1
|
Wu S, Su Y, Wang Y, Wang J, Xu D, Liu Y, Yang K, Gao J, Cui J, Bai W. Region-specific response of central microglial cells to sciatic nerve demyelination through sensory and motor pathways. Histol Histopathol 2024; 39:771-781. [PMID: 38051019 DOI: 10.14670/hh-18-681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Peripheral nerve injury can cause changes in microglial cells on the spinal dorsal and ventral horns. This region-specific response implies that central microglial cells could be activated through both sensory and motor pathways. In order to further determine how peripheral nerve injury activates central microglial cells through neural pathways, the sciatic nerve was selected as the target for neural tract tracing and demyelination. Firstly, we used cholera toxin subunit B (CTB) to map the central sensory and motor territories of the sciatic nerve. Secondly, we applied lysophosphatidylcholine to establish the model of sciatic nerve demyelination and examined the distribution of activated microglial cells via immunofluorescence with ionized calcium-binding adapter molecule 1. It was shown that CTB labeling included the transganglionically labeled sensory afferents and retrogradely labeled somata of motor neurons along the sensory and motor pathways of the sciatic nerve ipsilateral to the injection, in which sensory afferents terminated on the gracile nucleus, Clarke's nucleus, and spinal dorsal horn, while motor neurons located on the spinal ventral horn. Consistently, after sciatic nerve demyelination, the activated microglial cells were observed in the same territories as CTB-labeling, showing shortened processes and enlarged cell bodies. These results support the idea that central microglia might be activated by signals from the demyelinated sciatic nerve through both sensory and motor pathways.
Collapse
Affiliation(s)
- Shuang Wu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Yuxin Su
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Yuqing Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Dongsheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Yihan Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Kunwu Yang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Junhong Gao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Jingjing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, PR China.
| | - Wanzhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, PR China.
| |
Collapse
|
2
|
Martínez AL, Brea J, López D, Cosme N, Barro M, Monroy X, Burgueño J, Merlos M, Loza MI. In vitro models for neuropathic pain phenotypic screening in brain therapeutics. Pharmacol Res 2024; 202:107111. [PMID: 38382648 DOI: 10.1016/j.phrs.2024.107111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
The discovery of brain therapeutics faces a significant challenge due to the low translatability of preclinical results into clinical success. To address this gap, several efforts have been made to obtain more translatable neuronal models for phenotypic screening. These models allow the selection of active compounds without predetermined knowledge of drug targets. In this review, we present an overview of various existing models within the field, examining their strengths and limitations, particularly in the context of neuropathic pain research. We illustrate the usefulness of these models through a comparative review in three crucial areas: i) the development of novel phenotypic screening strategies specifically for neuropathic pain, ii) the validation of the models for both primary and secondary screening assays, and iii) the use of the models in target deconvolution processes.
Collapse
Affiliation(s)
- A L Martínez
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - J Brea
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - D López
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - N Cosme
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - M Barro
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - X Monroy
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - J Burgueño
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - M Merlos
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - M I Loza
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Iwahashi T, Suzuki K, Tanaka H, Matsuoka H, Nishimoto S, Hirai Y, Kasuya T, Shimada T, Yoshimura Y, Oka K, Murase T, Okada S. Neurotropin® accelerates peripheral nerve regeneration in a rat sciatic nerve crush injury model. J Orthop Sci 2024; 29:653-659. [PMID: 36858838 DOI: 10.1016/j.jos.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Peripheral nerve injuries are common and serious conditions. The effect of Neurotropin® (NTP), a nonprotein extract derived from the inflamed skin of rabbits inoculated with vaccinia virus, on peripheral nerve regeneration has not been fully elucidated. However, it has analgesic properties via the activation of descending pain inhibitory systems. Therefore, the current study aimed to determine the effects of NTP on peripheral nerve regeneration. METHODS We examined axonal outgrowth of dorsal root ganglion (DRG) neurons using immunocytochemistry in vitro. In addition, nerve regeneration was evaluated functionally, electrophysiologically, and histologically in a rat sciatic nerve crush injury model in vivo. Furthermore, gene expression of neurotrophic factors in the injured sciatic nerves and DRGs was evaluated. RESULTS In the dorsal root ganglion neurons in vitro, NTP promoted axonal outgrowth at a concentration of 10 mNU/mL. Moreover, the systemic administration of NTP contributed to the recovery of motor and sensory function at 2 weeks, and of sensory function, nerve conduction velocity, terminal latency, and axon-remyelination 4 weeks after sciatic nerve injury. In the gene expression assessment, insulin-like growth factor 1 and vascular endothelial growth factor expressions were increased in the injured sciatic nerve 2 days postoperatively. CONCLUSIONS Therefore, NTP might be effective in not only treating chronic pain but also promoting peripheral nerve regeneration after injury.
