1
|
Ruffinatti FA, Genova T, Roato I, Perin M, Chinigò G, Pedraza R, Della Bella O, Motta F, Aimo Boot E, D’Angelo D, Gatti G, Scarpellino G, Munaron L, Mussano F. Osteoblast Response to Widely Ranged Texturing Conditions Obtained through High Power Laser Beams on Ti Surfaces. J Funct Biomater 2024; 15:303. [PMID: 39452601 PMCID: PMC11508658 DOI: 10.3390/jfb15100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Titanium and titanium alloys are the prevailing dental implant materials owing to their favorable mechanical properties and biocompatibility, but how roughness dictates the biological response is still a matter of debate. In this study, laser texturing was used to generate eight paradigmatic roughened surfaces, with the aim of studying the early biological response elicited on MC3T3-E1 pre-osteoblasts. Prior to cell tests, the samples underwent SEM analysis, optical profilometry, protein adsorption assay, and optical contact angle measurement with water and diiodomethane to determine surface free energy. While all the specimens proved to be biocompatible, supporting similar cell viability at 1, 2, and 3 days, surface roughness could impact significantly on cell adhesion. Factorial analysis and linear regression showed, in a robust and unprecedented way, that an isotropic distribution of deep and closely spaced valleys provides the best condition for cell adhesion, to which both protein adsorption and surface free energy were highly correlated. Overall, here the authors provide, for the first time, a thorough investigation of the relationship between roughness parameters and osteoblast adhesion that may be applied to design and produce new tailored interfaces for implant materials.
Collapse
Affiliation(s)
- Federico Alessandro Ruffinatti
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (M.P.); (G.C.); (L.M.)
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (M.P.); (G.C.); (L.M.)
| | - Ilaria Roato
- Bone and Dental Bioengineering Laboratory, CIR Dental School, Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (I.R.); (R.P.); (F.M.)
| | - Martina Perin
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (M.P.); (G.C.); (L.M.)
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (M.P.); (G.C.); (L.M.)
| | - Riccardo Pedraza
- Bone and Dental Bioengineering Laboratory, CIR Dental School, Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (I.R.); (R.P.); (F.M.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Olivio Della Bella
- Biomec s.r.l. Colico, Via Nazionale Nord, 21/A, 23823 Colico, Italy; (O.D.B.); (F.M.)
| | - Francesca Motta
- Biomec s.r.l. Colico, Via Nazionale Nord, 21/A, 23823 Colico, Italy; (O.D.B.); (F.M.)
| | - Elisa Aimo Boot
- Environment Park S.p.A. Plasma Nano-Tech, Via Livorno 60, 10144 Torino, Italy; (E.A.B.); (D.D.)
| | - Domenico D’Angelo
- Environment Park S.p.A. Plasma Nano-Tech, Via Livorno 60, 10144 Torino, Italy; (E.A.B.); (D.D.)
| | - Giorgio Gatti
- Department of Science and Technological Innovation, University of Eastern Piedmont A. Avogadro, Viale Michel 11, 15121 Alessandria, Italy;
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Via Adolfo Ferrata 9, 27100 Pavia, Italy;
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (M.P.); (G.C.); (L.M.)
| | - Federico Mussano
- Bone and Dental Bioengineering Laboratory, CIR Dental School, Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (I.R.); (R.P.); (F.M.)
