10:biomedicines10071706. [PMID: 35885011 PMCID: PMC9313014 DOI: 10.3390/biomedicines10071706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders (NDs) have become a serious health problem worldwide due to the rapid increase in the number of people that are affected and the constantly aging population. Among all NDs, Alzheimer’s and Parkinson’s disease are the most common, and many efforts have been made in the development of effective and reliable therapeutic strategies. The intranasal route of drug administration offers numerous advantages, such as bypassing the blood–brain barrier and providing a direct entrance to the brain through the olfactory and trigeminal neurons. The present review summarizes the available information on recent advances in micro- and nanoscale nose-to-brain drug-delivery systems as a novel strategy for the treatment of Alzheimer’s and Parkinson’s disease. Specifically, polymer- and lipid-base micro- and nanoparticles have been studied as a feasible approach to increase the brain bioavailability of certain drugs. Furthermore, nanocomposites are discussed as a suitable formulation for administration into the nasal cavity.
Collapse
|
10
|
Wang X, Zhao DX, Kan JM, Wang J, Chen X, Yu ZQ, Zhao WS, Han MX, Li J. Uncovering the Mechanism of Chuanhong Stroke Capsule in the Treatment of Stroke Based on Network Pharmacology and Molecular Docking Technology. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221075988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background and Objective: Chuanhong Stroke Capsule (CHSC) has good clinical efficacy in the treatment of cerebral ischemic stroke (CIS) patients. This study aimed to investigate the pharmacological mechanisms of CHSC in treating CIS using bioinformatics. Methods: The active compounds of CHSC were screened by searching Traditional Chinese Medicine System Pharmacological Database and Analysis Platform (TCMSP), Swiss absorption, distribution, metabolism, and excretion (ADME), PubMed, and China National Knowledge Infrastructure (CNKI) databases. Besides, the potential targets of active compounds were obtained through TCMSP and Swiss Target Prediction databases. CIS targets were obtained from GeneCards, Online Mendelian Inheritance in Man (OMIM), and Gene Expression Omnibus (GEO) databases. CHSC-CIS intersection targets were identified by matching the two, and prediction and analysis of biological functions and pathways of intersection targets was used the enrichments of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, protein–protein interaction (PPI) network, herb-target, and compound-target network of CHSC-CIS were constructed by Cytoscape3.7.2, and herb-compound-pathway network was drawn with Sankey diagram. Finally, AutoDock was used for molecular docking verification, and identifying the active binding sites in target proteins. Results: A total of 293 putative targets were obtained from 62 active compounds in CHSC. Among them, 209 targets were related to CIS. PPI network showed that the top 16 key targets were RELA, JUN, FOS, MAPK1, AKT1, etc. KEGG pathway enrichment analysis demonstrated that CHSC was enriched in PI3K-Akt, MAPK, and TNF signaling pathways. In addition, GO enrichment analysis showed the significant enrichment of CHSC in the following categories: kinase binding, cellular response to nitrogen compound, etc. Network topology analysis showed that quercetin, luteolin, kaempferol, etc., were the key components in CHSC. Finally, molecular docking studies suggested that the active components in CHSC had a good binding ability with the key targets. Conclusions: Our study demonstrated that CHSC exerted the effect in treating CIS by the characteristics of multi-target and multi-pathway, thereby providing a theoretical basis for further study of the effective components and mechanism of CHSC in the treatment of CIS.
