1
|
Zhang L, Pozsgai É, Song Y, Macharia J, Alfatafta H, Zheng J, Li Z, Liu H, Kiss I. The relationship between single nucleotide polymorphisms and skin cancer susceptibility: A systematic review and network meta-analysis. Front Oncol 2023; 13:1094309. [PMID: 36874118 PMCID: PMC9975575 DOI: 10.3389/fonc.2023.1094309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Background Single nucleotide polymorphisms (SNPs) interfere with the function of certain genes and thus may influence the probability of skin cancer. The correlation between SNPs and skin cancer (SC) lacks statistical power, however. Therefore, the purpose of this study was to identify the gene polymorphisms involved in skin cancer susceptibility using network meta-analysis and to determine the relationship between SNPs and SC risk. Methods PubMed, Embase, and Web of Science were searched for articles including "SNP" and different types of SC as keywords between January 2005 and May 2022. The Newcastle-Ottawa Scale was used to assess bias judgments. The odds ratio (ORs) and their 95% confidence intervals (CIs) were determined to estimate heterogeneity within and between studies. Meta-analysis and network meta-analysis were carried out to identify the SNPs associated with SC. The P-score of each SNP was compared to obtain the rank of probability. Subgroup analyses were performed by cancer type. Results A total of 275 SNPs from 59 studies were included in the study. Two subgroup SNP networks using the allele model and dominant model were analyzed. The alternative alleles of rs2228570 (FokI) and rs13181 (ERCC2) were the first-ranking SNPs in both subgroups one and two of the allele model, respectively. The homozygous dominant genotype and heterozygous genotype of rs475007 in subgroup one and the homozygous recessive genotype of rs238406 in subgroup two were most likely to be associated with skin cancer based on the dominant model. Conclusions According to the allele model, SNPs FokI rs2228570 and ERCC2 rs13181 and, according to the dominant model, SNPs MMP1 rs475007 and ERCC2 rs238406 are closely linked to SC risk.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Health Science, Doctoral School of Health Science, University of Pécs, Pécs, Hungary
| | - Éva Pozsgai
- Department of Public Health Medicine, Doctoral School of Clinical Medicine, University of Pécs Medical School, Pécs, Hungary
| | - Yongan Song
- Department of Public Health Medicine, Doctoral School of Clinical Medicine, University of Pécs Medical School, Pécs, Hungary
| | - John Macharia
- Department of Health Science, Doctoral School of Health Science, University of Pécs, Pécs, Hungary
| | - Huda Alfatafta
- Department of Health Science, Doctoral School of Health Science, University of Pécs, Pécs, Hungary
| | - Jia Zheng
- Department of Clinical Epidemiology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhaoyi Li
- Faculty of Engineering and Information Technology, University of Pécs, Pécs, Hungary
| | - Hongbo Liu
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, China
| | - István Kiss
- Department of Public Health Medicine, Doctoral School of Clinical Medicine, University of Pécs Medical School, Pécs, Hungary
| |
Collapse
|
2
|
Transient and Stable Overexpression of Extracellular Superoxide Dismutase Is Positively Associated with the Myogenic Function of Human Skeletal Muscle-Derived Stem/Progenitor Cells. Antioxidants (Basel) 2020; 9:antiox9090817. [PMID: 32887483 PMCID: PMC7555722 DOI: 10.3390/antiox9090817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/17/2022] Open
Abstract