| |
Collapse
|
2
|
Hui T, Fu J, Zheng B, Fu C, Zhao B, Zhang T, Zhang Y, Wang C, Yu L, Yang Y, Yue B, Qiu M. Subtractive Nanopore Engineered MXene Photonic Nanomedicine with Enhanced Capability of Photothermia and Drug Delivery for Synergistic Treatment of Osteosarcoma. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50002-50014. [PMID: 37851535 DOI: 10.1021/acsami.3c10572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Two-dimensional (2D) nanomaterials as drug carriers and photosensitizers have emerged as a promising antitumor strategy. However, our understanding of 2D antitumor nanomaterials is limited to intrinsic properties or additive modification of different materials. Subtractive structural engineering of 2D nanomaterials for better antitumor efficacy is largely overlooked. Here, subtractively engineered 2D MXenes with uniformly distributed nanopores are synthesized. The nanoporous defects endowed MXene with enhanced surface plasmon resonance effect for better optical absorbance performance and strong exciton-phonon coupling for higher photothermal conversion efficiency. In addition, porous structure improves the binding ability between drug and unsaturated bonds, thus promoting drug-loading capacity and reducing uncontrolled drug release. Furthermore, the porous structure provides adhesion sites for filopodia, thereby promoting the cellular internalization of the drug. Clinically, osteosarcoma is the most common bone malignancy routinely treated with doxorubicin-based chemotherapy. There have been no significant treatment advances in the past decade. As a proof-of-concept, nanoporous MXene loaded with doxorubicin is developed for treating human osteosarcoma cells. The porous MXene platform results in a higher amount of doxorubicin-loading, faster near-infrared (NIR)-controlled doxorubicin release, higher photothermal efficacy under NIR irradiation, and increased cell adhesion and internalization. This facile method pioneers a new paradigm for enhancing 2D material functions and is attractive for tumor treatment.
Collapse
Affiliation(s)
- Tiankun Hui
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China) Ministry of Education, Qingdao 266100, P. R. China
| | - Jianye Fu
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266555, P. R. China
| | - Bingxin Zheng
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266000, P. R. China
| | - Chenchen Fu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China) Ministry of Education, Qingdao 266100, P. R. China
| | - Baocai Zhao
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China) Ministry of Education, Qingdao 266100, P. R. China
| | - Tianqi Zhang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China) Ministry of Education, Qingdao 266100, P. R. China
| | - Yifan Zhang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China) Ministry of Education, Qingdao 266100, P. R. China
| | - Chen Wang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China) Ministry of Education, Qingdao 266100, P. R. China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China) Ministry of Education, Qingdao 266100, P. R. China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Bin Yue
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266000, P. R. China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China) Ministry of Education, Qingdao 266100, P. R. China
| |
Collapse
|
3
|
Pera F, Menini M, Alovisi M, Crupi A, Ambrogio G, Asero S, Marchetti C, Canepa C, Merlini L, Pesce P, Carossa M. Can Abutment with Novel Superlattice CrN/NbN Coatings Influence Peri-Implant Tissue Health and Implant Survival Rate Compared to Machined Abutment? 6-Month Results from a Multi-Center Split-Mouth Randomized Control Trial. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010246. [PMID: 36614586 PMCID: PMC9821948 DOI: 10.3390/ma16010246] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 05/12/2023]
Abstract
Background: The aim of the present multi-center split-mouth randomized control trial was to investigate the effect on peri-implant tissue of abutment with chromium nitride/ niobium nitride (CrN/NbN) coatings (superlattice) compared to traditional machined surface. Methods: Two adjacent posterior implants were inserted in 20 patients. A machined abutment was randomly screwed on either the mesial or distal implant, while a superlattice abutment was screwed on the other one. Implant survival rate, peri-implant probing depth (PPD), plaque index (PI), and bleeding index (BI) were collected 6 months after surgery, while marginal bone loss (MBL) was evaluated at T0 and T6.; Results: Implant survival rate was 97.7%. A total MBL of 0.77 ± 0.50 mm was recorded for superlattice abutments, while a mean MBL of 0.79 ± 0.40 mm was recorded for the abutment with machined surface. A mean PPD of 1.3 ± 0.23 mm was recorded for the superlattice Group, and a mean PPD of 1.31 ± 0.3 was recorded for the machined surface Group. PI was of 0.55 ± 0.51 for superlattice Group and 0.57 ± 0.50 for machined Group, while BI was of 0.47 ± 0.49 for superlattice Group and of 0.46 ± 0.40 for the machined one. No statistically significant difference was highlighted between the two Groups (p > 0.05). Conclusions: After a 6-month observational period, no statistically significant differences were highlighted between superlattice abutment and traditional machined abutment. Further in vitro studies as well as clinical research with longer follow-ups are required to better investigate the surface properties of the novel abutments’ superlattice coating and its effect on the oral tissues.