Collapse
Affiliation(s)
- Xu Wang
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
- Jilin University, Changchun, Jilin, China
| | - De-xi Zhao
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Jun-Ming Kan
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Jun Wang
- Jilin University, Changchun, Jilin, China
| | - Xin Chen
- Jilin University, Changchun, Jilin, China
| | - Zi-Qiao Yu
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | | | - Mo-Xuan Han
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Jinhua Li
- Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Landucci E, Pellegrini-Giampietro DE, Facchinetti F. Experimental Models for Testing the Efficacy of Pharmacological Treatments for Neonatal Hypoxic-Ischemic Encephalopathy. Biomedicines 2022; 10:937. [PMID: 35625674 PMCID: PMC9138693 DOI: 10.3390/biomedicines10050937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Representing an important cause of long-term disability, term neonatal hypoxic-ischemic encephalopathy (HIE) urgently needs further research aimed at repurposing existing drug as well as developing new therapeutics. Since various experimental in vitro and in vivo models of HIE have been developed with distinct characteristics, it becomes important to select the appropriate preclinical screening cascade for testing the efficacy of novel pharmacological treatments. As therapeutic hypothermia is already a routine therapy for neonatal encephalopathy, it is essential that hypothermia be administered to the experimental model selected to allow translational testing of novel or repurposed drugs on top of the standard of care. Moreover, a translational approach requires that therapeutic interventions must be initiated after the induction of the insult, and the time window for intervention should be evaluated to translate to real world clinical practice. Hippocampal organotypic slice cultures, in particular, are an invaluable intermediate between simpler cell lines and in vivo models, as they largely maintain structural complexity of the original tissue and can be subjected to transient oxygen-glucose deprivation (OGD) and subsequent reoxygenation to simulate ischemic neuronal injury and reperfusion. Progressing to in vivo models, generally, rodent (mouse and rat) models could offer more flexibility and be more cost-effective for testing the efficacy of pharmacological agents with a dose-response approach. Large animal models, including piglets, sheep, and non-human primates, may be utilized as a third step for more focused and accurate translational studies, including also pharmacokinetic and safety pharmacology assessments. Thus, a preclinical proof of concept of efficacy of an emerging pharmacological treatment should be obtained firstly in vitro, including organotypic models, and, subsequently, in at least two different animal models, also in combination with hypothermia, before initiating clinical trials.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy;
| | | | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy;
| |
Collapse
|
12
|
Beneficial and Dimorphic Response to Combined HDAC Inhibitor Valproate and AMPK/SIRT1 Pathway Activator Resveratrol in the Treatment of ALS Mice. Int J Mol Sci 2022; 23:ijms23031047. [PMID: 35162978 PMCID: PMC8835218 DOI: 10.3390/ijms23031047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disorder. There is no cure and current treatments fail to slow the progression of the disease. Epigenetic modulation in the acetylation state of NF-kB RelA and the histone 3 (H3) protein, involved in the development of neurodegeneration, is a drugable target for the class-I histone deacetylases (HDAC) inhibitors, entinostat or valproate, and the AMP-activated kinase (AMPK)-sirtuin 1 pathway activator, resveratrol. In this study, we demonstrated that the combination of valproate and resveratrol can restore the normal acetylation state of RelA in the SOD1(G93A) murine model of ALS, in order to obtain the neuroprotective form of NF-kB. We also investigated the sexually dimorphic development of the disease, as well as the sex-sensibility to the treatment administered. We showed that the combined drugs, which rescued AMPK activation, RelA and the histone 3 acetylation state, reduced the motor deficit and the disease pathology associated with motor neuron loss and microglial reactivity, Brain-Derived Neurotrophic Factor (BDNF) and B-cell lymphoma-extra large (Bcl-xL) level decline. Specifically, vehicle-administered males showed earlier onset and slower progression of the disease when compared to females. The treatment, administered at 50 days of life, postponed the time of onset in the male by 22 days, but not in a significant way in females. Nevertheless, in females, the drugs significantly reduced symptom severity of the later phase of the disease and prolonged the mice’s survival. Only minor beneficial effects were produced in the latter stage in males. Overall, this study shows a beneficial and sexually dimorphic response to valproate and resveratrol treatment in ALS mice.
Collapse
|
13
|