Collapse
Affiliation(s)
- Toru Iwahashi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Koji Suzuki
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Hyogo, 660-8511, Japan
| | - Hiroyuki Tanaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan; Department of Sports Medical Science, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Hozo Matsuoka
- Department of Orthopaedic Surgery, Itami City Hospital, Hyogo, 664-8540, Japan
| | - Shunsuke Nishimoto
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Hyogo, 660-8511, Japan
| | - Yukio Hirai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Taisuke Kasuya
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Toshiki Shimada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yoshiaki Yoshimura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Kunihiro Oka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Tsuyoshi Murase
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Ghanbari A, Ghasemi S, Zarbakhsh S. Exercise induced myelin protein zero improvement in neuropathic pain rats. Somatosens Mot Res 2023; 40:141-146. [PMID: 36630644 DOI: 10.1080/08990220.2022.2158800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE Aerobic exercise including swimming plays a suitable role in improving somatosensory injuries. Neuropathic pain is a debilitating condition that occurs following injury or diseases of somatosensory system. In the present study, we tried to investigate the effect of exercise on myelin protein zero of sciatic nerve injured rats. MATERIALS AND METHODS Forty male rats (180-220 g) were divided into five groups (intact, sham, sham + exercise, neuropathy, and neuropathy + exercise). Right Sciatic nerve of anesthetized rats was exposed and loosely ligated (four ligations with 1 mm apart) using catgut chromic sutures to induce neuropathy. After 3 days of recovery, swimming exercise began (20 min/day/5 days a week/4 weeks). Mechanical allodynia and thermal hyperalgesia were detected using Von Frey filaments and plantar test, respectively. Sciatic nerve at the place of injury was dissected out to measure the myelin protein zero by western blot analysis. In the intact and sham groups, sciatic nerve removed at the place similar to injured group. RESULTS We found that neuropathy significantly (p < 0.05) reduced paw withdrawal mechanical and thermal thresholds and swimming exercise significantly (p < 0.05) increased paw withdrawal mechanical and thermal thresholds compared to the neuropathy group. Moreover, we found that MPZ level significantly (p < 0.01) decreased in neuropathy group against that in sham group, and exercise prominently (p < 0.05) reversed MPZ level towards control level. CONCLUSIONS Swimming exercise improves myelin protein zero level in neuropathic rats along with attenuating neuropathic pain. This is a promising approach in improving neuropathological disorders including Charcot-Marie-Tooth and Dejerine-Sottas disease.
Collapse
Affiliation(s)
- Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sahar Ghasemi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cell Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of anatomical sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
5
|
Lysophosphatidylcholine: Potential Target for the Treatment of Chronic Pain. Int J Mol Sci 2022; 23:ijms23158274. [PMID: 35955410 PMCID: PMC9368269 DOI: 10.3390/ijms23158274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/26/2022] Open
Abstract
The bioactive lipid lysophosphatidylcholine (LPC), a major phospholipid component of oxidized low-density lipoprotein (Ox-LDL), originates from the cleavage of phosphatidylcholine by phospholipase A2 (PLA2) and is catabolized to other substances by different enzymatic pathways. LPC exerts pleiotropic effects mediated by its receptors, G protein-coupled signaling receptors, Toll-like receptors, and ion channels to activate several second messengers. Lysophosphatidylcholine (LPC) is increasingly considered a key marker/factor positively in pathological states, especially inflammation and atherosclerosis development. Current studies have indicated that the injury of nervous tissues promotes oxidative stress and lipid peroxidation, as well as excessive accumulation of LPC, enhancing the membrane hyperexcitability to induce chronic pain, which may be recognized as one of the hallmarks of chronic pain. However, findings from lipidomic studies of LPC have been lacking in the context of chronic pain. In this review, we focus in some detail on LPC sources, biochemical pathways, and the signal-transduction system. Moreover, we outline the detection methods of LPC for accurate analysis of each individual LPC species and reveal the pathophysiological implication of LPC in chronic pain, which makes it an interesting target for biomarkers and the development of medicine regarding chronic pain.