Collapse
Affiliation(s)
- Francesco Pera
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Turin, Italy
| | - Maria Menini
- Department of Surgical Sciences (DISC), University of Genoa, 16132 Genoa, Italy
| | - Mario Alovisi
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Turin, Italy
| | - Armando Crupi
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Turin, Italy
| | - Giulia Ambrogio
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Turin, Italy
| | - Sofia Asero
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Turin, Italy
| | - Carlotta Marchetti
- Department of Surgical Sciences (DISC), University of Genoa, 16132 Genoa, Italy
| | - Camilla Canepa
- Department of Surgical Sciences (DISC), University of Genoa, 16132 Genoa, Italy
| | - Laura Merlini
- Department of Surgical Sciences (DISC), University of Genoa, 16132 Genoa, Italy
| | - Paolo Pesce
- Department of Surgical Sciences (DISC), University of Genoa, 16132 Genoa, Italy
| | - Massimo Carossa
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Turin, Italy
- Correspondence:
| |
Collapse
|
4
|
Genova T, Chinigò G, Munaron L, Rivolo P, Luganini A, Gribaudo G, Cavagnetto D, Mandracci P, Mussano F. Bacterial and Cellular Response to Yellow-Shaded Surface Modifications for Dental Implant Abutments. Biomolecules 2022; 12:biom12111718. [PMID: 36421732 PMCID: PMC9687512 DOI: 10.3390/biom12111718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Dental implants have dramatically changed the rehabilitation procedures in dental prostheses but are hindered by the possible onset of peri-implantitis. This paper aims to assess whether an anodization process applied to clinically used surfaces could enhance the adhesion of fibroblasts and reduce bacterial adhesion using as a reference the untreated machined surface. To this purpose, four different surfaces were prepared: (i) machined (MAC), (ii) machined and anodized (Y-MAC), (iii) anodized after sand-blasting and acid etching treatment (Y-SL), and (iv) anodized after double acid etching (Y-DM). All specimens were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Moreover, the mean contact angle in both water and diiodomethane as well as surface free energy calculation was assessed. To evaluate changes in terms of biological responses, we investigated the adhesion of Streptococcus sanguinis (S. sanguinis) and Enterococcus faecalis (E. faecalis), fetal bovine serum (FBS) adsorption, and the early response of fibroblasts in terms of cell adhesion and viability. We found that the anodization reduced bacterial adhesion, while roughened surfaces outperformed the machined ones for protein adsorption, fibroblast adhesion, and viability independently of the treatment. It can be concluded that surface modification techniques such as anodization are valuable options to enhance the performance of dental implants.
Collapse
Affiliation(s)
- Tullio Genova
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Paola Rivolo
- Department of Applied Science and Technology, Materials and Microsoystems Laboratory (ChiLab), Politecnico di Torino, 10129 Torino, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Davide Cavagnetto
- Department of Surgical Sciences, CIR Dental School, University of Turin, 10126 Turin, Italy
- Politecnico di Torino, 10129 Torino, Italy
- Correspondence:
| | - Pietro Mandracci
- Department of Applied Science and Technology, Materials and Microsoystems Laboratory (ChiLab), Politecnico di Torino, 10129 Torino, Italy
| | - Federico Mussano
- Department of Surgical Sciences, CIR Dental School, University of Turin, 10126 Turin, Italy