Liu J, He J, Huang Y, Hu Z. Resveratrol has an Overall Neuroprotective Role in Ischemic Stroke: A Meta-Analysis in Rodents. Front Pharmacol 2022; 12:795409. [PMID: 34987407 PMCID: PMC8721173 DOI: 10.3389/fphar.2021.795409] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Resveratrol, a natural polyphenolic phytoalexin, is broadly presented in dietary sources. Previous research has suggested its potential neuroprotective effects on ischemic stroke animal models. However, these results have been disputable. Here, we conducted a meta-analysis to comprehensively evaluate the effect of resveratrol treatment in ischemic stroke rodent models. Objective: To comprehensively evaluate the effect of resveratrol treatment in ischemic stroke rodent models. Methods: A literature search of the databases Pubmed, Embase, and Web of science identified 564 studies that were subjected to pre-defined inclusion criteria. 54 studies were included and analyzed using a random-effects model to calculate the standardized mean difference (SMD) with corresponding confidence interval (CI). Results: As compared with controls, resveratrol significantly decreased infarct volume (SMD −4.34; 95% CI −4.98 to −3.69; p < 0.001) and the neurobehavioral score (SMD −2.26; 95% CI −2.86 to −1.67; p < 0.001) in rodents with ischemic stroke. Quality assessment was performed using a 10-item checklist. Studies quality scores ranged from 3 to 8, with a mean value of 5.94. In the stratified analysis, a significant decrease of infarct volume and the neurobehavioral score was achieved in resveratrol sub-groups with a dosage of 20–50 mg/kg. In the meta-regression analysis, the impact of the delivery route on an outcome is the possible source of high heterogeneity. Conclusion: Generally, resveratrol treatment presented neuroprotective effects in ischemic stroke models. Furthermore, this study can direct future preclinical and clinical trials, with important implications for human health.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Mohammadi H, Sariaslani P, Asgharzadeh S, Ghanbari A, Hezarkhani L, Shahbazi F, Mirzaeei S. Does resveratrol enhance recovery from acute ischemic stroke? A randomized, double-blinded, placebo-controlled trial. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2022. [DOI: 10.4103/jrptps.jrptps_95_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Kuang X, Chen S, Lao J, Chen Y, Jia D, Tu L, Ma L, Liao X, Zhao W, Li Q. HDAC9 in the Injury of Vascular Endothelial Cell Mediated by P38 MAPK Pathway. J Interferon Cytokine Res 2021; 41:439-449. [PMID: 34935488 DOI: 10.1089/jir.2021.0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ischemic stroke caused by atherosclerosis (AS) poses a serious threat to human life expectancy and quality. With the development of genome-wide association studies, the association of histone deacetylase 9 (HDAC9) expression of atheromatous plaques with ischemic stroke in large arteries has been revealed, but the molecular mechanisms behind this phenomenon have not been elucidated. In this study, we explored the effect of HDAC9 on the P38 mitogen activated protein kinase (P38 MAPK), a classic cellular inflammation-related pathway, by knocking down HDAC9 in vascular endothelial cells with short hairpin RNA (shRNA) and found that HDAC9 may mediate oxidized low density lipoprotein (ox-LDL)-induced inflammatory injury in vascular endothelial cells by regulating the phosphorylation level of P38 MAPK to lead to AS. It can be seen that HDAC9 may be a target to control the formation of atherosclerotic plaques. In follow-up experiments, it was verified that sodium valproate (SVA), as a HDAC9 inhibitor, can indeed antagonize the inflammatory damage of vascular endothelial cells, as well as SB203580, which is a P38 MAPK inhibitor. It proves that SVA may be a potential drug for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xi Kuang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Shuang Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Jitong Lao
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Yongmin Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Dandan Jia
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Linzhi Tu
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Lin Ma
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Xiaoping Liao
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Wenjie Zhao
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Qifu Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| |
Collapse
|
16
|
Hypoxia Tolerant Species: The Wisdom of Nature Translated into Targets for Stroke Therapy. Int J Mol Sci 2021; 22:ijms222011131. [PMID: 34681788 PMCID: PMC8537001 DOI: 10.3390/ijms222011131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Human neurons rapidly die after ischemia and current therapies for stroke management are limited to restoration of blood flow to prevent further brain damage. Thrombolytics and mechanical thrombectomy are the available reperfusion treatments, but most of the patients remain untreated. Neuroprotective therapies focused on treating the pathogenic cascade of the disease have widely failed. However, many animal species demonstrate that neurons can survive the lack of oxygen for extended periods of time. Here, we reviewed the physiological and molecular pathways inherent to tolerant species that have been described to contribute to hypoxia tolerance. Among them, Foxo3 and Eif5A were reported to mediate anoxic survival in Drosophila and Caenorhabditis elegans, respectively, and those results were confirmed in experimental models of stroke. In humans however, the multiple mechanisms involved in brain cell death after a stroke causes translation difficulties to arise making necessary a timely and coordinated control of the pathological changes. We propose here that, if we were able to plagiarize such natural hypoxia tolerance through drugs combined in a pharmacological cocktail it would open new therapeutic opportunities for stroke and likely, for other hypoxic conditions.