In the present study, the genetic modification of human skeletal muscle-derived stem/progenitor cells (SkMDS/PCs) was investigated to identify the optimal protocol for myogenic cell preparation for use in post-infarction heart therapy. We used two types of modifications: GFP-transfection (using electroporation) and SOD3 transduction (using a lentiviral vector). SkMDS/PCs were cultured under different in vitro conditions, including standard (21% oxygen) and hypoxic (3% oxygen), the latter of which corresponded to the prevailing conditions in the post-infarction heart. Transfection/transduction efficacy, skeletal myogenic cell marker expression (CD56), cellular senescence, and apoptosis, as well as the expression of antioxidant (SOD1, SOD2, and SOD3), anti-aging (SIRT1 and FOXO), anti-apoptotic (BCL2), and myogenic (MyoD and MyoG) genes, were evaluated. The percentage of GFP-positive SkMDS/PCs was determined as an indicator of the efficacy of transfection, which reached 55%, while transduction showed better efficiency, reaching approximately 85% as estimated by fluorescence microscopy. The CD56-positive SkMDS/PCs were present in approximately 77% of the tested cells after transient transfection and approximately 96% after transduction. Under standard in vitro culture conditions, the ability of the differentiated, transfected SkMDS/PCs to form myotubes was greater than that of the wild type (WT) cell population (p < 0.001), while the cells transduced with the SOD3 gene exhibited an increase in cell fusion under both standard (p < 0.05) and hypoxic conditions (p < 0.001). In transduced SkMDS/PCs, we observed a positive influence of SOD3 overexpression on cell ageing and apoptosis. We observed an increase in the percentage of young cells under standard (p < 0.05) and hypoxic (p < 0.001) in vitro culture conditions, with a notable decrease in the percentage of senescent and advanced senescent cells in the SOD3-overexpressing cell population detected compared to that observed for the untransduced muscle-derived cells. A lower percentage of apoptotic cells was observed for transduced SkMDS/PCs than that for WT cells under hypoxic in vitro culture conditions. In transiently transfected SkMDS/PCs, we observed significantly higher gene expression levels of SOD2 (almost 40-fold) (p < 0.001) and FOXO (p < 0.05) (approximately 3-fold) under both normoxic and hypoxic culture conditions and of BCL2 under hypoxia compared to those observed in untreated cells (WT). In addition, myogenic genes showed a significant increase in MyoD (almost 18-fold) expression under standard culture conditions (p < 0.0001) and decreased MyoG expression (approximately 2-fold) after transfection (p < 0.05) compared with that detected in the WT skeletal muscle-derived cell control. Taken together, these results demonstrate that SOD3-tranduced skeletal muscle-derived cells may have potential for use in the regenerative treatment of the post-infarction heart.
Collapse
|
3
|
Kim YJ, Kim K, Lee KH, Kim J, Jung W. Immune expression signatures as candidate prognostic biomarkers of age and gender survival differences in cutaneous melanoma. Sci Rep 2020; 10:12322. [PMID: 32703987 PMCID: PMC7378165 DOI: 10.1038/s41598-020-69082-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
This study aims to investigate the difference of gene expression and its prognostic significance in younger women with melanoma. Significantly upregulated genes in tumors compared to normal skin tissues were extracted. Among these genes, genes that significantly affected survival according to expression level were selected, and pathway annotation was performed. The patient proportion with high/low expression of the most significant pathways was analyzed in each age (< 50, 50-59, ≥ 60) and gender group. Survival was analyzed according to age, gender, and pathways. The most significant pathways that were upregulated in tumor tissues and also had impacts on survival were programmed cell death protein [PD]-1, interferon-γ, and interferon-α/β pathways. In women, the immune signaling rate in patients was higher than men and decreased with age (63.5%, 53.8%, and 47.6%). In men, the decreasing tendency was minimal (47.6%, 50.0%, and 41.6%). In patients aged < 60 years, women had a favorable survival rate than men (p = 0.055). Except for patients with high immune signaling, no survival difference was observed between genders (p = 0.6). In conclusion, younger female melanoma patients had high immune signaling than older women and men. This immune signaling improved survival of the younger female patients.