| |
Collapse
|
5
|
Alovisi M, Carossa M, Mandras N, Roana J, Costalonga M, Cavallo L, Pira E, Putzu MG, Bosio D, Roato I, Mussano F, Scotti N. Disinfection and Biocompatibility of Titanium Surfaces Treated with Glycine Powder Airflow and Triple Antibiotic Mixture: An In Vitro Study. MATERIALS 2022; 15:ma15144850. [PMID: 35888317 PMCID: PMC9319194 DOI: 10.3390/ma15144850] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 01/16/2023]
Abstract
The aim of this in vitro study was to compare three disinfection protocols of biofilm-coated machined (MAC) and acid etched (SLA) commercial pure Grade 4 Titanium disks. Samples were infected with a vial of polymicrobial biofilm to simulate peri-implantitis in vitro. Seventeen MAC and twenty SLA titanium disks were randomly assigned to: (1) glycine powder air-flow (GYPAP) for 1 min; (2) a local delivered triple paste antibiotic composed by a gel mixture with ciprofloxacin, metronidazole, and clarithromycin (3MIX) for 1 h; and (3) a combination of both (GYPAP + 3MIX). Biocompatibility of the titanium disks after each treatment protocol was assessed by measurement of adhesion and growth of adipose-derived mesenchymal stem cells (ASCs) after 24 and 72 h. A confocal laser scanning microscope (CLSM) assessed the antibacterial effect of each treatment. Data of the antibacterial efficacy and cell viability were presented as mean with standard deviation and calculated by one-way ANOVA with multiple comparisons via Bonferroni tests. Results were considered significant with p < 0.05. The higher cell viability was achieved by the 3MIX and GYPAP combination on the SLA surfaces after 72 h. CLSM analysis showed a mean ratio of dead bacteria statistically higher in the 3MIX + GYPAP group compared with the GYPAP and 3MIX subgroups (p < 0.05). In conclusion, data showed that the combination of GYPAP and 3MIX could be preferred to the other protocols, especially in presence of SLA titanium surface.
Collapse
Affiliation(s)
- Mario Alovisi
- Department of Surgical Sciences, CIR Dental School, University of Turin, Via Nizza 230, 10126 Turin, Italy; (M.A.); (I.R.); (F.M.); (N.S.)
| | - Massimo Carossa
- Department of Surgical Sciences, CIR Dental School, University of Turin, Via Nizza 230, 10126 Turin, Italy; (M.A.); (I.R.); (F.M.); (N.S.)
- Correspondence:
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (N.M.); (J.R.); (L.C.); (E.P.)
| | - Janira Roana
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (N.M.); (J.R.); (L.C.); (E.P.)
| | - Massimo Costalonga
- Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Lorenza Cavallo
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (N.M.); (J.R.); (L.C.); (E.P.)
| | - Enrico Pira
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (N.M.); (J.R.); (L.C.); (E.P.)
| | - Maria Grazia Putzu
- Unit of Occupational Medicine and Hospital Occupational Unit, A.O.U Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (M.G.P.); (D.B.)
| | - Davide Bosio
- Unit of Occupational Medicine and Hospital Occupational Unit, A.O.U Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (M.G.P.); (D.B.)
| | - Ilaria Roato
- Department of Surgical Sciences, CIR Dental School, University of Turin, Via Nizza 230, 10126 Turin, Italy; (M.A.); (I.R.); (F.M.); (N.S.)
| | - Federico Mussano
- Department of Surgical Sciences, CIR Dental School, University of Turin, Via Nizza 230, 10126 Turin, Italy; (M.A.); (I.R.); (F.M.); (N.S.)
| | - Nicola Scotti
- Department of Surgical Sciences, CIR Dental School, University of Turin, Via Nizza 230, 10126 Turin, Italy; (M.A.); (I.R.); (F.M.); (N.S.)