Collapse
|
6
|
Siwei Q, Ma N, Wang W, Chen S, Wu Q, Li Y, Yang Z. Construction and effect evaluation of different sciatic nerve injury models in rats. Transl Neurosci 2022; 13:38-51. [PMID: 35350657 PMCID: PMC8919826 DOI: 10.1515/tnsci-2022-0214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022] Open
Abstract
Background The most commonly used experimental model for preclinical studies on peripheral nerve regeneration is the sciatic nerve injury model. However, no experimental study has been conducted to evaluate acute injury modes at the same time. Objective We conducted sciatic nerve transverse injury, clamp injury, keep epineurium and axon cutting injury, and chemical damage injury in rats to evaluate the degree of damage of the four different injury modes and the degree of self-repair after injury. Methods The sciatic nerve transverse injury model, clamp injury model, keep epineurium injury model, and chemical damage injury model were constructed. Then, the sciatic nerve function was assessed using clinical evaluation methods and electrophysiological examinations, as well as immunofluorescence and axonal counting assessments of the reconstructed nerve pathways. Results The evaluations showed that the transverse group had the lowest muscle action potential, sciatic functional index, nociceptive threshold, mechanical threshold, rate of wet gastrocnemius muscle weight, area of muscle fiber, and numbers of myelinated nerve fibers. The chemical group had the highest, while the clamp group and the keep epineurium group had medium. Conclusion Transverse injury models have the most stable effect among all damage models; chemical injury models self-recover quickly and damage incompletely with poor stability of effect; and clamp injury models and keep epineurium injury models have no significant differences in many ways with medium stability.
Collapse
Affiliation(s)
- Qu Siwei
- 2nd Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing 100144, China
| | - Ning Ma
- 2nd Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing 100144, China
| | - Weixin Wang
- 2nd Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing 100144, China
| | - Sen Chen
- 2nd Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing 100144, China
| | - Qi Wu
- 2nd Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing 100144, China
| | - Yangqun Li
- 2nd Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing 100144, China
| | - Zhe Yang
- 2nd Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing 100144, China
| |
Collapse
|
7
|
Liu X, He J, Gao J, Xiao Z. Fluorocitrate and neurotropin confer analgesic effects on neuropathic pain in diabetic rats via inhibition of astrocyte activation in the periaqueductal gray. Neurosci Lett 2022; 768:136378. [PMID: 34861344 DOI: 10.1016/j.neulet.2021.136378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023]
Abstract
Currently, effective treatments for diabetic neuropathic pain (DNP) are still unmet clinical needs. Activation of astrocytes in the ventrolateral region of periaqueductal gray (vlPAG) has a regulating effect on pain responses. The present study was designed to confirm that repeated intra-vlPAG injection of fluorocitrate (FC), a selective inhibitor of astrocyte activation or intraperitoneal (IP) injection of neurotropin, a widely prescribed analgesic drug for chronic pain, inhibited the activation of astrocytes in vlPAG and thus produced an analgesic effect on DNP. An in vivo model was developed to study DNP in rats. The changes in mechanical withdrawal threshold (MWT) and activation levels of astrocytes in the vlPAG were evaluated in all experimental rats. Compared with normal rats, vlPAG-based glial fibrillary acid protein (GFAP) was clearly upregulated, whereas the MWTs of DNP rats were markedly diminished. The intra-vlPAG injections of FC or IP injections of neurotropin attenuated the alterations both in MWTs and expression levels of GFAP in vlPAG in DNP rats. Collectively, these findings suggest the antinociceptive effects of FC and neurotropin in DNP rats, which were associated with suppressing the activation of astrocytes in vlPAG.