Collapse
Affiliation(s)
- Yi-Jun Kim
- Department of Radiation Oncology, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
- Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, 07985, Republic of Korea
| | - Kyubo Kim
- Department of Radiation Oncology, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea.
| | - Kye Hwa Lee
- Biomedical Informatics Department, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jiyoung Kim
- Department of Radiation Oncology, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
| | - Wonguen Jung
- Department of Radiation Oncology, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
| |
Collapse
|
4
|
Gu N, Dai W, Liu H, Ge J, Luo S, Cho E, Amos CI, Lee JE, Li X, Nan H, Yuan H, Wei Q. Genetic variants in TKT and DERA in the nicotinamide adenine dinucleotide phosphate pathway predict melanoma survival. Eur J Cancer 2020; 136:84-94. [PMID: 32659474 DOI: 10.1016/j.ejca.2020.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cutaneous melanoma (CM) is the most lethal type of skin cancers. Nicotinamide adenine dinucleotide phosphate (NADPH) plays an important role in anabolic reactions and tumorigenesis, but many genes are involved in the NADPH system. METHODS We used 10,912 single-nucleotide polymorphisms (SNPs) (2018 genotyped and 8894 imputed) in 134 NADPH-related genes from a genome-wide association study (GWAS) of 858 patients from The University of Texas MD Anderson Cancer Center (MDACC) in a single-locus analysis to predict CM survival. We then replicated the results in another GWAS data set of 409 patients from the Nurses' Health Study (NHS) and the Health Professionals Follow-up Study (HPFS). RESULTS There were 95 of 858 (11.1%) and 48 of 409 (11.7%) patients who died of CM, respectively. In multivariable Cox regression analyses, we identified two independent SNPs (TKT rs9864057 G > A and deoxyribose phosphate aldolase (DERA) rs12297652 A > G) to be significantly associated with CM-specific survival [hazards ratio (HR) of 1.52, 95% confidence interval (CI) = 1.18-1.96, P = 1.06 × 10-3 and 1.51 (1.19-1.91, 5.89 × 10-4)] in the meta-analysis, respectively. Furthermore, an increasing number of risk genotypes of these two SNPs was associated with a higher risk of death in the MDACC, the NHS/HPFS, and their combined data sets (Ptrend<0.001, = 0.004 and <0.001, respectively). In the expression quantitative trait loci analysis, TKT rs9864057 G > A and DERA rs12297652 A > G were also significantly associated with higher mRNA expression levels in sun-exposed lower-leg skin (P = 0.043 and 0.006, respectively). CONCLUSIONS These results suggest that these two potentially functional SNPs may be valuable prognostic biomarkers for CM survival, but larger studies are needed to validate these findings.
Collapse
Affiliation(s)
- Ning Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA; Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wei Dai
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA; Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA; Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jie Ge
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA; Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Eunyoung Cho
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA; Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02912, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xin Li
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Hongmei Nan
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA; Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
5
|
Obrador E, Salvador R, López-Blanch R, Jihad-Jebbar A, Alcácer J, Benlloch M, Pellicer JA, Estrela JM. Melanoma in the liver: Oxidative stress and the mechanisms of metastatic cell survival. Semin Cancer Biol 2020; 71:109-121. [PMID: 32428715 DOI: 10.1016/j.semcancer.2020.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 12/16/2022]
Abstract