| |
Collapse
|
6
|
Bone Tissue Engineering through 3D Bioprinting of Bioceramic Scaffolds: A Review and Update. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060903. [PMID: 35743934 PMCID: PMC9225502 DOI: 10.3390/life12060903] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/11/2022]
Abstract
Trauma and bone loss from infections, tumors, and congenital diseases make bone repair and regeneration the greatest challenges in orthopedic, craniofacial, and plastic surgeries. The shortage of donors, intrinsic limitations, and complications in transplantation have led to more focus and interest in regenerative medicine. Structures that closely mimic bone tissue can be produced by this unique technology. The steady development of three-dimensional (3D)-printed bone tissue engineering scaffold therapy has played an important role in achieving the desired goal. Bioceramic scaffolds are widely studied and appear to be the most promising solution. In addition, 3D printing technology can simulate mechanical and biological surface properties and print with high precision complex internal and external structures to match their functional properties. Inkjet, extrusion, and light-based 3D printing are among the rapidly advancing bone bioprinting technologies. Furthermore, stem cell therapy has recently shown an important role in this field, although large tissue defects are difficult to fill by injection alone. The combination of 3D-printed bone tissue engineering scaffolds with stem cells has shown very promising results. Therefore, biocompatible artificial tissue engineering with living cells is the key element required for clinical applications where there is a high demand for bone defect repair. Furthermore, the emergence of various advanced manufacturing technologies has made the form of biomaterials and their functions, composition, and structure more diversified, and manifold. The importance of this article lies in that it aims to briefly review the main principles and characteristics of the currently available methods in orthopedic bioprinting technology to prepare bioceramic scaffolds, and finally discuss the challenges and prospects for applications in this promising and vital field.
Collapse
|
7
|
Bandyopadhyay A, Bose S, Narayan R. Translation of 3D printed materials for medical applications. MRS BULLETIN 2022; 47:39-48. [PMID: 35814311 PMCID: PMC9267199 DOI: 10.1557/s43577-021-00258-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 06/02/2023]
Abstract
During the past 30 years, 3D printing (3DP) technologies significantly influenced the manufacturing world, including innovation in biomedical devices. This special issue reviews recent advances in translating 3DP biomaterials and medical devices for metallic, ceramic, and polymeric devices, as well as bioprinting for organ and tissue engineering, along with regulatory issues in 3DP biomaterials. In our introductory article, besides introducing selected 3DP processes for biomaterials, current challenges and growth opportunities are also discussed. Finally, it highlights a few success stories for the 3D printed biomaterials for medical devices. We hope these articles will educate engineers, scientists, and clinicians about recent developments in translational 3DP technologies.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to illustrate the current state of 3D printing (3DP) technology used in biomedical industry towards bone regeneration. We have focused our efforts towards correlating materials and structural design aspects of 3DP with biological response from host tissue upon implantation. The primary question that we have tried to address is-can 3DP be a viable technology platform for bone regeneration devices? RECENT FINDINGS Recent findings show that 3DP is a versatile technology platform for numerous materials for mass customizable bone regeneration devices that are also getting approval from different regulatory bodies worldwide. After a brief introduction of different 3DP technologies, this review elaborates 3DP of different materials and devices for bone regeneration. From cell-based bioprinting to acellular patient-matched metallic or ceramic devices, 3DP has tremendous potential to improve the quality of human life through bone regeneration among patients of all ages.
Collapse
Affiliation(s)
- Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, USA.
| | - Indranath Mitra
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, USA
| |
Collapse
|
9
|
Davoodi E, Zhianmanesh M, Montazerian H, Milani AS, Hoorfar M. Nano-porous anodic alumina: fundamentals and applications in tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:60. [PMID: 32642974 DOI: 10.1007/s10856-020-06398-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Recently, nanomaterials have been widely utilized in tissue engineering applications due to their unique properties such as the high surface to volume ratio and diversity of morphology and structure. However, most methods used for the fabrication of nanomaterials are rather complicated and costly. Among different nanomaterials, anodic aluminum oxide (AAO) is a great example of nanoporous structures that can easily be engineered by changing the electrolyte type, anodizing potential, current density, temperature, acid concentration and anodizing time. Nanoporous anodic alumina has often been used for mammalian cell culture, biofunctionalization, drug delivery, and biosensing by coating its surface with biocompatible materials. Despite its wide application in tissue engineering, thorough in vivo and in vitro studies of AAO are still required to enhance its biocompatibility and thereby pave the way for its application in tissue replacements. Recognizing this gap, this review article aims to highlight the biomedical potentials of AAO for applications in tissue replacements along with the mechanism of porous structure formation and pore characteristics in terms of fabrication parameters.
