1
|
Xiao W, Wu X, Zhou X, Zhang J, Huang J, Dai X, Ren H, Xu D. Assembly and comparative analysis of the first complete mitochondrial genome of zicaitai ( Brassica rapa var. Purpuraria): insights into its genetic architecture and evolutionary relationships. FRONTIERS IN PLANT SCIENCE 2024; 15:1475064. [PMID: 39450086 PMCID: PMC11499134 DOI: 10.3389/fpls.2024.1475064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Introduction Zicaitai (Brassica rapa var. purpuraria) is a Brassica variety renowned for its distinctive taste and rich nutritional profile. In recent years, the mitochondrial genomes of several Brassica species have been documented, but the mitogenome of Zicaitai remains unreported. Methods In this study, we characterized the Zicaitai mitogenome achieved through the assembly of sequencing reads derived from both the Oxford Nanopore and Illumina platforms. A detailed comparative analysis was carried out with other Brassica species to draw comparisons and contrasts. In-depth analyses of codon usage patterns, instances of RNA editing, and the prevalence of sequence repeats within the mitogenome were also conducted to gain a more nuanced understanding of its genetic architecture. A phylogenetic analysis was performed, utilizing the coding sequences (CDS) from the mitochondrial genome of Zicaitai and that of 20 closely related species/varieties to trace evolutionary connections. Results The Zicaitai mitogenome is characterized by a circular structure spanning 219,779 base pairs, and it encompasses a total of 59 genes. This gene set includes 33 protein-coding genes, 23 tRNA genes, and 3 rRNA genes, providing a rich foundation for further genomic study. An analysis of the Ka/Ks ratios for 30 protein-coding genes shared by the mitogenomes of Zicaitai and seven other Brassica species revealed that most of these genes had undergone purifying selection. Additionally, the study explored the migration of genes between the chloroplast and nuclear genomes and the mitogenome, offering insights into the dynamics of genetic exchange within the Brassica genus. Discussion The collective results in this study will serve as a foundational resource, aiding future evolutionary studies focused on B. rapa, and contributing to a broader understanding of the complexities of plant evolution.
Collapse
Affiliation(s)
- Wanyu Xiao
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Xian Wu
- Northeast Agricultural University, Harbin, China
| | - Xianyu Zhou
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Jing Zhang
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Jianghua Huang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiuchun Dai
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Hailong Ren
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Donglin Xu
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| |
Collapse
|
2
|
Wang J, Liu X, Zhang M, Liu R. The mitochondrial genome of Lavandula angustifolia Mill. (Lamiaceae) sheds light on its genome structure and gene transfer between organelles. BMC Genomics 2024; 25:929. [PMID: 39367299 PMCID: PMC11451270 DOI: 10.1186/s12864-024-10841-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Lavandula angustifolia holds importance as an aromatic plant with extensive applications spanning the fragrance, perfume, cosmetics, aromatherapy, and spa sectors. Beyond its aesthetic and sensory applications, this plant offers medicinal benefits as a natural herbal remedy and finds use in household cleaning products. While extensive genomic data, inclusive of plastid and nuclear genomes, are available for this species, researchers have yet to characterize its mitochondrial genome. This gap in knowledge hampers deeper understanding of the genome organization and its evolutionary significance. RESULTS Through the course of this study, we successfully assembled and annotated the mitochondrial genome of L. angustifolia, marking a first in this domain. This assembled genome encompasses 61 genes, which comprise 34 protein-coding genes, 24 transfer RNA genes, and three ribosomal RNA genes. We identified a chloroplast sequence insertion into the mitogenome, which spans a length of 10,645 bp, accounting for 2.94% of the mitogenome size. Within these inserted sequences, there are seven intact tRNA genes (trnH-GUG, trnW-CCA, trnD-GUC, trnS-GGA, trnN-GUU, trnT-GGU, trnP-UGG) and four complete protein-coding genes (psbA, rps15, petL, petG) of chloroplast derivation. Additional discoveries include 88 microsatellites, 15 tandem repeats, 74 palindromic repeats, and 87 forward long repeats. An RNA editing analysis highlighted an elevated count of editing sites in the cytochrome c oxidase genes, notably ccmB with 34 editing sites, ccmFN with 32, and ccmC with 29. All protein-coding genes showed evidence of cytidine-to-uracil conversion. A phylogenetic analysis, utilizing common protein-coding genes from 23 Lamiales species, yielded a tree with consistent topology, supported by high confidence values. CONCLUSIONS Analysis of the current mitogenome resource revealed its typical circular genome structure. Notably, sequences originally from the chloroplast genome were found within the mitogenome, pointing to the occurrence of horizontal gene transfer between organelles. This assembled mitogenome stands as a valuable resource for subsequent studies on mitogenome structures, their evolution, and molecular biology.
Collapse
Affiliation(s)
- Jun Wang
- Bao'an Central Hospital of Shenzhen, Shenzhen, 518000, China
- Wuhan Benagen Technology Co., Ltd, Wuhan, 430074, China
| | - Xiaoyan Liu
- Hubei University of Chinese Medicine, Wuhan, 430056, China
| | - Mengting Zhang
- Jianmin Pharmaceutical Group Co., Ltd, Wuhan, 430052, China
| | - Renbin Liu
- Bao'an Central Hospital of Shenzhen, Shenzhen, 518000, China.
| |
Collapse
|
3
|
Ou T, Wu Z, Tian C, Yang Y, Li Z. Complete mitochondrial genome of Agropyron cristatum reveals gene transfer and RNA editing events. BMC PLANT BIOLOGY 2024; 24:830. [PMID: 39232676 PMCID: PMC11373303 DOI: 10.1186/s12870-024-05558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND As an important forage in arid and semi-arid regions, Agropyron cristatum provides livestock with exceptionally high nutritional value. Additionally, A. cristatum exhibits outstanding genetic characteristics to endure drought and disease. Therefore, rich genetic diversity serves as a cornerstone for the improvement of major food crops. The purposes of this study were to systematically describe mitogenome of A.cristatum and preliminarily analyze its internal variations. RESULT The A. cristatum mitogenome was a single-ring molecular structure of 381,065 bp that comprised 52 genes, including 35 protein-coding, 3 rRNA and 14 tRNA genes. Among these, two pseudoprotein-coding genes and multiple copies of tRNA genes were observed. A total of 320 repetitive sequences was found to cover more than 10% of the mitogenome (105 simple sequences, 185 dispersed and 30 tandem repeats), which led to a large number of fragment rearrangements in the mitogenome of A. cristatum. Leucine was the most frequent amino acid (n = 1087,10.8%) in the protein-coding genes of A. cristatum mitogenome, and the highest usage codon was ATG (initiation codon). The number of A/T changes at the third base of the codon was much higher than that of G/C. Among 23 PCGs, the range of Pi values is from 0.0021 to 0.0539, with an average of 0.013. Additionally, 81 RNA editing sites were predicted, which were considerably fewer than those reported in other plant mitogenomes. Most of the RNA editing site base positions were concentrated at the first and second codon bases, which were C to T transitions. Moreover, we identified 95 sequence fragments (total length of 34, 343 bp) that were transferred from the chloroplast to mitochondria genes, introns, and intergenic regions. The stability of the tRNA genes was maintained during this process. Selection pressure analysis of 23 protein-coding genes shared by 15 Poaceae plants, showed that most genes were subjected to purifying selection during evolution, whereas rps4, cob, mttB, and ccmB underwent positive selection in different plants. Finally, a phylogenetic tree was constructed based on 22 plant mitogenomes, which showed that Agropyron plants have a high degree of independent heritability in Triticeae. CONCLUSION The findings of this study provide new data for a better understanding of A. cristatum genes, and demonstrate that mitogenomes are suitable for the study of plant classifications, such as those of Agropyron. Moreover, it provides a reference for further exploration of the phylogenetic relationships within Agropyron species, and establishes a theoretical basis for the subsequent development and utilization of A. cristatum plant germplasm resources.
Collapse
Affiliation(s)
- Taiyou Ou
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China.