Collapse
Affiliation(s)
- Xingfeng Liu
- Key Laboratory of Brain Science, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563000, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou 563000, China
| | - Jingxin He
- Graduate School, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou 563000, China
| | - Jie Gao
- Grade 2019, School of Anesthesiology, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou 563000, China
| | - Zhi Xiao
- Key Laboratory of Brain Science, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563000, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou 563000, China.
| |
Collapse
|
8
|
Abe R, Ohzono H, Gotoh M, Nakamura Y, Honda H, Nakamura H, Kume S, Okawa T, Shiba N. Neurotropin protects rotator cuff tendon cells from lidocaine-induced cell death. Clin Shoulder Elb 2021; 24:224-230. [PMID: 34875729 PMCID: PMC8651596 DOI: 10.5397/cise.2021.00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/04/2022] Open
Abstract
Background Local anesthetics often are used in rotator cuff tears as therapeutic tools, although some cases have reported that they have detrimental effects. Neurotropin (NTP) is used widely in Japan as a treatment for various chronic pain conditions and is shown to have protective effects on cartilage and nerve cells. In this study, we investigated the protective effect of NTP against lidocaine-induced cytotoxicity. Methods Tenocytes from rotator cuff tendons were incubated with lidocaine, NTP, lidocaine with NTP, and a control medium. Cell viability was evaluated using the WST-8 assay. Cell apoptosis was detected via annexin V staining using flow cytometry. The expression of BCL-2 and cytochrome c, which are involved in the intrinsic mitochondrial pathway of apoptosis, was evaluated via Western blotting and immunohistochemical staining. Results In the cell viability assay, lidocaine decreased cell viability in a dose-dependent manner, and NTP did not affect cell viability. Moreover, NTP significantly inhibited the cytotoxic effect of lidocaine. The flow cytometry analysis showed that lidocaine significantly induced apoptosis in tenocytes, and NTP considerably inhibited this lidocaine-induced apoptosis. Western blotting experiments showed that lidocaine decreased the protein expression of BCL-2, and that NTP conserved the expression of BCL-2, even when used with lidocaine. Immunohistochemical staining for cytochrome c showed that 0.1% lidocaine increased cytochrome c-positive cells, and NTP suppressed lidocaine-induced cytochrome c expression. Conclusions NTP suppresses lidocaine-induced apoptosis of tenocytes by inhibiting the mitochondrial apoptotic pathway. Intra-articular/ bursal injection of NTP with lidocaine could protect tenocytes in rotator cuff tendons against lidocaine-induced apoptosis.
Collapse
Affiliation(s)
- Ryunosuke Abe
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Hiroki Ohzono
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Masafumi Gotoh
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Yosuke Nakamura
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Hirokazu Honda
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Hidehiro Nakamura
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Shinichiro Kume
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Takahiro Okawa
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| | - Naoto Shiba
- Department of Orthopedic Surgery, Kurume University Hospital, Fukuoka, Japan
| |
Collapse
|
9
|
Effect of Interleukin-1β on Gene Expression Signatures in Schwann Cells Associated with Neuropathic Pain. Neurochem Res 2021; 46:2958-2968. [PMID: 34264480 DOI: 10.1007/s11064-021-03400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 05/25/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Interleukin-1β (IL-1β) plays a critical role in the development of neuropathic pain through activation of Schwann cells (SCs) after nerve injury. Here, we applied an RNA sequencing (RNA-seq) approach to identify the effect of IL-1β on gene signatures of a rat SC line (RSC96) and the potential molecular mechanisms underlying the development of neuropathic pain. RNA-seq data demonstrated a total of 57 significantly differentially expressed genes (DEGs) with 35 up-regulated and 22 down-regulated between SCs treated with IL-1β, and control SCs without treatment. Bioinformatics analysis showed that key upregulated DEGs included those associated with immune and inflammation-related processes, neurotrophin production and SC proliferation. Five proteins encoded by key upregulated DEGs (Ceacam1, Hap1, Irs3, Lgi4 and Mif) were further verified by Western blot. Consistent with the RNA-Seq results, the expression of key genes was confirmed in SCs by immunofluorescence of the chronic constriction injury (CCI) sciatic nerve in rats. Furthermore, we demonstrated that treatment with IL-1β resulted in an increase in p38/ERK phosphorylation, and activators of p38/ERK enhanced the effect of IL-1β on the expression some of the key genes, whereas p38/ERK inhibitors reversed these effects. In conclusion, the present study highlights key genes involved in the development of neuropathic pain through activation of SCs after nerve injury. Identification of these genes and subsequent evidence of their mediation by IL-1β treatment promote our understanding of molecular mechanisms of nerve injury induced neuropathic pain, and highlight potential molecular targets for the treatment of neuropathic pain.