Collapse
Affiliation(s)
- Elham Davoodi
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Masoud Zhianmanesh
- Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Shabanloo Street, Tehran, 16788, Iran
| | - Hossein Montazerian
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
10
|
Canullo L, Genova T, Gross Trujillo E, Pradies G, Petrillo S, Muzzi M, Carossa S, Mussano F. Fibroblast Interaction with Different Abutment Surfaces: In Vitro Study. Int J Mol Sci 2020; 21:ijms21061919. [PMID: 32168919 PMCID: PMC7139398 DOI: 10.3390/ijms21061919] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Attaining an effective mucosal attachment to the transmucosal part of the implant could protect the peri-implant bone. Aim: To evaluate if chair side surface treatments (plasma of Argon and ultraviolet light) may affect fibroblast adhesion on different titanium surfaces designed for soft tissue healing. Methods: Grade 5 titanium discs with four different surface topographies were subdivided into 3 groups: argon-plasma; ultraviolet light, and no treatment. Cell morphology and adhesion tests were performed at 20 min, 24 h, and 72 h. Results: Qualitative observation of the surfaces performed at the SEM was in accordance with the anticipated features. Roughness values ranged from smooth (MAC Sa = 0.2) to very rough (XA Sa = 21). At 20 min, all the untreated surfaces presented hemispherical cells with reduced filopodia, while the cells on treated samples were more spread with broad lamellipodia. However, these differences in spreading behavior disappeared at 24 h and 72 h. Argon-plasma, but not UV, significantly increased the number of fibroblasts independently of the surface type but only at 20 min. Statistically, there was no surface in combination with a treatment that favored a greater cellular adhesion. Conclusions: Data showed potential biological benefits of treating implant abutment surfaces with the plasma of argon in relation to early-stage cell adhesion.
Collapse
Affiliation(s)
- Luigi Canullo
- Private Practice, Via Nizza, 46, 00198 Rome, Italy
- Correspondence: ; Tel.: +39-347-6201-976
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, 10126 Turin, Italy;
- CIR Dental School—Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Turin, Italy; (S.C.); (F.M.)
| | - Esperanza Gross Trujillo
- Department of Buccofacial Prosthesis, University Complutense, 28040 Madrid, Spain; (E.G.T.); (G.P.)
| | - Guillermo Pradies
- Department of Buccofacial Prosthesis, University Complutense, 28040 Madrid, Spain; (E.G.T.); (G.P.)
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, University of Rome III, 00133 Rome, Italy;
| | - Maurizio Muzzi
- Department of Science, University of Rome III, 00133 Rome, Italy;
| | - Stefano Carossa
- CIR Dental School—Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Turin, Italy; (S.C.); (F.M.)
| | - Federico Mussano
- CIR Dental School—Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Turin, Italy; (S.C.); (F.M.)
| |
Collapse
|
11
|
The effect of aluminum oxide on red blood cell integrity and hemoglobin structure at nanoscale. Int J Biol Macromol 2019; 138:800-809. [DOI: 10.1016/j.ijbiomac.2019.07.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 01/07/2023]
|
12
|
Bruni A, Serra FG, Deregibus A, Castroflorio T. Shape-Memory Polymers in Dentistry: Systematic Review and Patent Landscape Report. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2216. [PMID: 31295822 PMCID: PMC6678347 DOI: 10.3390/ma12142216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/29/2019] [Accepted: 07/08/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To perform a systematic review (SR) of existing literature and a patent landscape report (PLR) regarding the potential applications of shape-memory polymers (SMPs) in dentistry. SEARCH STRATEGY Clinical and Biomedical online databases (Pubmed, Medline via Embase, Scopus, LILACS, Web of Science, Cochrane Library), Materials Science and Engineering databases (IEEE Explore, Compendex, Proquest), Material Science and Chemical database (Reaxys) so as Patents databases (Questel-Orbit, Espacenet, Patentscope) were consulted as recently as January 2019 to identify all papers and patents potentially relevant to the review. The reference lists of all eligible studies were hand searched for additional published work. RESULTS After duplicate selection and extraction procedures, 6 relevant full-text articles from the initial 302 and 45 relevant patents from 497 were selected. A modified Consolidated Standards of Reporting Trials (CONSORT) checklist of 14 items for reporting pre-clinical in-vitro studies was used to rate the methodological quality of the selected papers. The overall quality was judged low. CONCLUSIONS Despite the great potential and versatility of SMPs, it was not possible to draw evidence-based conclusions supporting their immediate employment in clinical dentistry. This was due to the weak design and a limited number of studies included within this review and reflects the fact that additional research is mandatory to determine whether or not the use of SMPs in dentistry could be effective. Nevertheless, the qualitative analysis of selected papers and patents indicate that SMPs are promising materials in dentistry because of their programmable physical properties. These findings suggest the importance of furtherly pursuing this line of research.