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China.
| | - Chunyu Tian
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| |
Collapse
|
4
|
Yong Y, Hu S, Zhong M, Wen Y, Zhou Y, Ma R, Jiang X, Zhang Q. Horizontal gene transfer from chloroplast to mitochondria of seagrasses in the yellow-Bohai seas. Genomics 2024; 116:110940. [PMID: 39303860 DOI: 10.1016/j.ygeno.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Seagrasses are ideal for studying plant adaptation to marine environments. In this study, the mitochondrial (mt) and chloroplast (cp) genomes of Ruppia sinensis were sequenced. The results showed an extensive gene loss in seagrasses, including a complete loss of cp-rpl19 genes in Zosteraceae, most cp-ndh genes in Hydrocharitaceae, and mt-rpl and mt-rps genes in all seagrasses, except for the mt-rpl16 gene in Phyllospadix iwatensis. Notably, most ribosomal protein genes were lost in the mt and cp genomes. The deleted cp genes were not transferred to the mt genomes through horizontal gene transfer. Additionally, a significant DNA transfer between seagrass organelles was found, with the mt genomes of Zostera containing numerous sequences from the cp genome. Rearrangement analyses revealed an unreported inversion of the cp genome in R. sinensis. Moreover, four positively selected genes (atp8, nad5, atp4, and ccmFn) and five variable regions (matR, atp4, atp8, rps7, and ccmFn) were identified.
Collapse
Affiliation(s)
- Yushun Yong
- Ocean School, Yantai University, Yantai 264005, PR China
| | - Shunxin Hu
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, PR China
| | - Mingyu Zhong
- Ocean School, Yantai University, Yantai 264005, PR China
| | - Yun Wen
- Ocean School, Yantai University, Yantai 264005, PR China
| | - Yue Zhou
- Ocean School, Yantai University, Yantai 264005, PR China
| | - Ruixue Ma
- Ocean School, Yantai University, Yantai 264005, PR China
| | - Xiangyang Jiang
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, PR China
| | | |
Collapse
|
5
|
Keeling PJ. Horizontal gene transfer in eukaryotes: aligning theory with data. Nat Rev Genet 2024; 25:416-430. [PMID: 38263430 DOI: 10.1038/s41576-023-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Abstract
Horizontal gene transfer (HGT), or lateral gene transfer, is the non-sexual movement of genetic information between genomes. It has played a pronounced part in bacterial and archaeal evolution, but its role in eukaryotes is less clear. Behaviours unique to eukaryotic cells - phagocytosis and endosymbiosis - have been proposed to increase the frequency of HGT, but nuclear genomes encode fewer HGTs than bacteria and archaea. Here, I review the existing theory in the context of the growing body of data on HGT in eukaryotes, which suggests that any increased chance of acquiring new genes through phagocytosis and endosymbiosis is offset by a reduced need for these genes in eukaryotes, because selection in most eukaryotes operates on variation not readily generated by HGT.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Gong Y, Luo X, Zhang T, Zhou G, Li J, Zhang B, Li P, Huang H. Assembly and comparative analysis of the complete mitochondrial genome of white towel gourd (Luffa cylindrica). Genomics 2024; 116:110859. [PMID: 38750703 DOI: 10.1016/j.ygeno.2024.110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Mitochondria play an important role in the energy production of plant cells through independent genetic systems. This study has aimed to assemble and annotate the functions of the mitochondrial (mt) genome of Luffa cylindrica. The mt genome of L. cylindrica contained two chromosomes with lengths of 380,879 bp and 67,982 bp, respectively. Seventy-seven genes including 39 protein-coding genes, 34 tRNA genes, 3 rRNA genes, and 1 pseudogene, were identified. About 90.63% of the codons ended with A or U bases, and 98.63% of monomers contained A/T, which contributed to the high A/T content (55.91%) of the complete mt genome. Six genes (ATP8, CCMFC, NAD4, RPL10, RPL5 and RPS4) showed positive selection. Phylogenetic analysis indicates that L. cylindrica is closely related to L. acutangula. The present results provide the mt genome of L. cylindrica, which may facilitate possible genetic variation, evolutionary, and molecular breeding studies of L. cylindrica.
Collapse
Affiliation(s)
- Yihui Gong
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China,.
| | - Xuan Luo
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Ting Zhang
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Guihua Zhou
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Jingyi Li
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Bin Zhang
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Peng Li
- Xiangtan Agricultural Science Research Institute, Xiangtan 411100, China
| | - Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical, Fruit Tree Research, Guangzhou 510640, China.
| |
Collapse
|
7
|
Shen B, Shen A, Liu L, Tan Y, Li S, Tan Z. Assembly and comparative analysis of the complete multichromosomal mitochondrial genome of Cymbidium ensifolium, an orchid of high economic and ornamental value. BMC PLANT BIOLOGY 2024; 24:255. [PMID: 38594641 PMCID: PMC11003039 DOI: 10.1186/s12870-024-04962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Orchidaceae is one of the largest groups of angiosperms, and most species have high economic value and scientific research value due to their ornamental and medicinal properties. In China, Chinese Cymbidium is a popular ornamental orchid with high economic value and a long history. However, to date, no detailed information on the mitochondrial genome of any species of Chinese Cymbidium has been published. RESULTS Here, we present the complete assembly and annotation of the mitochondrial genome of Cymbidium ensifolium (L.) Sw. The mitogenome of C. ensifolium was 560,647 bp in length and consisted of 19 circular subgenomes ranging in size from 21,995 bp to 48,212 bp. The genome encoded 35 protein-coding genes, 36 tRNAs, 3 rRNAs, and 3405 ORFs. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 915 dispersed repeats, 162 simple repeats, 45 tandem repeats, and 530 RNA editing sites. Analysis of codon usage showed a preference for codons ending in A/T. Interorganellar DNA transfer was identified in 13 of the 19 chromosomes, with plastid-derived DNA fragments representing 6.81% of the C. ensifolium mitochondrial genome. The homologous fragments of the mitochondrial genome and nuclear genome were also analysed. Comparative analysis showed that the GC content was conserved, but the size, structure, and gene content of the mitogenomes varied greatly among plants with multichromosomal mitogenome structure. Phylogenetic analysis based on the mitogenomes reflected the evolutionary and taxonomic statuses of C. ensifolium. Interestingly, compared with the mitogenomes of Cymbidium lancifolium Hook. and Cymbidium macrorhizon Lindl., the mitogenome of C. ensifolium lost 8 ribosomal protein-coding genes. CONCLUSION In this study, we assembled and annotated the mitogenome of C. ensifolium and compared it with the mitogenomes of other Liliidae and plants with multichromosomal mitogenome structures. Our findings enrich the mitochondrial genome database of orchid plants and reveal the rapid structural evolution of Cymbidium mitochondrial genomes, highlighting the potential for mitochondrial genes to help decipher plant evolutionary history.
Collapse
Affiliation(s)
- Baoming Shen
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Airong Shen
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Lina Liu
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Yun Tan
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Sainan Li
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Zhuming Tan
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China.
| |
Collapse
|
8
|
Feng G, Jiao Y, Ma H, Bian H, Nie G, Huang L, Xie Z, Ran Q, Fan W, He W, Zhang X. The first two whole mitochondrial genomes for the genus Dactylis species: assembly and comparative genomics analysis. BMC Genomics 2024; 25:235. [PMID: 38438835 PMCID: PMC10910808 DOI: 10.1186/s12864-024-10145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Orchardgrass (Dactylis glomerata L.), a perennial forage, has the advantages of rich leaves, high yield, and good quality and is one of the most significant forage for grassland animal husbandry and ecological management in southwest China. Mitochondrial (mt) genome is one of the major genetic systems in plants. Studying the mt genome of the genus Dactylis could provide more genetic information in addition to the nuclear genome project of the genus. RESULTS In this study, we sequenced and assembled two mitochondrial genomes of Dactylis species of D. glomerata (597, 281 bp) and D. aschersoniana (613, 769 bp), based on a combination of PacBio and Illumina. The gene content in the mitochondrial genome of D. aschersoniana is almost identical to the mitochondrial genome of D. glomerata, which contains 22-23 protein-coding genes (PCGs), 8 ribosomal RNAs (rRNAs) and 30 transfer RNAs (tRNAs), while D. glomerata lacks the gene encoding the Ribosomal protein (rps1) and D. aschersoniana contains one pseudo gene (atp8). Twenty-three introns were found among eight of the 30 protein-coding genes, and introns of three genes (nad 1, nad2, and nad5) were trans-spliced in Dactylis aschersoniana. Further, our mitochondrial genome characteristics investigation of the genus Dactylis included codon usage, sequences repeats, RNA editing and selective pressure. The results showed that a large number of short repetitive sequences existed in the mitochondrial genome of D. aschersoniana, the size variation of two mitochondrial genomes is due largely to the presence of a large number of short repetitive sequences. We also identified 52-53 large fragments that were transferred from the chloroplast genome to the mitochondrial genome, and found that the similarity was more than 70%. ML and BI methods used in phylogenetic analysis revealed that the evolutionary status of the genus Dactylis. CONCLUSIONS Thus, this study reveals the significant rearrangements in the mt genomes of Pooideae species. The sequenced Dactylis mt genome can provide more genetic information and improve our evolutionary understanding of the mt genomes of gramineous plants.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongjuan Jiao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huizhen Ma
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Haoyang Bian
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zheni Xie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qifan Ran
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Wenwen Fan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei He
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing, 402460, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
9
|
Bi C, Shen F, Han F, Qu Y, Hou J, Xu K, Xu LA, He W, Wu Z, Yin T. PMAT: an efficient plant mitogenome assembly toolkit using low-coverage HiFi sequencing data. HORTICULTURE RESEARCH 2024; 11:uhae023. [PMID: 38469379 PMCID: PMC10925850 DOI: 10.1093/hr/uhae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 03/13/2024]
Abstract
Complete mitochondrial genomes (mitogenomes) of plants are valuable resources for nucleocytoplasmic interactions, plant evolution, and plant cytoplasmic male sterile line breeding. However, the complete assembly of plant mitogenomes is challenging due to frequent recombination events and horizontal gene transfers. Previous studies have adopted Illumina, PacBio, and Nanopore sequencing data to assemble plant mitogenomes, but the poor assembly completeness, low sequencing accuracy, and high cost limit the sampling capacity. Here, we present an efficient assembly toolkit (PMAT) for de novo assembly of plant mitogenomes using low-coverage HiFi sequencing data. PMAT has been applied to the de novo assembly of 13 broadly representative plant mitogenomes, outperforming existing organelle genome assemblers in terms of assembly accuracy and completeness. By evaluating the assembly of plant mitogenomes from different sequencing data, it was confirmed that PMAT only requires 1× HiFi sequencing data to obtain a complete plant mitogenome. The source code for PMAT is available at https://github.com/bichangwei/PMAT. The developed PMAT toolkit will indeed accelerate the understanding of evolutionary variation and breeding application of plant mitogenomes.