Collapse
|
17
|
Sharma HS, Muresanu DF, Ozkizilcik A, Sahib S, Tian ZR, Lafuente JV, Castellani RJ, Nozari A, Feng L, Buzoianu AD, Menon PK, Patnaik R, Wiklund L, Sharma A. Superior antioxidant and anti-ischemic neuroprotective effects of cerebrolysin in heat stroke following intoxication of engineered metal Ag and Cu nanoparticles: A comparative biochemical and physiological study with other stroke therapies. PROGRESS IN BRAIN RESEARCH 2021; 266:301-348. [PMID: 34689862 DOI: 10.1016/bs.pbr.2021.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Military personnel are often exposed to high environmental heat associated with industrial or ambient abundance of nanoparticles (NPs) affecting brain function. We have shown that engineered metal NPs Ag and Cu exacerbate hyperthermia induced brain pathology. Thus, exploration of novel drug therapy is needed for effective neuroprotection in heat stroke intoxicated with NPs. In this investigation neuroprotective effects of cerebrolysin, a balanced composition of several neurotrophic factors and active peptides fragments exhibiting powerful antioxidant and anti-ischemic effects was examined in heat stroke after NPs intoxication. In addition, its efficacy is compared to currently used drugs in post-stroke therapies in clinics. Thus, levertiracetam, pregabalin, topiramat and valproate were compared in standard doses with cerebrolysin in heat stroke intoxicated with Cu or Ag NPs (50-60nm, 50mg/kg, i.p./day for 7 days). Rats were subjected to 4h heat stress (HS) in a biological oxygen demand incubator at 38°C (Relative Humidity 45-47%; Wind velocity 22.4-25.6cm/s) that resulted in profound increase in oxidants Luminol, Lucigenin, Malondialdehyde and Myeloperoxidase, and a marked decrease in antioxidant Glutathione. At this time severe reductions in the cerebral blood flow (CBF) was seen together with increased blood-brain barrier (BBB) breakdown and brain edema formation. These pathophysiological responses were exacerbated in NPs treated heat-stressed animals. Pretreatment with cerebrolysin (2.5mL/kg, i.v.) once daily for 3 days significantly attenuated the oxidative stress, BBB breakdown and brain edema and improved CBF in the heat stressed group. The other drugs were least effective on brain pathology following heat stroke. However, in NPs treated heat stressed animals 5mL/kg conventional cerebrolysin and 2.5mL/kg nanowired cerebrolysin is needed to attenuate oxidative stress, BBB breakdown, brain edema and to improve CBF. Interestingly, the other drugs even in higher doses used are unable to alter brain pathologies in NPs and heat stress. These observations are the first to demonstrate that cerebrolysin is the most superior antioxidant and anti-ischemic drug in NPs exposed heat stroke, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Asya Ozkizilcik
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
18
|
Sarkaki A, Rashidi M, Ranjbaran M, Asareh Zadegan Dezfuli A, Shabaninejad Z, Behzad E, Adelipour M. Therapeutic Effects of Resveratrol on Ischemia-Reperfusion Injury in the Nervous System. Neurochem Res 2021; 46:3085-3102. [PMID: 34365594 DOI: 10.1007/s11064-021-03412-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/07/2023]
Abstract
Resveratrol is a phenol compound produced by some plants in response to pathogens, infection, or physical injury. It is well-known that resveratrol has antioxidant and protective roles in damages potentially caused by cancer or other serious disorders. Thus, it is considered as a candidate agent for the prevention and treatment of human diseases. Evidence has confirmed other bioactive impacts of resveratrol, including cardioprotective, anti-tumorigenic, anti-inflammatory, phytoestrogenic, and neuroprotective effects. Ischemia-reperfusion (IR) can result in various disorders, comprising myocardial infarction, stroke, and peripheral vascular disease, which may continue to induce debilitating conditions and even mortality. In virtue of chronic ischemia or hypoxia, cells switch to anaerobic metabolism, giving rise to some dysfunctions in mitochondria. As the result of lactate accumulation, adenosine triphosphate levels and pH decline in cells. This condition leads cells to apoptosis, necrosis, and autophagy. However, restoring oxygen level upon reperfusion after ischemia by producing reactive oxygen species is an outcome of mitochondrial dysfunction. Considering the neuroprotective effect of resveratrol and neuronal injury that comes from IR, we focused on the mechanism(s) involved in IR injury in the nervous system and also on the functions of resveratrol in the protection, inhibition, and treatment of this injury.
Collapse
Affiliation(s)
- Alireza Sarkaki
- Department of Physiology, School of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Ranjbaran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aram Asareh Zadegan Dezfuli
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ebrahim Behzad
- Neurology Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Adelipour
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
19
|
Fang YC, Hsieh JY, Vidyanti AN, Yang CH, Jan JS, Chang KW, Hu CJ, Tu YK. HDACi protects against vascular cognitive impairment from CCH injury via induction of BDNF-related AMPA receptor activation. J Cell Mol Med 2021; 25:7418-7425. [PMID: 34216182 PMCID: PMC8335662 DOI: 10.1111/jcmm.16770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
We previously showed a hydroxamic acid‐based histone deacetylase inhibitor (HDACi), compound 13, provides neuroprotection against chronic cerebral hypoperfusion (CCH) both in vitro under oxygen‐glucose deprivation (OGD) conditions and in vivo under bilateral common carotid artery occlusion (BCCAO) conditions. Intriguingly, the protective effect of this HDACi is via H3K14 or H4K5 acetylation–mediated differential BDNF isoform activation. BDNF is involved in cell proliferation and differentiation in development, synaptic plasticity and in learning and memory related with receptors or synaptic proteins. B6 mice underwent BCCAO and were randomized into 4 groups; a sham without BCCAO (sham), BCCAO mice injected with DMSO (DMSO), mice injected with HDACi‐compound 13 (compound 13) and mice injected with suberoylanilide hydroxamic acid (SAHA). The cortex and hippocampus of mice were harvested at 3 months after BCCAO, and levels of BDNF, AMPA receptor and dopamine receptors (D1, D2 and D3) were studied using Western blotting analysis or immunohistochemistry. We found that the AMPA receptor plays a key role in the molecular mechanism of this process by modulating HDAC. This protective effect of HDACi may be through BDNF; therefore, activation of this downstream signalling molecule, for example by AMPA receptors, could be a therapeutic target or intervention applied under CCH conditions.