Collapse
Affiliation(s)
- Alessandro Bruni
- Department of Surgical Sciences, CIR Dental School, Università degli Studi di Torino, Via Nizza, 230, 10126 Turin, Italy.
- Department of Mechanical and Aerospatial Engineering (DIMEAS), Politecnico di Torino, C.so Duca degli Abruzzi, 24, 10129 Turin, Italy.
| | - Francesca Giulia Serra
- Department of Surgical Sciences, CIR Dental School, Università degli Studi di Torino, Via Nizza, 230, 10126 Turin, Italy
- Department of Mechanical and Aerospatial Engineering (DIMEAS), Politecnico di Torino, C.so Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Andrea Deregibus
- Department of Surgical Sciences, CIR Dental School, Università degli Studi di Torino, Via Nizza, 230, 10126 Turin, Italy
| | - Tommaso Castroflorio
- Department of Surgical Sciences, CIR Dental School, Università degli Studi di Torino, Via Nizza, 230, 10126 Turin, Italy
| |
Collapse
|
13
|
Zadpoor AA. Current Trends in Metallic Orthopedic Biomaterials: From Additive Manufacturing to Bio-Functionalization, Infection Prevention, and Beyond. Int J Mol Sci 2018; 19:ijms19092684. [PMID: 30201871 PMCID: PMC6165069 DOI: 10.3390/ijms19092684] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
There has been a growing interest in metallic biomaterials during the last five years, as recent developments in additive manufacturing (=3D printing), surface bio-functionalization techniques, infection prevention strategies, biodegradable metallic biomaterials, and composite biomaterials have provided many possibilities to develop biomaterials and medical devices with unprecedented combinations of favorable properties and advanced functionalities. Moreover, development of biomaterials is no longer separated from the other branches of biomedical engineering, particularly tissue biomechanics, musculoskeletal dynamics, and image processing aspects of skeletal radiology. In this editorial, I will discuss all the above-mentioned topics, as they constitute some of the most important trends of research on metallic biomaterials. This editorial will, therefore, serve as a foreword to the papers appearing in a special issue covering the current trends in metallic biomaterials.
Collapse
Affiliation(s)
- Amir A Zadpoor
- Additive Manufacturing Laboratory, Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft 2628CD, The Netherlands.
| |
Collapse
|
14
|
Rahmati M, Mozafari M. Biocompatibility of alumina‐based biomaterials–A review. J Cell Physiol 2018; 234:3321-3335. [DOI: 10.1002/jcp.27292] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Maryam Rahmati
- Department of Nanotechnology and Advanced Materials Bioengineering Research Group, Materials and Energy Research Center (MERC) Tehran Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences Tehran Iran
| | - Masoud Mozafari
- Department of Nanotechnology and Advanced Materials Bioengineering Research Group, Materials and Energy Research Center (MERC) Tehran Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
15
|
Canullo L, Genova T, Naenni N, Nakajima Y, Masuda K, Mussano F. Plasma of argon enhances the adhesion of murine osteoblasts on different graft materials. Ann Anat 2018; 218:265-270. [DOI: 10.1016/j.aanat.2018.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/26/2022]
|