Collapse
Affiliation(s)
- Changwei Bi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
- Department of artificial intelligence, College of Information Science and Technology, College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Shen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fuchuan Han
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yanshu Qu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Hou
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Kewang Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Li-an Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Tongming Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Thureborn O, Wikström N, Razafimandimbison SG, Rydin C. Phylogenomics and topological conflicts in the tribe Anthospermeae (Rubiaceae). Ecol Evol 2024; 14:e10868. [PMID: 38274863 PMCID: PMC10809029 DOI: 10.1002/ece3.10868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024] Open
Abstract
Genome skimming (shallow whole-genome sequencing) offers time- and cost-efficient production of large amounts of DNA data that can be used to address unsolved evolutionary questions. Here we address phylogenetic relationships and topological incongruence in the tribe Anthospermeae (Rubiaceae), using phylogenomic data from the mitochondrion, the nuclear ribosomal cistron, and the plastome. All three genomic compartments resolve relationships in the Anthospermeae; the tribe is monophyletic and consists of three major subclades. Carpacoce Sond. is sister to the remaining clade, which comprises an African subclade and a Pacific subclade. Most results, from all three genomic compartments, are statistically well supported; however, not fully consistent. Intergenomic topological incongruence is most notable in the Pacific subclade but present also in the African subclade. Hybridization and introgression followed by organelle capture may explain these conflicts but other processes, such as incomplete lineage sorting (ILS), can yield similar patterns and cannot be ruled out based on the results. Whereas the null hypothesis of congruence among all sequenced loci in the individual genomes could not be rejected for nuclear and mitochondrial data, it was rejected for plastid data. Phylogenetic analyses of three subsets of plastid loci identified using the hierarchical likelihood ratio test demonstrated statistically supported intragenomic topological incongruence. Given that plastid genes are thought to be fully linked, this result is surprising and may suggest modeling or sampling error. However, biological processes such as biparental inheritance and inter-plastome recombination have been reported and may be responsible for the observed intragenomic incongruence. Mitochondrial insertions into the plastome are rarely documented in angiosperms. Our results indicate that a mitochondrial insertion event in the plastid trnS GGA - rps4 IGS region occurred in the common ancestor of the Pacific clade of Anthospermeae. Exclusion/inclusion of this locus in phylogenetic analyses had a strong impact on topological results in the Pacific clade.
Collapse
Affiliation(s)
- Olle Thureborn
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Niklas Wikström
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- The Bergius FoundationThe Royal Academy of SciencesStockholmSweden
| | | | - Catarina Rydin
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- The Bergius FoundationThe Royal Academy of SciencesStockholmSweden
| |
Collapse
|
11
|
Cruz Plancarte D, Solórzano S. Structural and gene composition variation of the complete mitochondrial genome of Mammillaria huitzilopochtli (Cactaceae, Caryophyllales), revealed by de novo assembly. BMC Genomics 2023; 24:509. [PMID: 37653379 PMCID: PMC10468871 DOI: 10.1186/s12864-023-09607-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/20/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Structural descriptions of complete genomes have elucidated evolutionary processes in angiosperms. In Cactaceae (Caryophyllales), a high structural diversity of the chloroplast genome has been identified within and among genera. In this study, we assembled the first mitochondrial genome (mtDNA) for the short-globose cactus Mammillaria huitzilopochtli. For comparative purposes, we used the published genomes of 19 different angiosperms and the gymnosperm Cycas taitungensis as an external group for phylogenetic issues. RESULTS The mtDNA of M. huitzilopochtli was assembled into one linear chromosome of 2,052,004 bp, in which 65 genes were annotated. These genes account for 57,606 bp including 34 protein-coding genes (PCGs), 27 tRNAs, and three rRNAs. In the non-coding sequences, repeats were abundant, with a total of 4,550 (179,215 bp). In addition, five complete genes (psaC and four tRNAs) of chloroplast origin were documented. Negative selection was estimated for most (23) of the PCGs. The phylogenetic tree showed a topology consistent with previous analyses based on the chloroplast genome. CONCLUSIONS The number and type of genes contained in the mtDNA of M. huitzilopochtli were similar to those reported in 19 other angiosperm species, regardless of their phylogenetic relationships. Although other Caryophyllids exhibit strong differences in structural arrangement and total size of mtDNA, these differences do not result in an increase in the typical number and types of genes found in M. huitzilopochtli. We concluded that the total size of mtDNA in angiosperms increases by the lengthening of the non-coding sequences rather than a significant gain of coding genes.
Collapse
Affiliation(s)
- David Cruz Plancarte
- Laboratorio de Ecología Molecular y Evolución, Universidad Nacional Autónoma de México, FES Iztacala, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla de Baz, 54090, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Sofía Solórzano
- Laboratorio de Ecología Molecular y Evolución, Universidad Nacional Autónoma de México, FES Iztacala, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla de Baz, 54090, Mexico.
| |
Collapse
|
12
|
Chen Y, Guo Y, Xie X, Wang Z, Miao L, Yang Z, Jiao Y, Xie C, Liu J, Hu Z, Xin M, Yao Y, Ni Z, Sun Q, Peng H, Guo W. Pangenome-based trajectories of intracellular gene transfers in Poaceae unveil high cumulation in Triticeae. PLANT PHYSIOLOGY 2023; 193:578-594. [PMID: 37249052 PMCID: PMC10469385 DOI: 10.1093/plphys/kiad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
Intracellular gene transfers (IGTs) between the nucleus and organelles, including plastids and mitochondria, constantly reshape the nuclear genome during evolution. Despite the substantial contribution of IGTs to genome variation, the dynamic trajectories of IGTs at the pangenomic level remain elusive. Here, we developed an approach, IGTminer, that maps the evolutionary trajectories of IGTs using collinearity and gene reannotation across multiple genome assemblies. We applied IGTminer to create a nuclear organellar gene (NOG) map across 67 genomes covering 15 Poaceae species, including important crops. The resulting NOGs were verified by experiments and sequencing data sets. Our analysis revealed that most NOGs were recently transferred and lineage specific and that Triticeae species tended to have more NOGs than other Poaceae species. Wheat (Triticum aestivum) had a higher retention rate of NOGs than maize (Zea mays) and rice (Oryza sativa), and the retained NOGs were likely involved in photosynthesis and translation pathways. Large numbers of NOG clusters were aggregated in hexaploid wheat during 2 rounds of polyploidization, contributing to the genetic diversity among modern wheat accessions. We implemented an interactive web server to facilitate the exploration of NOGs in Poaceae. In summary, this study provides resources and insights into the roles of IGTs in shaping interspecies and intraspecies genome variation and driving plant genome evolution.