Collapse
Affiliation(s)
- Yao-Ching Fang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Jia-Yu Hsieh
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Amelia Nur Vidyanti
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Wei Chang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.,Laboratory Animal Center, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yong-Kwang Tu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
20
|
Yao X, Yang W, Ren Z, Zhang H, Shi D, Li Y, Yu Z, Guo Q, Yang G, Gu Y, Zhao H, Ren K. Neuroprotective and Angiogenesis Effects of Levetiracetam Following Ischemic Stroke in Rats. Front Pharmacol 2021; 12:638209. [PMID: 34054520 PMCID: PMC8161206 DOI: 10.3389/fphar.2021.638209] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/27/2021] [Indexed: 01/02/2023] Open
Abstract
Objective: The present study explored whether levetiracetam (LEV) could protect against experimental brain ischemia and enhance angiogenesis in rats, and investigated the potential mechanisms in vivo and in vitro. Methods: The middle cerebral artery was occluded for 60 min to induce middle cerebral artery occlusion (MCAO). The Morris water maze was used to measure cognitive ability. The rotation test was used to assess locomotor function. T2-weighted MRI was used to assess infarct volume. The neuronal cells in the cortex area were stained with cresyl purple. The anti-inflammatory effects of LEV on microglia were observed by immunohistochemistry. Enzyme-linked immunosorbent assays (ELISA) were used to measure the production of pro-inflammatory cytokines. Western blotting was used to detect the levels of heat shock protein 70 (HSP70), vascular endothelial growth factor (VEGF), and hypoxia-inducible factor-1α (HIF-1α) in extracts from the ischemic cortex. Flow cytometry was used to observe the effect of LEV on neuronal cell apoptosis. Results: LEV treatment significantly increased the density of the surviving neurons in the cerebral cortex and reduced the infarct size (17.8 ± 3.3% vs. 12.9 ± 1.4%, p < 0.01) after MCAO. Concurrently, the time required to reach the platform for LEV-treated rats was shorter than that in the saline group on day 11 after MCAO (p < 0.01). LEV treatment prolonged the rotarod retention time on day 14 after MCAO (84.5 ± 6.7 s vs. 59.1 ± 6.2 s on day 14 compared with the saline-treated groups, p < 0.01). It also suppressed the activation of microglia and inhibited TNF-α and Il-1β in the ischemic brain (135.6 ± 5.2 pg/ml vs. 255.3 ± 12.5 pg/ml, 18.5 ± 1.3 pg/ml vs. 38.9 ± 2.3 pg/ml on day 14 compared with the saline-treated groups, p < 0.01). LEV treatment resulted in a significant increase in HIF-1α, VEGF, and HSP70 levels in extracts from the ischemic cerebral cortex. At the same time, LEV reduced neuronal cell cytotoxicity and apoptosis induced by an ischemic stroke (p < 0.01). Conclusion: LEV treatment promoted angiogenesis and functional recovery after cerebral ischemia in rats. These effects seem to be mediated through anti-inflammatory and antiapoptotic activities, as well as inducing the expression of HSP70, VEGF, and HIF-1α.