Metastatic melanoma is a fatal disease with a rapid systemic dissemination. The most frequent target sites are the liver, bone, and brain. Melanoma metastases represent a heterogeneous cell population, which associates with genomic instability and resistance to therapy. Interaction of melanoma cells with the hepatic sinusoidal endothelium initiates a signaling cascade involving cytokines, growth factors, bioactive lipids, and reactive oxygen and nitrogen species produced by the cancer cell, the endothelium, and also by different immune cells. Endothelial cell-derived NO and H2O2 and the action of immune cells cause the death of most melanoma cells that reach the hepatic microvascularization. Surviving melanoma cells attached to the endothelium of pre-capillary arterioles or sinusoids may follow two mechanisms of extravasation: a) migration through vessel fenestrae or b) intravascular proliferation followed by vessel rupture and microinflammation. Invading melanoma cells first form micrometastases within the normal lobular hepatic architecture via a mechanism regulated by cross-talk with the stroma and multiple microenvironment-related molecular signals. In this review special emphasis is placed on neuroendocrine (systemic) mechanisms as potential promoters of liver metastatic growth. Growing metastatic cells undergo functional and metabolic changes that increase their capacity to withstand oxidative/nitrosative stress, which favors their survival. This adaptive process also involves upregulation of Bcl-2-related antideath mechanisms, which seems to lead to the generation of more resistant cell subclones.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - Rosario Salvador
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | | | - Ali Jihad-Jebbar
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - Javier Alcácer
- Pathology Laboratory, Quirón Hospital, 46010, Valencia, Spain
| | - María Benlloch
- Department of Health & Functional Valorization, San Vicente Martir Catholic University, 46001, Valencia, Spain
| | - José A Pellicer
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - José M Estrela
- Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
6
|
Yuan TA, Yourk V, Farhat A, Guo KL, Garcia A, Meyskens FL, Liu-Smith F. A Possible Link of Genetic Variations in ER/IGF1R Pathway and Risk of Melanoma. Int J Mol Sci 2020; 21:ijms21051776. [PMID: 32150843 PMCID: PMC7084478 DOI: 10.3390/ijms21051776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanism of gender disparity in cutaneous melanoma incidence remains unclear. Steroid hormones including estrogens have long been implicated in the course of melanoma, but the conclusion is controversial. Estrogen receptors (ERs) and insulin-like growth factor 1 receptor (IGF1R) show extensive crosstalk in cancer development, but how the ER/IGF1R network impacts melanoma is currently unclear. Here we studied the melanoma associations of selected SNPs from the ER/IGF1R network. Part of the International Genes, Environment, and Melanoma (GEM) cohort was used as a discovery set, and the Gene Environment Association Studies Initiative (GENEVA) dataset served as a validation set. Based on the associations with other malignant disease conditions, thirteen single nucleotide polymorphism (SNP) variants in ESR1, ESR2, IGF1, and IGF1R were selected for candidate gene association analyses. The rs1520220 in IGF1 and rs2229765 in IGF1R variants were significantly associated with melanoma risk in the GEM dataset after Benjamini-Hochberg multiple comparison correction, although they were not validated in the GENEVA set. The discrepancy may be caused by the multiple melanoma characteristics in the GEM patients. Further analysis of gender disparity was carried out for IGF1 and IGF1R SNPs in the GEM dataset. The GG phenotype in IGF1 rs1520220 (recessive model) presented an increased risk of melanoma (OR = 8.11, 95% CI: 2.20, 52.5, p = 0.006) in men but a significant opposite effect in women (OR = 0.15, 95% CI: 0.018, 0.86, p = 0.045). The AA genotype in IGF1R rs2229765 (recessive model) showed a significant protective effect in men (OR = 0.24, 95% CI: 0.07, 0.64, p = 0.008) and no effect in women. Results from the current study are warranted for further validation.
Collapse
Affiliation(s)
- Tze-An Yuan
- Program in Public Health, University of California Irvine, Irvine, CA 92697, USA; (T.-A.Y.); (F.L.M.)
| | - Vandy Yourk
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA;
| | - Ali Farhat
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA;
| | - Katherine L. Guo
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90024, USA;
| | - Angela Garcia
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - Frank L. Meyskens
- Program in Public Health, University of California Irvine, Irvine, CA 92697, USA; (T.-A.Y.); (F.L.M.)