Collapse
Affiliation(s)
- Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yiwen Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Zhou P, Zhang Q, Li F, Huang J, Zhang M. Assembly and comparative analysis of the complete mitochondrial genome of Ilex metabaptista (Aquifoliaceae), a Chinese endemic species with a narrow distribution. BMC PLANT BIOLOGY 2023; 23:393. [PMID: 37580695 PMCID: PMC10424370 DOI: 10.1186/s12870-023-04377-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/12/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Ilex metabaptista is a woody tree species with strong waterlogging tolerance and is also admired as a landscape plant with high development prospects and scientific research value. Unfortunately, populations of this species have declined due to habitat loss. Thus, it is a great challenge for us to efficiently protect I. metabaptista resources from extinction. Molecular biology research can provide the scientific basis for the conservation of species. However, the study of I. metabaptista genetics is still in its infancy. To date, no mitochondrial genome (mitogenome) in the genus Ilex has been analysed in detail. RESULTS The mitogenome of I. metabaptista was assembled based on the reads from Illumina and Nanopore sequencing platforms; it was a typical circular DNA molecule of 529,560 bp with a GC content of 45.61% and contained 67 genes, including 42 protein-coding genes, 22 tRNA genes, and 3 rRNA genes. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 286 dispersed repeats, 140 simple repeats, 18 tandem repeats, and 543 RNA editing sites. Analysis of codon usage showed that codons ending in A/T were preferred. Gene migration was observed to occur between the mitogenome and chloroplast genome via the detection of homologous fragments. In addition, Ka/Ks analysis revealed that most of the protein-coding genes in the mitogenome had undergone negative selection, and only the ccmB gene had undergone potential positive selection in most asterids. Nucleotide polymorphism analysis revealed the variation in each gene, with atp9 being the most notable. Furthermore, comparative analysis showed that the GC contents were conserved, but the sizes and structure of mitogenomes varied greatly among asterids. Phylogenetic analysis based on the mitogenomes reflected the exact evolutionary and taxonomic status of I. metabaptista. CONCLUSION In this study, we sequenced and annotated the mitogenome of I. metabaptista and compared it with the mitogenomes of other asterids, which provided essential background information for further understanding of the genetics of this plant and helped lay the foundation for future studies on molecular breeding of I. metabaptista.
Collapse
Affiliation(s)
- Peng Zhou
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing, 211153, China
| | - Qiang Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 210037, Nanjing, China.
| | - Fei Li
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing, 211153, China
| | - Jing Huang
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing, 211153, China
| | - Min Zhang
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing, 211153, China.
| |
Collapse
|
14
|
Lee HJ, Lee Y, Lee SC, Kim CK, Kang JN, Kwon SJ, Kang SH. Comparative analysis of mitochondrial genomes of Schisandra repanda and Kadsura japonica. FRONTIERS IN PLANT SCIENCE 2023; 14:1183406. [PMID: 37469771 PMCID: PMC10352487 DOI: 10.3389/fpls.2023.1183406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023]
Abstract
The family Schisandraceae is a basal angiosperm plant group distributed in East and Southeast Asia and includes many medicinal plant species such as Schisandra chinensis. In this study, mitochondrial genomes (mitogenomes) of two species, Schisandra repanda and Kadsura japonica, in the family were characterized through de novo assembly using sequencing data obtained with Oxford Nanopore and Illumina sequencing technologies. The mitogenomes of S. repanda were assembled into one circular contig (571,107 bp) and four linear contigs (10,898-607,430 bp), with a total of 60 genes: 38 protein-coding genes (PCGs), 19 tRNA genes, and 3 rRNA genes. The mitogenomes of K. japonica were assembled into five circular contigs (211,474-973,503 bp) and three linear contigs (8,010-72,712 bp), with a total of 66 genes: 44 PCGs, 19 tRNA genes, and 3 rRNA genes. The mitogenomes of the two species had complex structural features with high repeat numbers and chloroplast-derived sequences, as observed in other plant mitogenomes. Phylogenetic analysis based on PCGs revealed the taxonomical relationships of S. repanda and K. japonica with other species from Schisandraceae. Finally, molecular markers were developed to distinguish between S. repanda, K. japonica, and S. chinensis on the basis of InDel polymorphisms present in the mitogenomes. The mitogenomes of S. repanda and K. japonica will be valuable resources for molecular and taxonomic studies of plant species that belong to the family Schisandraceae.
Collapse
Affiliation(s)
- Hyo Ju Lee
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Ji-Nam Kang
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| |
Collapse
|
15
|
Edera AA, Howell KA, Nevill PG, Small I, Sanchez-Puerta MV. Evolution of cox2 introns in angiosperm mitochondria and efficient splicing of an elongated cox2i691 intron. Gene 2023; 869:147393. [PMID: 36966978 DOI: 10.1016/j.gene.2023.147393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
In angiosperms, the mitochondrial cox2 gene harbors up to two introns, commonly referred to as cox2i373 and cox2i691. We studied the cox2 from 222 fully-sequenced mitogenomes from 30 angiosperm orders and analyzed the evolution of their introns. Unlike cox2i373, cox2i691 shows a distribution among plants that is shaped by frequent intron loss events driven by localized retroprocessing. In addition, cox2i691 exhibits sporadic elongations, frequently in domain IV of introns. Such elongations are poorly related to repeat content and two of them showed the presence of LINE transposons, suggesting that increasing intron size is very likely due to nuclear intracelular DNA transfer followed by incorporation into the mitochondrial DNA. Surprisingly, we found that cox2i691 is erroneously annotated as absent in 30 mitogenomes deposited in public databases. Although each of the cox2 introns is ∼1.5 kb in length, a cox2i691 of 4.2 kb has been reported in Acacia ligulata (Fabaceae). It is still unclear whether its unusual length is due to a trans-splicing arrangement or the loss of functionality of the interrupted cox2. Through analyzing short-read RNA sequencing of Acacia with a multi-step computational strategy, we found that the Acacia cox2 is functional and its long intron is spliced in cis in a very efficient manner despite its length.
Collapse
Affiliation(s)
- Alejandro A Edera
- Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL, CONICET, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina.
| | - Katharine A Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Paul G Nevill
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, Fraser Avenue, Kings Park, Western Australia, Australia; School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia; Centre of Excellence in Computational Systems Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| |
Collapse
|
16
|
Multichromosomal Mitochondrial Genome of Paphiopedilum micranthum: Compact and Fragmented Genome, and Rampant Intracellular Gene Transfer. Int J Mol Sci 2023; 24:ijms24043976. [PMID: 36835385 PMCID: PMC9966765 DOI: 10.3390/ijms24043976] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Orchidaceae is one of the largest families of angiosperms. Considering the large number of species in this family and its symbiotic relationship with fungi, Orchidaceae provide an ideal model to study the evolution of plant mitogenomes. However, to date, there is only one draft mitochondrial genome of this family available. Here, we present a fully assembled and annotated sequence of the mitochondrial genome (mitogenome) of Paphiopedilum micranthum, a species with high economic and ornamental value. The mitogenome of P. micranthum was 447,368 bp in length and comprised 26 circular subgenomes ranging in size from 5973 bp to 32,281 bp. The genome encoded for 39 mitochondrial-origin, protein-coding genes; 16 tRNAs (three of plastome origin); three rRNAs; and 16 ORFs, while rpl10 and sdh3 were lost from the mitogenome. Moreover, interorganellar DNA transfer was identified in 14 of the 26 chromosomes. These plastid-derived DNA fragments represented 28.32% (46,273 bp) of the P. micranthum plastome, including 12 intact plastome origin genes. Remarkably, the mitogenome of P. micranthum and Gastrodia elata shared 18% (about 81 kb) of their mitochondrial DNA sequences. Additionally, we found a positive correlation between repeat length and recombination frequency. The mitogenome of P. micranthum had more compact and fragmented chromosomes compared to other species with multichromosomal structures. We suggest that repeat-mediated homologous recombination enables the dynamic structure of mitochondrial genomes in Orchidaceae.