Collapse
Affiliation(s)
- Xiang Yao
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Wenping Yang
- Division of Neurology, Department of Geriatrics, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhendong Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yanfei Li
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Ziyang Yu
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Qiu Guo
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Guangwei Yang
- Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| | - Yingjiang Gu
- Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| | - Hairong Zhao
- School of Medicine, Xiamen University, Xiamen, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Parrella E, Gussago C, Porrini V, Benarese M, Pizzi M. From Preclinical Stroke Models to Humans: Polyphenols in the Prevention and Treatment of Stroke. Nutrients 2020; 13:nu13010085. [PMID: 33383852 PMCID: PMC7823436 DOI: 10.3390/nu13010085] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are an important family of molecules of vegetal origin present in many medicinal and edible plants, which represent important alimentary sources in the human diet. Polyphenols are known for their beneficial health effects and have been investigated for their potential protective role against various pathologies, including cancer, brain dysfunctions, cardiovascular diseases and stroke. The prevention of stroke promoted by polyphenols relies mainly on their effect on cardio- and cerebrovascular systems. However, a growing body of evidence from preclinical models of stroke points out a neuroprotective role of these molecules. Notably, in many preclinical studies, the polyphenolic compounds were effective also when administered after the stroke onset, suggesting their possible use in promoting recovery of patients suffering from stroke. Here, we review the effects of the major polyphenols in cellular and in vivo models of both ischemic and hemorrhagic stroke in immature and adult brains. The results from human studies are also reported.
Collapse
|
22
|
Chiou HY, Bai CH, Lien LM, Hu CJ, Jeng JS, Tang SC, Lin HJ, Hsieh YC. Interactive Effects of a Combination of the HDAC3 and HDAC9 Genes with Diabetes Mellitus on the Risk of Ischemic Stroke. Thromb Haemost 2020; 121:396-404. [PMID: 32961570 DOI: 10.1055/s-0040-1717116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIM Previous studies indicated that the HDAC3 and HDAC9 genes play critical roles in atherosclerosis and ischemic stroke (IS). The purpose of this study was to investigate the association of combined single-nucleotide polymorphisms in the HDAC3 and HDAC9 genes with the susceptibility to IS. METHODS A case-control study was conducted including 863 IS patients and 863 age- and gender-matched healthy participants. A polygenic score was developed to estimate the contribution of a combination of the HDAC3 and HDAC9 genes to the risk of IS. The interactive effects of traditional risk factors of stroke and the polygenic score on the risk of IS were explored. Additionally, the association between the polygenic score and the progression of atherosclerosis, a potential risk factor of IS, was examined in our healthy controls. RESULTS Subjects with a higher polygenic score had an increased risk of IS (odds ratio: 1.83; 95% confidence interval: 1.38-2.43) after adjusting for covariates compared with individuals with a lower polygenic score. An interactive effect of diabetes mellitus and the polygenic score on the risk of IS was observed. A significant positive correlation between the polygenic score and a change in the plaque score (standardized β = 0.42, p = 0.0235) in healthy controls with diabetes mellitus was found. CONCLUSION Our results suggested that the combination of the HDAC3 and HDAC9 genes with a history of diabetes mellitus could exacerbate the deterioration of atherosclerosis, thereby increasing the risk of IS. Further studies are warranted to explore our results in other populations.
Collapse
Affiliation(s)
- Hung-Yi Chiou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.,Master Program in Applied Molecular Epidemiology, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chyi-Huey Bai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Li-Ming Lien
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chaur-Jong Hu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Stroke Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Jiann-Shing Jeng
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Chun Tang
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Huey-Juan Lin
- Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yi-Chen Hsieh
- Master Program in Applied Molecular Epidemiology, College of Public Health, Taipei Medical University, Taipei, Taiwan.,PhD Program of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
The neuroprotective action of 3,3'-diindolylmethane against ischemia involves an inhibition of apoptosis and autophagy that depends on HDAC and AhR/CYP1A1 but not ERα/CYP19A1 signaling. Apoptosis 2020; 24:435-452. [PMID: 30778709 PMCID: PMC6522467 DOI: 10.1007/s10495-019-01522-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There are no studies examining the effects of 3,3′-diindolylmethane (DIM) in neuronal cells subjected to ischemia. Little is also known about the roles of apoptosis and autophagy as well as AhR and ERα signaling and HDACs in DIM action. We demonstrated for the first time the strong neuroprotective capacity of DIM in mouse primary hippocampal cell cultures exposed to ischemia at early and later stages of neuronal development. The protective effects of DIM were mediated via inhibition of ischemia-induced apoptosis and autophagy that was accompanied by a decrease in AhR/CYP1A1 signaling and an increase in HDAC activity. DIM decreased the levels of pro-apoptotic factors, i.e., Fas, Caspase-3, and p38 mitogen-activated protein kinase (MAPK). DIM also reduced the protein levels of autophagy-related Beclin-1 (BECN1) and microtubule-associated proteins 1A/1B light chain (LC3), partially reversed the ischemia-induced decrease in Nucleoporin 62 (NUP62) and inhibited autophagosome formation. In addition, DIM completely reversed the ischemia-induced decrease in histone deacetylase (HDAC) activity in hippocampal neurons. Although DIM inhibited AhR/CYP1A1 signaling, it did not influence the protein expression levels of ERα and ERα-regulated CYP19A1 which are known to be controlled by AhR. This study demonstrated for the first time, that the neuroprotective action of 3,3′-diindolylmethane against ischemia involves an inhibition of apoptosis and autophagy and depends on AhR/CYP1A1 signaling and HDAC activity, thus creating the possibility of developing new therapeutic strategies that target neuronal degeneration at specific molecular levels.