Collapse
|
10
|
Mettyas T, Barton M, Sahar MSU, Lawrence F, Sanchez-Herrero A, Shah M, St John J, Bindra R. Negative Pressure Neurogenesis: A Novel Approach to Accelerate Nerve Regeneration after Complete Peripheral Nerve Transection. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3568. [PMID: 34881144 PMCID: PMC8647885 DOI: 10.1097/gox.0000000000003568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
Abstract
Various modalities to facilitate nerve regeneration have been described in the literature with limited success. We hypothesized that negative pressure applied to a sectioned peripheral nerve would enhance nerve regeneration by promoting angiogenesis and axonal lengthening. METHODS Wistar rats' sciatic nerves were cut (creating ~7 mm nerve gap) and placed into a silicone T-tube, to which negative pressure was applied. The rats were divided into 4 groups: control (no pressure), group A (low pressure: 10 mm Hg), group B (medium pressure: 20/30 mm Hg) and group C (high pressure: 50/70 mm Hg). The nerve segments were retrieved after 7 days for gross and histological analysis. RESULTS In total, 22 rats completed the study. The control group showed insignificant nerve growth, whereas the 3 negative pressure groups showed nerve growth and nerve gap reduction. The true nerve growth was highest in group A (median: 3.54 mm) compared to group B, C, and control (medians: 1.19 mm, 1.3 mm, and 0.35 mm); however, only group A was found to be significantly different to the control group (**P < 0.01). Similarly, angiogenesis was observed to be significantly greater in group A (**P < 0.01) in comparison to the control. CONCLUSIONS Negative pressure stimulated nerve lengthening and angiogenesis within an in vivo rat model. Low negative pressure (10 mm Hg) provided superior results over the higher negative pressure groups and the control, favoring axonal growth. Further studies are required with greater number of rats and longer recovery time to assess the functional outcome.
Collapse
Affiliation(s)
- Tamer Mettyas
- From the Department of Orthopaedics, Queen Elizabeth II Hospital, Brisbane, Queensland, Australia
- School of Nursing and Midwifery, Griffith University, Australia
| | - Matthew Barton
- School of Nursing and Midwifery, Griffith University, Australia
- Menzies Health Institute Queensland, Griffith University, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Australia
| | - Muhammad Sana Ullah Sahar
- School of Engineering and Built Environment, Griffith University, Australia
- Department of Mechanical Engineering, Khwaja Fareed University of Engineering and information Technology, Rahim Yar Khan, Pakistan
| | - Felicity Lawrence
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia
| | | | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Australia
| | - James St John
- Menzies Health Institute Queensland, Griffith University, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Australia
- Griffith Institute for Drug Discovery, Griffith University, Australia
| | - Randy Bindra
- School of Medicine, Griffith University, Australia
- Department of Orthopaedics, Gold Coast University Hospital, Australia
| |
Collapse
|
11
|
Nakai T, Sakai D, Nakamura Y, Horikita N, Matsushita E, Naiki M, Watanabe M. Association of NAT2 genetic polymorphism with the efficacy of Neurotropin® for the enhancement of aggrecan gene expression in nucleus pulposus cells: a pilot study. BMC Med Genomics 2021; 14:79. [PMID: 33706752 PMCID: PMC7948325 DOI: 10.1186/s12920-021-00926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/26/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Intervertebral disc degeneration, one of the major causes of low-back pain, results from altered biosynthesis/turnover of extracellular matrix in the disc. Previously, we reported that the analgesic drug Neurotropin® (NTP) had an anabolic effect on glycosaminoglycan synthesis in cultured nucleus pulposus (NP) cells via the stimulation of chondroitin sulfate N-acetylgalactosaminyltransferase 1. However, its effect on the aggrecan core protein was not significantly detected, because of the data variance. A microarray analysis suggested that the effect of NTP on aggrecan was correlated with N-acetyltransferase 2 (NAT2), a drug-metabolizing enzyme. Specific NAT2 alleles are known to correlate with rapid, intermediate, and slow acetylation activities and side effects of various drugs. We investigated the association between the efficacy of NTP on aggrecan expression and the NAT2 genotype in cell donors. METHODS NP cells were isolated from intervertebral disc tissues donated by 31 Japanese patients (28-68 years) who underwent discectomy. NTP was added to the primary cell cultures and its effect on the aggrecan mRNA was analyzed using real-time quantitative PCR. To assess acetylator status, genotyping was performed based on the inferred NAT2 haplotypes of five common single-nucleotide polymorphisms using allele-specific PCR. RESULTS The phenotype frequencies of NAT2 in the patients were 0%, 42.0%, and 58.0% for slow, intermediate, and rapid acetylators, respectively. The proportions of responders to NTP treatment (aggrecan upregulation, ≥ 1.1-fold) in the intermediate and rapid acetylators were 76.9% and 38.9%, respectively. The odds ratio of the comparison of the intermediate acetylator status between responders and nonresponders was 5.2 (95% CI 1.06-26.0, P = 0.036), and regarding the 19 male patients, this was 14.0 (95% CI 1.54-127.2, P = 0.012). In the 12 females, the effect was not correlated with NAT2 phenotype but seemed to become weaker along with aging. CONCLUSIONS An intermediate acetylator status significantly favored the efficacy of NTP treatment to enhance aggrecan production in NP cells. In males, this tendency was detected with higher significance. This study provides suggestive data of the association between NAT2 variants and the efficacy of NTP treatment. Given the small sample size, results should be further confirmed.