Collapse
|
17
|
Barrett CF, Ramachandran D, Chen CH, Corbett CW, Huebner CD, Sinn BT, Yu WB, Suetsugu K. Mitochondrial genome sequencing and analysis of the invasive Microstegium vimineum: a resource for systematics, invasion history, and management. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527995. [PMID: 36798355 PMCID: PMC9934601 DOI: 10.1101/2023.02.10.527995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Premise of the Research Plants remain underrepresented among species with sequenced mitochondrial genomes (mitogenomes), due to the difficulty in assembly with short-read technology. Invasive species lag behind crops and other economically important species in this respect, representing a lack of tools for management and land conservation efforts. Methodology The mitogenome of Microstegium vimineum, one of the most damaging invasive plant species in North America, was sequenced and analyzed using long-read data, providing a resource for biologists and managers. We conducted analyses of genome content, phylogenomic analyses among grasses and relatives based on mitochondrial coding regions, and an analysis of mitochondrial single nucleotide polymorphism in this invasive grass species. Pivotal Results The assembly is 478,010 bp in length and characterized by two large, inverted repeats, and a large, direct repeat. However, the genome could not be circularized, arguing against a "master circle" structure. Long-read assemblies with data subsets revealed several alternative genomic conformations, predominantly associated with large repeats. Plastid-like sequences comprise 2.4% of the genome, with further evidence of Class I and Class II transposable element-like sequences. Phylogenetic analysis placed M. vimineum with other Microstegium species, excluding M. nudum, but with weak support. Analysis of polymorphic sites across 112 accessions of M. vimineum from the native and invasive ranges revealed a complex invasion history. Conclusions We present an in-depth analysis of mitogenome structure, content, phylogenetic relationships, and range-wide genomic variation in M. vimineum's invasive US range. The mitogenome of M. vimineum is typical of other andropogonoid grasses, yet mitochondrial sequence variation across the invasive and native ranges is extensive. Our findings suggest multiple introductions to the US over the last century, with subsequent spread, secondary contact, long-distance dispersal, and possibly post-invasion selection on awn phenotypes. Efforts to produce genomic resources for invasive species, including sequenced mitochondrial genomes, will continue to provide tools for their effective management, and to help predict and prevent future invasions.
Collapse
Affiliation(s)
- Craig F. Barrett
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Dhanushya Ramachandran
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Chih-Hui Chen
- Endemic Species Research Institute, 1 Ming-Sheng East Road, Jiji, Nantou 552, Taiwan
| | - Cameron W. Corbett
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Cynthia D. Huebner
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
- USDA Forest Service, Northern Research Station, 180 Canfield Street, Morgantown, West Virginia, USA 26505
- Division of Plant and Soil Sciences, West Virginia University, 204 Evansdale Greenhouse, Morgantown, West Virginia, USA 26506
| | - Brandon T. Sinn
- Department of Biology and Earth Science, Otterbein University, 1 South Grove Street, Westerville, OH USA 43081
- Faculty of Biology, University of Latvia, 1 Jelgavas iela, Riga, Latvia LV-1004
| | - Wen-Bin Yu
- Center for Integrative Conservation Xishuangbanna Tropical Botanical Garden, CAS Mengla, Yunnan 666303, China
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
18
|
Takeda T, Shirai K, Kim YW, Higuchi-Takeuchi M, Shimizu M, Kondo T, Ushijima T, Matsushita T, Shinozaki K, Hanada K. A de novo gene originating from the mitochondria controls floral transition in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2023; 111:189-203. [PMID: 36306001 DOI: 10.1007/s11103-022-01320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
De novo genes created in the plant mitochondrial genome have frequently been transferred into the nuclear genome via intergenomic gene transfer events. Therefore, plant mitochondria might be a source of de novo genes in the nuclear genome. However, the functions of de novo genes originating from mitochondria and the evolutionary fate remain unclear. Here, we revealed that an Arabidopsis thaliana specific small coding gene derived from the mitochondrial genome regulates floral transition. We previously identified 49 candidate de novo genes that induce abnormal morphological changes on overexpression. We focused on a candidate gene derived from the mitochondrial genome (sORF2146) that encodes 66 amino acids. Comparative genomic analyses indicated that the mitochondrial sORF2146 emerged in the Brassica lineage as a de novo gene. The nuclear sORF2146 emerged following an intergenomic gene transfer event in the A. thaliana after the divergence between Arabidopsis and Capsella. Although the nuclear and mitochondrial sORF2146 sequences are the same in A. thaliana, only the nuclear sORF2146 is transcribed. The nuclear sORF2146 product is localized in mitochondria, which may be associated with the pseudogenization of the mitochondrial sORF2146. To functionally characterize the nuclear sORF2146, we performed a transcriptomic analysis of transgenic plants overexpressing the nuclear sORF2146. Flowering transition-related genes were highly regulated in the transgenic plants. Subsequent phenotypic analyses demonstrated that the overexpression and knockdown of sORF2146 in transgenic plants resulted in delayed and early flowering, respectively. These findings suggest that a lineage-specific de novo gene derived from mitochondria has an important regulatory effect on floral transition.
Collapse
Affiliation(s)
- Tomoyuki Takeda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-Shi, Fukuoka, 820-8502, Japan
| | - Kazumasa Shirai
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-Shi, Fukuoka, 820-8502, Japan
| | - You-Wang Kim
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-Shi, Fukuoka, 820-8502, Japan
| | | | - Minami Shimizu
- RIKEN Center for Sustainable Resource Science, Yokohama-Shi, Kanagawa, 230-0045, Japan
| | - Takayuki Kondo
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-Shi, Fukuoka, 820-8502, Japan
| | - Tomokazu Ushijima
- Department of Agricultural Science and Technology, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Tomonao Matsushita
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Yokohama-Shi, Kanagawa, 230-0045, Japan
| | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-Shi, Fukuoka, 820-8502, Japan.
| |
Collapse
|
19
|
Kersten B, Rellstab C, Schroeder H, Brodbeck S, Fladung M, Krutovsky KV, Gugerli F. The mitochondrial genome sequence of Abies alba Mill. reveals a high structural and combinatorial variation. BMC Genomics 2022; 23:776. [PMID: 36443651 PMCID: PMC9703787 DOI: 10.1186/s12864-022-08993-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/05/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Plant mitogenomes vary widely in size and genomic architecture. Although hundreds of plant mitogenomes of angiosperm species have already been sequence-characterized, only a few mitogenomes are available from gymnosperms. Silver fir (Abies alba) is an economically important gymnosperm species that is widely distributed in Europe and occupies a large range of environmental conditions. Reference sequences of the nuclear and chloroplast genome of A. alba are available, however, the mitogenome has not yet been assembled and studied. RESULTS Here, we used paired-end Illumina short reads generated from a single haploid megagametophyte in combination with PacBio long reads from high molecular weight DNA of needles to assemble the first mitogenome sequence of A. alba. Assembly and scaffolding resulted in 11 mitogenome scaffolds, with the largest scaffold being 0.25 Mbp long. Two of the scaffolds displayed a potential circular structure supported by PCR. The total size of the A. alba mitogenome was estimated at 1.43 Mbp, similar to the size (1.33 Mbp) of a draft assembly of the Abies firma mitogenome. In total, 53 distinct genes of known function were annotated in the A. alba mitogenome, comprising 41 protein-coding genes, nine tRNA, and three rRNA genes. The proportion of highly repetitive elements (REs) was 0.168. The mitogenome seems to have a complex and dynamic structure featured by high combinatorial variation, which was specifically confirmed by PCR for the contig with the highest mapping coverage. Comparative analysis of all sequenced mitogenomes of gymnosperms revealed a moderate, but significant positive correlation between mitogenome size and proportion of REs. CONCLUSIONS The A. alba mitogenome provides a basis for new comparative studies and will allow to answer important structural, phylogenetic and other evolutionary questions. Future long-read sequencing with higher coverage of the A. alba mitogenome will be the key to further resolve its physical structure. The observed positive correlation between mitogenome size and proportion of REs will be further validated once available mitogenomes of gymnosperms would become more numerous. To test whether a higher proportion of REs in a mitogenome leads to an increased recombination and higher structural complexity and variability is a prospective avenue for future research.
Collapse
Affiliation(s)
- Birgit Kersten
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Christian Rellstab
- grid.419754.a0000 0001 2259 5533Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Hilke Schroeder
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Sabine Brodbeck
- grid.419754.a0000 0001 2259 5533Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Konstantin V. Krutovsky
- grid.7450.60000 0001 2364 4210Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Felix Gugerli
- grid.419754.a0000 0001 2259 5533Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
20
|
Yang J, Ling C, Zhang H, Hussain Q, Lyu S, Zheng G, Liu Y. A Comparative Genomics Approach for Analysis of Complete Mitogenomes of Five Actinidiaceae Plants. Genes (Basel) 2022; 13:genes13101827. [PMID: 36292711 PMCID: PMC9601400 DOI: 10.3390/genes13101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022] Open
Abstract
Actinidiaceae, an economically important plant family, includes the Actinidia, Clematoclethra and Saurauia genus. Kiwifruit, with remarkably high vitamin C content, is an endemic species widely distributed in China with high economic value. Although many Actinidiaceae chloroplast genomes have been reported, few complete mitogenomes of Actinidiaceae have been studied. Here, complete circular mitogenomes of the four kiwifruit species and Saurauia tristyla were assembled. Codon usage, sequence repeats, RNA editing, gene transfers, selective pressure, and phylogenetic relationships in the four kiwifruit species and S. tristyla were comparatively analyzed. This research will contribute to the study of phylogenetic relationships within Actiniaceae and molecular barcoding in kiwifruit.