Collapse
|
24
|
Yan Y, Yang H, Xie Y, Ding Y, Kong D, Yu H. Research Progress on Alzheimer's Disease and Resveratrol. Neurochem Res 2020; 45:989-1006. [PMID: 32162143 DOI: 10.1007/s11064-020-03007-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), a common irreversible neurodegenerative disease characterized by amyloid-β plaques, neurofibrillary tangles, and changes in tau phosphorylation, is accompanied by memory loss and symptoms of cognitive dysfunction. Increases in disease incidence due to the ageing of the population have placed a great burden on society. To date, the mechanism of AD and the identities of adequate drugs for AD prevention and treatment have eluded the medical community. It has been confirmed that phytochemicals have certain neuroprotective effects against AD. For example, some progress has been made in research on the use of resveratrol, a natural polyphenolic phytochemical, for the prevention and treatment of AD in recent years. Elucidation of the pathogenesis of AD will create a solid foundation for drug treatment. In addition, research on resveratrol, including its mechanism of action, the roles of signalling pathways and its therapeutic targets, will provide new ideas for AD treatment, which is of great significance. In this review, we discuss the possible relationships between AD and the following factors: synapses, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs), silent information regulator 1 (SIRT1), and estrogens. We also discuss the findings of previous studies regarding these relationships in the context of AD treatment and further summarize research progress related to resveratrol treatment.
Collapse
Affiliation(s)
- Yan Yan
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Huihuang Yang
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuxun Xie
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuanlin Ding
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Danli Kong
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| | - Haibing Yu
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
25
|
Leo A, De Caro C, Nesci V, Tallarico M, De Sarro G, Russo E, Citraro R. Modeling poststroke epilepsy and preclinical development of drugs for poststroke epilepsy. Epilepsy Behav 2020; 104:106472. [PMID: 31427267 DOI: 10.1016/j.yebeh.2019.106472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Stroke is a severe clinical issue for global public health, representing the third leading cause of death and a major cause of disability in developed countries. Progresses in the pharmacological treatment of the acute stroke have given rise to a significant decrease in its mortality rate. However, as a result, there has been an increasing number of stroke survivors living with disability worldwide. Poststroke epilepsy (PSE) is a common clinical complication following stroke. Seizures can arise in close temporal association with stroke damage and/or after a variably longer interval. Overall, PSE have a good prognosis; in fact, its responding rate to antiepileptic drugs (AEDs) is higher than other types of epilepsy. However, regarding pharmacological treatment, some issues are still unresolved. To this aim, a deeper understanding of mechanisms underlying the transformation of infarcted tissue into an epileptic focus or better from a nonepileptic brain to an epileptic brain is also mandatory for PSE. However, studying epileptogenesis in patients with PSE clearly has several limitations and difficulties; therefore, modeling PSE is crucial. Until now, different experimental models have been used to study the etiopathology of cerebrovascular stroke with or without infarction, but few studies focused on poststroke epileptogenesis and PSE. In this review, we show a brief overview on the features emerging from preclinical research into experimental PSE, which could affect the discovery of biomarkers and therapy strategies for poststroke epileptogenesis. This article is part of the Special Issue "Seizures & Stroke".
Collapse
Affiliation(s)
- Antonio Leo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| | - Carmen De Caro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| | - Valentina Nesci
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| | - Martina Tallarico
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy.
| | - Rita Citraro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| |
Collapse
|
26
|
Parrella E, Porrini V, Benarese M, Pizzi M. The Role of Mast Cells in Stroke. Cells 2019; 8:cells8050437. [PMID: 31083342 PMCID: PMC6562540 DOI: 10.3390/cells8050437] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Mast cells (MCs) are densely granulated perivascular resident cells of hematopoietic origin. Through the release of preformed mediators stored in their granules and newly synthesized molecules, they are able to initiate, modulate, and prolong the immune response upon activation. Their presence in the central nervous system (CNS) has been documented for more than a century. Over the years, MCs have been associated with various neuroinflammatory conditions of CNS, including stroke. They can exacerbate CNS damage in models of ischemic and hemorrhagic stroke by amplifying the inflammatory responses and promoting brain–blood barrier disruption, brain edema, extravasation, and hemorrhage. Here, we review the role of these peculiar cells in the pathophysiology of stroke, in both immature and adult brain. Further, we discuss the role of MCs as potential targets for the treatment of stroke and the compounds potentially active as MCs modulators.