Collapse
Affiliation(s)
- Tomoko Nakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Yoshihiko Nakamura
- Research Center for Regenerative Medicine and Cancer Stem Cell, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Natsumi Horikita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Erika Matsushita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Mitsuru Naiki
- Institute of Bio-Active Science, Nippon Zoki Pharmaceutical Co., Ltd., Kinashi, Kato-shi, Hyogo, 673-1461, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
12
|
Neuroprotection by Neurotropin through Crosstalk of Neurotrophic and Innate Immune Receptors in PC12 Cells. Int J Mol Sci 2020; 21:ijms21186456. [PMID: 32899630 PMCID: PMC7555716 DOI: 10.3390/ijms21186456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Infected or damaged tissues release multiple “alert” molecules such as alarmins and damage-associated molecular patterns (DAMPs) that are recognized by innate immune receptors, and induce tissue inflammation, regeneration, and repair. Recently, an extract from inflamed rabbit skin inoculated with vaccinia virus (Neurotropin®, NTP) was found to induce infarct tolerance in mice receiving permanent ischemic attack to the middle cerebral artery. Likewise, we report herein that NTP prevented the neurite retraction in PC12 cells by nerve growth factor (NGF) deprivation. This effect was accompanied by interaction of Fyn with high-affinity NGF receptor TrkA. Sucrose density gradient subcellular fractionation of NTP-treated cells showed heretofore unidentified membrane fractions with a high-buoyant density containing Trk, B subunit of cholera toxin-bound ganglioside, flotillin-1 and Fyn. Additionally, these new membrane fractions also contained Toll-like receptor 4 (TLR4). Inhibition of TLR4 function by TAK-242 prevented the formation of these unidentified membrane fractions and suppressed neuroprotection by NTP. These observations indicate that NTP controls TrkA-mediated signaling through the formation of clusters of new membrane microdomains, thus providing a platform for crosstalk between neurotrophic and innate immune receptors. Neuroprotective mechanisms through the interaction with innate immune systems may provide novel mechanism for neuroprotection.
Collapse
|
13
|
Wang Q, Wang Z, Xu M, Tu W, Hsin IF, Stotland A, Kim JH, Liu P, Naiki M, Gottlieb RA, Seki E. Neurotropin Inhibits Lipid Accumulation by Maintaining Mitochondrial Function in Hepatocytes via AMPK Activation. Front Physiol 2020; 11:950. [PMID: 32848877 PMCID: PMC7424056 DOI: 10.3389/fphys.2020.00950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/14/2020] [Indexed: 11/27/2022] Open
Abstract
The accumulation of lipid droplets in the cytoplasm of hepatocytes, known as hepatic steatosis, is a hallmark of non-alcoholic fatty liver disease (NAFLD). Inhibiting hepatic steatosis is suggested to be a therapeutic strategy for NAFLD. The present study investigated the actions of Neurotropin (NTP), a drug used for chronic pain in Japan and China, on lipid accumulation in hepatocytes as a possible treatment for NAFLD. NTP inhibited lipid accumulation induced by palmitate and linoleate, the two major hepatotoxic free fatty acids found in NAFLD livers. An RNA sequencing analysis revealed that NTP altered the expression of mitochondrial genes. NTP ameliorated palmitate-and linoleate-induced mitochondrial dysfunction by reversing mitochondrial membrane potential, respiration, and β-oxidation, suppressing mitochondrial oxidative stress, and enhancing mitochondrial turnover. Moreover, NTP increased the phosphorylation of AMPK, a critical factor in the regulation of mitochondrial function, and induced PGC-1β expression. Inhibition of AMPK activity and PGC-1β expression diminished the anti-steatotic effect of NTP in hepatocytes. JNK inhibition could also be associated with NTP-mediated inhibition of lipid accumulation, but we did not find the association between AMPK and JNK. These results suggest that NTP inhibits lipid accumulation by maintaining mitochondrial function in hepatocytes via AMPK activation, or by inhibiting JNK.