Collapse
Affiliation(s)
- Jun Yang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Chengcheng Ling
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Huamin Zhang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Shiheng Lyu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Guohua Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (G.Z.); (Y.L.)
| | - Yongsheng Liu
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
- Correspondence: (G.Z.); (Y.L.)
| |
Collapse
|
21
|
A High-Quality Genome Assembly of the Mitochondrial Genome of the Oil-Tea Tree Camellia gigantocarpa (Theaceae). DIVERSITY 2022. [DOI: 10.3390/d14100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Camellia gigantocarpa is one of the oil-tea trees whose seeds can be used to extract high-quality vegetable oil. To date, there are no data on the mitochondrial genome of the oil-tea tree, in contrast to the tea-tree C. sinensis, which belongs to the same genus. In this paper, we present the first complete mitochondrial genomes of C. gigantocarpa obtained using PacBio Hi-Fi (high-fidelity) and Hi-C sequencing technologies to anchor the 970,410 bp genome assembly into a single sequence. A set of 44 protein-coding genes, 22 non-coding genes, 746 simple sequence repeats (SSRs), and more than 201 kb of repetitive sequences were annotated in the genome assembly. The high percentage of repetitive sequences in the mitochondrial genome of C. gigantocarpa (20.81%) and C.sinensis (22.15%, tea tree) compared to Arabidopsis thaliana (4.96%) significantly increased the mitogenome size in the genus Camellia. The comparison of the mitochondrial genomes between C. gigantocarpa and C. sinensis revealed genes exhibit high variance in gene order and low substitution rate within the genus Camellia. Information on the mitochondrial genome provides a better understanding of the structure and evolution of the genome in Camellia and may contribute to further study of the after-ripening process of oil-tea trees.
Collapse
|
22
|
Qiao Y, Zhang X, Li Z, Song Y, Sun Z. Assembly and comparative analysis of the complete mitochondrial genome of Bupleurum chinense DC. BMC Genomics 2022; 23:664. [PMID: 36131243 PMCID: PMC9490909 DOI: 10.1186/s12864-022-08892-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bupleurum chinense(B. chinense) is a plant that is widely distributed globally and has strong pharmacological effects. Though the chloroplast(cp) genome of B. chinense has been studied, no reports regarding the mitochondrial(mt) genome of B. chinense have been published yet. RESULTS The mt genome of B.chinense was assembled and functionally annotated. The circular mt genome of B. chinense was 435,023 bp in length, and 78 genes, including 39 protein-coding genes, 35 tRNA genes, and 4 rRNA genes, were annotated. Repeat sequences were analyzed and sites at which RNA editing would occur were predicted. Gene migration was observed to occur between the mt and cp genomes of B. chinense via the detection of homologous gene fragments. In addition, the sizes of plant mt genomes and their GC content were analyzed and compared. The sizes of mt genomes of plants varied greatly, but their GC content was conserved to a greater extent during evolution. Ka/Ks analysis was based on code substitutions, and the results showed that most of the coding genes were negatively selected. This indicates that mt genes were conserved during evolution. CONCLUSION In this study, we assembled and annotated the mt genome of the medicinal plant B. chinense. Our findings provide extensive information regarding the mt genome of B. chinense, and help lay the foundation for future studies on the genetic variations, phylogeny, and breeding of B. chinense via an analysis of the mt genome.
Collapse
Affiliation(s)
- Yonggang Qiao
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Xinrui Zhang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zheng Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yun Song
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zhe Sun
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| |
Collapse
|
23
|
Evaluation of Intracellular Gene Transfers from Plastome to Nuclear Genome across Progressively Improved Assemblies for Arabidopsis thaliana and Oryza sativa. Genes (Basel) 2022; 13:genes13091620. [PMID: 36140788 PMCID: PMC9498363 DOI: 10.3390/genes13091620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
DNA originating from organellar genomes are regularly discovered in nuclear sequences during genome assembly. Nevertheless, such insertions are sometimes omitted during the process of nuclear genome assembly because the inserted DNA is assigned to organellar genomes, leading to a systematic underestimation of their frequency. With the rapid development of high-throughput sequencing technology, more inserted fragments from organelle genomes can now be detected. Therefore, it is necessary to be aware of the insertion events from organellar genomes during nuclear genome assembly to properly attribute the impact and rate of such insertions in the evolution of nuclear genomes. Here, we investigated the impact of intracellular gene transfer (IGT) from the plastome to the nuclear genome using genome assemblies that were refined through time with technological improvements from two model species, Arabidopsis thaliana and Oryza sativa. We found that IGT from the plastome to the nuclear genome is a dynamic and ongoing process in both A. thaliana and O. sativa, and mostly occurred recently, as the majority of transferred sequences showed over 95% sequence similarity with plastome sequences of origin. Differences in the plastome-to-nuclear genome IGT between A. thaliana and O. sativa varied among the different assembly versions and were associated with the quality of the nuclear genome assembly. IGTs from the plastome to nuclear genome occurred more frequently in intergenic regions, which were often associated with transposable elements (TEs). This study provides new insights into intracellular genome evolution and nuclear genome assembly by characterizing and comparing IGT from the plastome into the nuclear genome for two model plant species.
Collapse
|
24
|
Bi C, Qu Y, Hou J, Wu K, Ye N, Yin T. Deciphering the Multi-Chromosomal Mitochondrial Genome of Populus simonii. FRONTIERS IN PLANT SCIENCE 2022; 13:914635. [PMID: 35783945 PMCID: PMC9240471 DOI: 10.3389/fpls.2022.914635] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 06/01/2023]
Abstract
Mitochondria, inherited maternally, are energy metabolism organelles that generate most of the chemical energy needed to power cellular various biochemical reactions. Deciphering mitochondrial genome (mitogenome) is important for elucidating vital activities of species. The complete chloroplast (cp) and nuclear genome sequences of Populus simonii (P. simonii) have been reported, but there has been little progress in its mitogenome. Here, we assemble the complete P. simonii mitogenome into three circular-mapping molecules (lengths 312.5, 283, and 186 kb) with the total length of 781.5 kb. All three molecules of the P. simonii mitogenome had protein-coding capability. Whole-genome alignment analyses of four Populus species revealed the fission of poplar mitogenome in P. simonii. Comparative repeat analyses of four Populus mitogenomes showed that there were no repeats longer than 350 bp in Populus mitogenomes, contributing to the stability of genome sizes and gene contents in the genus Populus. As the first reported multi-circular mitogenome in Populus, this study of P. simonii mitogenome are imperative for better elucidating their biological functions, replication and recombination mechanisms, and their unique evolutionary trajectories in Populus.
Collapse
Affiliation(s)
- Changwei Bi
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Yanshu Qu
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jing Hou
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Kai Wu
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Ning Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
25
|
Ma Q, Wang Y, Li S, Wen J, Zhu L, Yan K, Du Y, Ren J, Li S, Chen Z, Bi C, Li Q. Assembly and comparative analysis of the first complete mitochondrial genome of Acer truncatum Bunge: a woody oil-tree species producing nervonic acid. BMC PLANT BIOLOGY 2022; 22:29. [PMID: 35026989 PMCID: PMC8756732 DOI: 10.1186/s12870-021-03416-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/27/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Acer truncatum (purpleblow maple) is a woody tree species that produces seeds with high levels of valuable fatty acids (especially nervonic acid). The species is admired as a landscape plant with high developmental prospects and scientific research value. The A. truncatum chloroplast genome has recently been reported; however, the mitochondrial genome (mitogenome) is still unexplored. RESULTS We characterized the A. truncatum mitogenome, which was assembled using reads from PacBio and Illumina sequencing platforms, performed a comparative analysis against different species of Acer. The circular mitogenome of A. truncatum has a length of 791,052 bp, with a base composition of 27.11% A, 27.21% T, 22.79% G, and 22.89% C. The A. truncatum mitogenome contains 62 genes, including 35 protein-coding genes, 23 tRNA genes and 4 rRNA genes. We also examined codon usage, sequence repeats, RNA editing and selective pressure in the A. truncatum mitogenome. To determine the evolutionary and taxonomic status of A. truncatum, we conducted a phylogenetic analysis based on the mitogenomes of A. truncatum and 25 other taxa. In addition, the gene migration from chloroplast and nuclear genomes to the mitogenome were analyzed. Finally, we developed a novel NAD1 intron indel marker for distinguishing several Acer species. CONCLUSIONS In this study, we assembled and annotated the mitogenome of A. truncatum, a woody oil-tree species producing nervonic acid. The results of our analyses provide comprehensive information on the A. truncatum mitogenome, which would facilitate evolutionary research and molecular barcoding in Acer.