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
- Chao Family Comprehensive Cancer Center, Irvine, CA 92697, USA
| | - Feng Liu-Smith
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
- Chao Family Comprehensive Cancer Center, Irvine, CA 92697, USA
- Department of Epidemiology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Correspondence: ; Tel.: +1-949-824-2778
| |
Collapse
|
7
|
Emerging Perspective: Role of Increased ROS and Redox Imbalance in Skin Carcinogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8127362. [PMID: 31636809 PMCID: PMC6766104 DOI: 10.1155/2019/8127362] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
Abstract
Strategies to battle malignant tumors have always been a dynamic research endeavour. Although various vehicles (e.g., chemotherapeutic therapy, radiotherapy, surgical resection, etc.) are used for skin cancer management, they mostly remain unsatisfactory due to the complex mechanism of carcinogenesis. Increasing evidence indicates that redox imbalance and aberrant reactive oxygen species (ROS) are closely implicated in the oncogenesis of skin cancer. When ROS production goes beyond their clearance, excessive or accumulated ROS could disrupt redox balance, induce oxidative stress, and activate the altered ROS signals. These would damage cellular DNA, proteins, and lipids, further leading to gene mutation, cell hyperproliferation, and fatal lesions in cells that contribute to carcinogenesis in the skin. It has been known that ROS-mediated skin carcinogenesis involves multiple ways, including modulating related signaling pathways, changing cell metabolism, and causing the instability of the genome and epigenome. Nevertheless, the exact role of ROS in skin cancer has not been thoroughly elucidated. In spite of ROS inducing skin carcinogenesis, toxic-dose ROS could trigger cell death/apoptosis and, therefore, may be an efficient therapeutic tool to battle skin cancer. Considering the dual role of ROS in the carcinogenesis and treatment of skin cancer, it would be essential to clarify the relationship between ROS and skin cancer. Thus, in this review, we get the related data together to seek the connection between ROS and skin carcinogenesis. Besides, strategies basing on ROS to fight skin cancer are discussed.
Collapse
|
8
|
Saad MN, Mabrouk MS, Eldeib AM, Shaker OG. Studying the effects of haplotype partitioning methods on the RA-associated genomic results from the North American Rheumatoid Arthritis Consortium (NARAC) dataset. J Adv Res 2019; 18:113-126. [PMID: 30891314 PMCID: PMC6403413 DOI: 10.1016/j.jare.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Haplotype blocks methods plays a complementary role to the single-SNP approaches. CIT, FGT, SSLD, and single-SNP methods should be applied to discover the markers. Selection of the method used for the association has an impact on the biomarkers. SSLD method detected more significant SNPs than CIT, FGT, and single-SNP methods. The 383 SNPs discovered by all methods are significantly associated with RA.
The human genome, which includes thousands of genes, represents a big data challenge. Rheumatoid arthritis (RA) is a complex autoimmune disease with a genetic basis. Many single-nucleotide polymorphism (SNP) association methods partition a genome into haplotype blocks. The aim of this genome wide association study (GWAS) was to select the most appropriate haplotype block partitioning method for the North American Rheumatoid Arthritis Consortium (NARAC) dataset. The methods used for the NARAC dataset were the individual SNP approach and the following haplotype block methods: the four-gamete test (FGT), confidence interval test (CIT), and solid spine of linkage disequilibrium (SSLD). The measured parameters that reflect the strength of the association between the biomarker and RA were the P-value after Bonferroni correction and other parameters used to compare the output of each haplotype block method. This work presents a comparison among the individual SNP approach and the three haplotype block methods to select the method that can detect all the significant SNPs when applied alone. The GWAS results from the NARAC dataset obtained with the different methods are presented. The individual SNP, CIT, FGT, and SSLD methods detected 541, 1516, 1551, and 1831 RA-associated SNPs respectively, and the individual SNP, FGT, CIT, and SSLD methods detected 65, 156, 159, and 450 significant SNPs respectively, that were not detected by the other methods. Three hundred eighty-three SNPs were discovered by the haplotype block methods and the individual SNP approach, while 1021 SNPs were discovered by all three haplotype block methods. The 383 SNPs detected by all the methods are promising candidates for studying RA susceptibility. A hybrid technique involving all four methods should be applied to detect the significant SNPs associated with RA in the NARAC dataset, but the SSLD method may be preferred because of its advantages when only one method was used.
Collapse
Affiliation(s)
- Mohamed N Saad
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
| | - Mai S Mabrouk
- Biomedical Engineering Department, Faculty of Engineering, Misr University for Science and Technology, 6th of October City, Egypt
| | - Ayman M Eldeib
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Basu AK, Nohmi T. Chemically-Induced DNA Damage, Mutagenesis, and Cancer. Int J Mol Sci 2018; 19:E1767. [PMID: 29899224 PMCID: PMC6032311 DOI: 10.3390/ijms19061767] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Takehiko Nohmi
- Biological Safety Research Center, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan.
| |
Collapse
|