Collapse
Affiliation(s)
- Edoardo Parrella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Benarese
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
27
|
Renaud J, Martinoli MG. Considerations for the Use of Polyphenols as Therapies in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:E1883. [PMID: 30995776 PMCID: PMC6514961 DOI: 10.3390/ijms20081883] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/04/2019] [Accepted: 04/12/2019] [Indexed: 12/29/2022] Open
Abstract
Over the last two decades, the increase in the incidence of neurodegenerative diseases due to the increasingly ageing population has resulted in a major social and economic burden. At present, a large body of literature supports the potential use of functional nutrients, which exhibit potential neuroprotective properties to mitigate these diseases. Among the most studied dietary molecules, polyphenols stand out because of their multiple and often overlapping reported modes of action. However, ambiguity still exists as to the significance of their influence on human health. This review discusses the characteristics and functions of polyphenols that shape their potential therapeutic actions in neurodegenerative diseases while the less-explored gaps in knowledge of these nutrients will also be highlighted.
Collapse
Affiliation(s)
- Justine Renaud
- Cellular Neurobiology, Department of Medical Biology, Université du Québec, Trois-Rivières, Québec, QC G9A5H7, Canada.
| | - Maria-Grazia Martinoli
- Cellular Neurobiology, Department of Medical Biology, Université du Québec, Trois-Rivières, Québec, QC G9A5H7, Canada.
- Department of Psychiatry & Neuroscience, Université Laval and CHU Research Center, Ste-Foy, QC G1V 4G2, Canada.
| |
Collapse
|
28
|
Faggi L, Porrini V, Lanzillotta A, Benarese M, Mota M, Tsoukalas D, Parrella E, Pizzi M. A Polyphenol-Enriched Supplement Exerts Potent Epigenetic-Protective Activity in a Cell-Based Model of Brain Ischemia. Nutrients 2019; 11:nu11020345. [PMID: 30736313 PMCID: PMC6412333 DOI: 10.3390/nu11020345] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/27/2019] [Accepted: 02/03/2019] [Indexed: 12/12/2022] Open
Abstract
Bioactive components, due in part to their epigenetic properties, are beneficial for preventing several human diseases including cerebrovascular pathologies. However, no clear demonstration supports the idea that these molecules still conserve their epigenetic effects when acting at very low concentrations reproducing the brain levels achieved after oral administration of a micronutrient supplement. In the present study, we used a cellular model of brain ischemia to investigate the neuroprotective and epigenetic activities of a commercially available micronutrient mixture (polyphenol-enriched micronutrient mixture, PMM) enriched in polyphenols ((-)-epigallocatechin-3-gallate, quercetin, resveratrol), α-lipoic acid, vitamins, amino acids and other micronutrients. Mimicking the suggested dietary supplementation, primary cultures of mouse cortical neurons were pre-treated with PMM and then subjected to oxygen glucose deprivation (OGD). Pre-treatment with PMM amounts to provide bioactive components in the medium in the nanomolar range potently prevented neuronal cell death. The protection was associated with the deacetylation of the lysin 310 (K310) on NF-κB/RelA as well as the deacetylation of H3 histones at the promoter of Bim, a pro-apoptotic target of ac-RelA(K310) in brain ischemia. Epigenetic regulators known to shape the acetylation state of ac-RelA(K310) moiety are the histone acetyl transferase CBP/p300 and the class III histone deacetylase sirtuin-1. In view of that evidence, the protection we here report unveils the efficacy of bioactive components endowed with either inhibitory activity on CBP/p300 or stimulating activity on the AMP-activated protein kinase–sirtuin 1 pathway. Our results support a potential synergistic effect of micronutrients in the PMM, suggesting that the intake of a polyphenol-based micronutrient mixture can reduce neuronal vulnerability to stressful conditions at concentrations compatible with the predicted brain levels reached by a single constituent after an oral dose of PMM.
Collapse
Affiliation(s)
- Lara Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Annamaria Lanzillotta
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Benarese
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Mariana Mota
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Dimitris Tsoukalas
- European Institute of Nutritional Medicine, E.I.Nu.M., Viale Liegi 44, 00198 Rome, Italy.
| | - Edoardo Parrella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|