Collapse
Affiliation(s)
- Qiuyue Ma
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Yuxiao Wang
- Nanjing Forestry University, Nanjing, 210037 China
| | - Shushun Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Jing Wen
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Lu Zhu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Kunyuan Yan
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Yiming Du
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, 230031 Anhui China
| | - Shuxian Li
- Nanjing Forestry University, Nanjing, 210037 China
| | - Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, 230031 Anhui China
| | - Changwei Bi
- Nanjing Forestry University, Nanjing, 210037 China
| | - Qianzhong Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| |
Collapse
|
26
|
Kan SL, Shen TT, Ran JH, Wang XQ. Both Conifer II and Gnetales are characterized by a high frequency of ancient mitochondrial gene transfer to the nuclear genome. BMC Biol 2021; 19:146. [PMID: 34320951 PMCID: PMC8317393 DOI: 10.1186/s12915-021-01096-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial gene transfer/loss is common in land plants, and therefore the fate of missing mitochondrial genes has attracted more and more attention. The gene content of gymnosperm mitochondria varies greatly, supplying a system for studying the evolutionary fate of missing mitochondrial genes. RESULTS Here, we studied the tempo and pattern of mitochondrial gene transfer/loss in gymnosperms represented by all 13 families, using high-throughput sequencing of both DNA and cDNA. All 41 mitochondrial protein-coding genes were found in cycads, Ginkgo and Pinaceae, whereas multiple mitochondrial genes were absent in Conifer II and Gnetales. In Conifer II, gene transfer from mitochondria to the nucleus followed by loss of the mitochondrial copy was common, but complete loss of a gene in both mitochondrial and nuclear genomes was rare. In contrast, both gene transfer and loss were commonly found in Gnetales. Notably, in Conifer II and Gnetales, the same five mitochondrial genes were transferred to the nuclear genome, and these gene transfer events occurred, respectively, in ancestors of the two lineages. A two-step transfer mechanism (retroprocessing and subsequent DNA-mediated gene transfer) may be responsible for mitochondrial gene transfer in Conifer II and Gnetales. Moreover, the mitochondrial gene content variation is correlated with gene length, GC content, hydrophobicity, and nucleotide substitution rates in land plants. CONCLUSIONS This study reveals a complete evolutionary scenario for variations of mitochondrial gene transferring in gymnosperms, and the factors responsible for mitochondrial gene content variation in land plants.
Collapse
Affiliation(s)
- Sheng-Long Kan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Ting Shen
- School of Earth Sciences, East China University of Technology, Nanchang, 330013, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
Tarasenko TA, Klimenko ES, Tarasenko VI, Koulintchenko MV, Dietrich A, Weber-Lotfi F, Konstantinov YM. Plant mitochondria import DNA via alternative membrane complexes involving various VDAC isoforms. Mitochondrion 2021; 60:43-58. [PMID: 34303006 DOI: 10.1016/j.mito.2021.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria possess transport mechanisms for import of RNA and DNA. Based on import into isolated Solanum tuberosum mitochondria in the presence of competitors, inhibitors or effectors, we show that DNA fragments of different size classes are taken up into plant organelles through distinct channels. Alternative channels can also be activated according to the amount of DNA substrate of a given size class. Analyses of Arabidopsis thaliana knockout lines pointed out a differential involvement of individual voltage-dependent anion channel (VDAC) isoforms in the formation of alternative channels. We propose several outer and inner membrane proteins as VDAC partners in these pathways.
Collapse
Affiliation(s)
- Tatiana A Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia
| | - Ekaterina S Klimenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia
| | - Vladislav I Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia
| | - Milana V Koulintchenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia.
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Frédérique Weber-Lotfi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Yuri M Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia; Irkutsk State University, 1 Karl Marx St, Irkutsk 664003, Russia
| |
Collapse
|
28
|
Choi KS, Park S. Complete Plastid and Mitochondrial Genomes of Aeginetia indica Reveal Intracellular Gene Transfer (IGT), Horizontal Gene Transfer (HGT), and Cytoplasmic Male Sterility (CMS). Int J Mol Sci 2021; 22:6143. [PMID: 34200260 PMCID: PMC8201098 DOI: 10.3390/ijms22116143] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022] Open
Abstract
Orobanchaceae have become a model group for studies on the evolution of parasitic flowering plants, and Aeginetia indica, a holoparasitic plant, is a member of this family. In this study, we assembled the complete chloroplast and mitochondrial genomes of A. indica. The chloroplast and mitochondrial genomes were 56,381 bp and 401,628 bp long, respectively. The chloroplast genome of A. indica shows massive plastid genes and the loss of one IR (inverted repeat). A comparison of the A. indica chloroplast genome sequence with that of a previous study demonstrated that the two chloroplast genomes encode a similar number of proteins (except atpH) but differ greatly in length. The A. indica mitochondrial genome has 53 genes, including 35 protein-coding genes (34 native mitochondrial genes and one chloroplast gene), 15 tRNA (11 native mitochondrial genes and four chloroplast genes) genes, and three rRNA genes. Evidence for intracellular gene transfer (IGT) and horizontal gene transfer (HGT) was obtained for plastid and mitochondrial genomes. ψndhB and ψcemA in the A. indica mitogenome were transferred from the plastid genome of A. indica. The atpH gene in the plastid of A. indica was transferred from another plastid angiosperm plastid and the atpI gene in mitogenome A. indica was transferred from a host plant like Miscanthus siensis. Cox2 (orf43) encodes proteins containing a membrane domain, making ORF (Open Reading Frame) the most likely candidate gene for CMS development in A. indica.
Collapse
Affiliation(s)
- Kyoung-Su Choi
- Institute of Natural Science, Yeungnam Univiersity, Gyeongsan-si 38541, Gyeongbuk-do, Korea;
- Department of Life Sciences, Yeungnam University, Gyeongsan-si 38541, Gyeongbuk-do, Korea
| | - Seonjoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan-si 38541, Gyeongbuk-do, Korea
| |
Collapse
|
29
|
Zhao Z, Zhu K, Tang D, Wang Y, Wang Y, Zhang G, Geng Y, Yu H. Comparative Analysis of Mitochondrial Genome Features among Four Clonostachys Species and Insight into Their Systematic Positions in the Order Hypocreales. Int J Mol Sci 2021; 22:ijms22115530. [PMID: 34073831 PMCID: PMC8197242 DOI: 10.3390/ijms22115530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
The mycoparasite fungi of Clonostachys have contributed to the biological control of plant fungal disease and nematodes. The Clonostachys fungi strains were isolated from Ophiocordyceps highlandensis, Ophiocordycepsnigrolla and soil, which identified as Clonostachyscompactiuscula, Clonostachysrogersoniana, Clonostachyssolani and Clonostachys sp. To explore the evolutionary relationship between the mentioned species, the mitochondrial genomes of four Clonostachys species were sequenced and assembled. The four mitogenomes consisted of complete circular DNA molecules, with the total sizes ranging from 27,410 bp to 42,075 bp. The GC contents, GC skews and AT skews of the mitogenomes varied considerably. Mitogenomic synteny analysis indicated that these mitogenomes underwent gene rearrangements. Among the 15 protein-coding genes within the mitogenomes, the nad4L gene exhibited the least genetic distance, demonstrating a high degree of conservation. The selection pressure analysis of these 15 PCGs were all below 1, indicating that PCGs were subject to purifying selection. Based on protein-coding gene calculation of the significantly supported topologies, the four Clonostachys species were divided into a group in the phylogenetic tree. The results supplemented the database of mitogenomes in Hypocreales order, which might be a useful research tool to conduct a phylogenetic analysis of Clonostachys. Additionally, the suitable molecular marker was significant to study phylogenetic relationships in the Bionectriaceae family.
Collapse
Affiliation(s)
- Zhiyuan Zhao
- College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China;
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Kongfu Zhu
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Dexiang Tang
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Yuanbing Wang
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Yao Wang
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Guodong Zhang
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Yupeng Geng
- College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China;
- Correspondence: (Y.G.); (H.Y.)
| | - Hong Yu
- College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China;
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
- Correspondence: (Y.G.); (H.Y.)
| |
Collapse
|
30
|
Filip E, Skuza L. Horizontal Gene Transfer Involving Chloroplasts. Int J Mol Sci 2021; 22:ijms22094484. [PMID: 33923118 PMCID: PMC8123421 DOI: 10.3390/ijms22094484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/04/2023] Open
Abstract
Horizontal gene transfer (HGT)- is defined as the acquisition of genetic material from another organism. However, recent findings indicate a possible role of HGT in the acquisition of traits with adaptive significance, suggesting that HGT is an important driving force in the evolution of eukaryotes as well as prokaryotes. It has been noted that, in eukaryotes, HGT is more prevalent than originally thought. Mitochondria and chloroplasts lost a large number of genes after their respective endosymbiotic events occurred. Even after this major content loss, organelle genomes still continue to lose their own genes. Many of these are subsequently acquired by intracellular gene transfer from the original plastid. The aim of our review was to elucidate the role of chloroplasts in the transfer of genes. This review also explores gene transfer involving mitochondrial and nuclear genomes, though recent studies indicate that chloroplast genomes are far more active in HGT as compared to these other two DNA-containing cellular compartments.