Collapse
Affiliation(s)
- Qinglan Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijun Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mingyi Xu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Wei Tu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - I-Fang Hsin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Aleksandr Stotland
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jeong Han Kim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ping Liu
- E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mitsuru Naiki
- Department of Pharmacological Research, Institute of Bio-Active Science, Nippon Zoki Pharmaceutical Co., Ltd., Osaka, Japan
| | - Roberta A. Gottlieb
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ekihiro Seki
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
14
|
Chen J, Zhou XJ, Sun RB. Effect of the combination of high-frequency repetitive magnetic stimulation and neurotropin on injured sciatic nerve regeneration in rats. Neural Regen Res 2020; 15:145-151. [PMID: 31535663 PMCID: PMC6862395 DOI: 10.4103/1673-5374.264461] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Repetitive magnetic stimulation is effective for treating posttraumatic neuropathies following spinal or axonal injury. Neurotropin is a potential treatment for nerve injuries like demyelinating diseases. This study sought to observe the effects of high-frequency repetitive magnetic stimulation, neurotropin and their combined use in the treatment of peripheral nerve injury in 32 adult male Sprague-Dawley rats. To create a sciatic nerve injury model, a 10 mm-nerve segment of the left sciatic nerve was cut and rotated through 180° and each end restored continuously with interrupted sutures. The rats were randomly divided into four groups. The control group received only a reversed autograft in the left sciatic nerve with no treatment. In the high-frequency repetitive magnetic stimulation group, peripheral high-frequency repetitive magnetic stimulation treatment (20 Hz, 20 min/d) was delivered for 10 consecutive days after auto-grafting. In the neurotropin group, neurotropin therapy (0.96 NU/kg per day) was administrated for 10 consecutive days after surgery. In the combined group, the combination of peripheral high-frequency repetitive magnetic stimulation (20 Hz, 20 min/d) and neurotropin (0.96 NU/kg per day) was given for 10 consecutive days after the operation. The Basso-Beattie-Bresnahan locomotor rating scale was used to assess the behavioral recovery of the injured nerve. The sciatic functional index was used to evaluate the recovery of motor functions. Toluidine blue staining was performed to determine the number of myelinated fibers in the distal and proximal grafts. Immunohistochemistry staining was used to detect the length of axons marked by neurofilament 200. Our results reveal that the Basso-Beattie-Bresnahan locomotor rating scale scores, sciatic functional index, the number of myelinated fibers in distal and proximal grafts were higher and axon lengths were longer in the high-frequency repetitive magnetic stimulation, neurotropin and combined groups compared with the control group. These measures were not significantly different among the high-frequency repetitive magnetic stimulation, neurotropin and combined groups. Therefore, our results suggest that peripheral high-frequency repetitive magnetic stimulation or neurotropin can promote the repair of injured sciatic nerves, but their combined use seems to offer no significant advantage. This study was approved by the Animal Ethics Committee of the Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, China on December 23, 2014 (approval No. 2014keyan002-01).
Collapse
Affiliation(s)
- Jie Chen
- Department of Orthopedics, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Xian-Ju Zhou
- Laboratory of Neurological Diseases, Department of Neurology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province; Department of Neurology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rong-Bin Sun
- Department of Orthopedics, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
| |
Collapse
|
15
|
Lysophosphatidic acids and their substrate lysophospholipids in cerebrospinal fluid as objective biomarkers for evaluating the severity of lumbar spinal stenosis. Sci Rep 2019; 9:9144. [PMID: 31235770 PMCID: PMC6591408 DOI: 10.1038/s41598-019-45742-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/14/2019] [Indexed: 12/28/2022] Open
Abstract
Lysophospholipids (LPLs) are known to have potentially important roles in the initiation and maintenance of neuropathic pain in animal models. This study investigated the association between the clinical severity of lumbar spinal stenosis (LSS) and the cerebrospinal fluid (CSF) levels of LPLs, using human samples. We prospectively identified twenty-eight patients with LSS and fifteen controls with idiopathic scoliosis or bladder cancer without neurological symptoms. We quantified LPLs from CSF using liquid chromatography-tandem mass spectrometry. We assessed clinical outcome measures of LSS (Neuropathic Pain Symptom Inventory (NPSI) and Zurich Claudication Questionnaire (ZCQ)) and categorized patients into two groups according to their severity. Five species of lysophosphatidic acid (LPA), nine species of lysophosphatidylcholine (LPC), and one species of lysophosphatidylinositol (LPI) were detected. The CSF levels of all species of LPLs were significantly higher in LSS patients than controls. Patients in the severe NPSI group had significantly higher LPL levels (three species of LPA and nine species of LPC) than the mild group. Patients in the severe ZCQ group also had significantly higher LPL levels (four species of LPA and nine species of LPC). This investigation demonstrates a positive correlation between the CSF levels of LPLs and the clinical severity of LSS. LPLs are potential biomarkers for evaluating the severity of LSS.
Collapse
|
16
|
Fang W, Liao W, Zheng Y, Huang X, Weng X, Fan S, Chen X, Zhang X, Chen J, Xiao S, Thea A, Luan P, Liu J. Neurotropin reduces memory impairment and neuroinflammation via BDNF/NF-κB in a transgenic mouse model of Alzheimer's disease. Am J Transl Res 2019; 11:1541-1554. [PMID: 30972181 PMCID: PMC6456545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease with limited treatments and no cure. Neurotropin (NTP) is an analgesic drug widely prescribed for neuropathic pain. Increasing evidence suggests that NTP may also protect against neurodegeneration, but NTP's treatment potential against memory impairments of AD remains to be explored. APP/PS1 mice, which model AD, were given NTP for three months then cognitively tested with the Morris water maze. Their Aβ burden, microglial and astrocytic activation, and BDNF levels were compared to untreated controls using immunofluorescent staining. Expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and NF-κB pathway related proteins (p65 and IκB-α) were examined by ELISA or Western blots in vivo and in vitro in the microglia cell line. Lastly, BV-2 cells were pre-treated with the selective BDNF inhibitor ANA-12 and with NTP to examine mechanistic pathways. Taken together, NTP treatment reduced cognitive impairment, Aβ deposits, and glial activation in cortex and hippocampus APP/PS1 mice. IL-1β, IL-6 and TNF-α also decreased after NTP treatment in vivo and in vitro, and BDNF levels rose. Also, NTP reduced p65 and IκB-α activation and the effect of NTP on pro-inflammatory cytokines and NF-κB pathway related proteins was abolished by BDNF inhibitor. Our results indicate that NTP reduces neuroinflammation and improves the cognitive deficits in APP/PS1 mice possibly via BDNF/NF-κB pathway. NTP may be a new promising drug candidate for patients with AD.
Collapse
Affiliation(s)
- Wenli Fang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
| | - Wang Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
- Department of Psychiatry, McLean Hospital, Harvard Medical SchoolBelmont, MA 02478, USA
| | - Yuqiu Zheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
| | - Xiaoyun Huang
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical UniversityDongguan 523945, Guangdong, China
| | - Xueling Weng
- Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
| | - Shengnuo Fan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
| | - Xiaoyu Chen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
- People’s Hospital of Zhongshan CityZhongshan 528403, Guangdong, China
| | - Xingmei Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University HospitalKarolinska Sjukhuset, Sweden
| | - Jianjun Chen
- Department of Psychiatry, McLean Hospital, Harvard Medical SchoolBelmont, MA 02478, USA
| | - Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
| | - Anderson Thea
- Department of Psychiatry, McLean Hospital, Harvard Medical SchoolBelmont, MA 02478, USA
| | - Ping Luan
- Medicine School, Shenzhen UniversityShenzhen 518060, Guangdong, China
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
- Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
| |
Collapse
|