Collapse
Affiliation(s)
- Ewa Filip
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
- Correspondence:
| | - Lidia Skuza
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| |
Collapse
|
31
|
Li X, Li L, Bao Z, Tu W, He X, Zhang B, Ye L, Wang X, Li Q. The 287,403 bp Mitochondrial Genome of Ectomycorrhizal Fungus Tuber calosporum Reveals Intron Expansion, tRNA Loss, and Gene Rearrangement. Front Microbiol 2020; 11:591453. [PMID: 33362740 PMCID: PMC7756005 DOI: 10.3389/fmicb.2020.591453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 02/02/2023] Open
Abstract
In the present study, the mitogenome of Tuber calosporum was assembled and analyzed. The mitogenome of T. calosporum comprises 15 conserved protein-coding genes, two rRNA genes, and 14 tRNAs, with a total size of 287,403 bp. Fifty-eight introns with 170 intronic open reading frames were detected in the T. calosporum mitogenome. The intronic region occupied 69.41% of the T. calosporum mitogenome, which contributed to the T. calosporum mitogenome significantly expand relative to most fungal species. Comparative mitogenomic analysis revealed large-scale gene rearrangements occurred in the mitogenome of T. calosporum, involving gene relocations and position exchanges. The mitogenome of T. calosporum was found to have lost several tRNA genes encoding for cysteine, aspartate, histidine, etc. In addition, a pair of fragments with a total length of 32.91 kb in both the nuclear and mitochondrial genomes of T. calosporum was detected, indicating possible gene transfer events. A total of 12.83% intragenomic duplications were detected in the T. calosporum mitogenome. Phylogenetic analysis based on mitochondrial gene datasets obtained well-supported tree topologies, indicating that mitochondrial genes could be reliable molecular markers for phylogenetic analyses of Ascomycota. This study served as the first report on mitogenome in the family Tuberaceae, thereby laying the groundwork for our understanding of the evolution, phylogeny, and population genetics of these important ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lijiao Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhijie Bao
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenying Tu
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaohui He
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bo Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xu Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
32
|
O’Conner S, Li L. Mitochondrial Fostering: The Mitochondrial Genome May Play a Role in Plant Orphan Gene Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:600117. [PMID: 33424897 PMCID: PMC7793901 DOI: 10.3389/fpls.2020.600117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 05/12/2023]
Abstract
Plant mitochondrial genomes exhibit unique evolutionary patterns. They have a high rearrangement but low mutation rate, and a large size. Based on massive mitochondrial DNA transfers to the nucleus as well as the mitochondrial unique evolutionary traits, we propose a "Mitochondrial Fostering" theory where the organelle genome plays an integral role in the arrival and development of orphan genes (genes with no homologs in other lineages). Two approaches were used to test this theory: (1) bioinformatic analysis of nuclear mitochondrial DNA (Numts: mitochondrial originating DNA that migrated to the nucleus) at the genome level, and (2) bioinformatic analysis of particular orphan sequences present in both the mitochondrial genome and the nuclear genome of Arabidopsis thaliana. One study example is given about one orphan sequence that codes for two unique orphan genes: one in the mitochondrial genome and another one in the nuclear genome. DNA alignments show regions of this A. thaliana orphan sequence exist scattered throughout other land plant mitochondrial genomes. This is consistent with the high recombination rates of mitochondrial genomes in land plants. This may also enable the creation of novel coding sequences within the orphan loci, which can then be transferred to the nuclear genome and become exposed to new evolutionary pressures. Our study also reveals a high correlation between the amount of mitochondrial DNA transferred to the nuclear genome and the number of orphan genes in land plants. All the data suggests the mitochondrial genome may play a role in nuclear orphan gene evolution in land plants.
Collapse
Affiliation(s)
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
33
|
Choi K, Weng ML, Ruhlman TA, Jansen RK. Extensive variation in nucleotide substitution rate and gene/intron loss in mitochondrial genomes of Pelargonium. Mol Phylogenet Evol 2020; 155:106986. [PMID: 33059063 DOI: 10.1016/j.ympev.2020.106986] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/16/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022]
Abstract
Geraniaceae organelle genomes have been shown to exhibit several highly unusual features compared to most other photosynthetic angiosperms. This includes massively rearranged plastomes with considerable size variation, extensive gene and intron loss, accelerated rates of nucleotide substitutions in both mitogenomes and plastomes, and biparental inheritance and cytonuclear incompatibility of the plastome. Most previous studies have focused on plastome evolution with mitogenome comparisons limited to only a few taxa or genes. In this study, mitogenomes and transcriptomes were examined for 27 species of Geraniales, including 13 species of Pelargonium. Extensive gene and intron losses were detected across the Geraniales with Pelargonium representing the most gene depauperate lineage in the family. Plotting these events on the Geraniaceae phylogenetic tree showed that gene losses occurred multiple times, whereas intron losses more closely reflected the relationships among taxa. In addition, P. australe acquired an intron by horizontal transfer. Comparisons of nucleotide substitution rates in Pelargonium showed that synonymous changes in nuclear genes were much lower than in mitochondrial genes. This is in contrast to the previously published studies that indicated that nuclear genes have 16 fold higher rates than mitochondrial genes across angiosperms. Elevated synonymous substitutions occurred for each mitochondrial gene in Pelargonium with the highest values 783 and 324 times higher than outgroups and other Geraniaceae, respectively. Pelargonium is one of four unrelated genera of angiosperms (Ajuga, Plantago and Silene) that have experienced highly accelerated nucleotide substitutions in mitogenomes. It is distinct from most angiosperms in also having elevated substitution rates in plastid genes but the cause of rate accelerations in Pelargonium plastomes and mitogenomes may be different.
Collapse
Affiliation(s)
- KyoungSu Choi
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Mao-Lun Weng
- Department of Biology, Westfield State University, Westfield, MA, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA; Center for Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
| |
Collapse
|
34
|
Peng F, Zhao Z, Xu B, Han J, Yang Q, Lei Y, Tian B, Liu ZL. Characteristics of Organellar Genomes and Nuclear Internal Transcribed Spacers in the Tertiary Relict Genus Dipelta and Their Phylogenomic Implications. Front Genet 2020; 11:573226. [PMID: 33101393 PMCID: PMC7545908 DOI: 10.3389/fgene.2020.573226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fangfang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Zhe Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Bei Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Jie Han
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Qian Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Yunjing Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Bin Tian
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Zhan-Lin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Zhan-Lin Liu,
| |
Collapse
|
35
|
Ye J, Cheng J, Ren Y, Liao W, Li Q. The First Mitochondrial Genome for Geastrales ( Sphaerobolus stellatus) Reveals Intron Dynamics and Large-Scale Gene Rearrangements of Basidiomycota. Front Microbiol 2020; 11:1970. [PMID: 32849488 PMCID: PMC7432440 DOI: 10.3389/fmicb.2020.01970] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
In this study, the mitogenome of artillery fungus, Sphaerobolus stellatus, was assembled and compared with other Basidiomycota mitogenomes. The Sphaerobolus stellatus mitogenome was composed of circular DNA molecules, with a total size of 152,722 bp. Accumulation of intergenic and intronic sequences contributed to the Sphaerobolus stellatus mitogenome becoming the fourth largest mitogenome among Basidiomycota. We detected large-scale gene rearrangements in Basidiomycota mitogenomes, and the Sphaerobolus stellatus mitogenome contains a unique gene order. The quantity and position classes of intron varied between 75 Basidiomycota species we tested, indicating frequent intron loss/gain events occurred in the evolution of Basidiomycota. A novel intron position classes (P1281) was detected in the Sphaerobolus stellatus mitogenome, without any homologous introns from other Basidiomycota species. A pair of fragments with a total length of 9.12 kb in both the nuclear and mitochondrial genomes of Sphaerobolus stellatus was detected, indicating possible gene transferring events. Phylogenetic analysis based on the combined mitochondrial gene set obtained well-supported tree topologies (Bayesian posterior probabilities ≥ 0.99; bootstrap values ≥98). This study served as the first report on the mitogenome from the order Geastrales, which will promote the understanding of the phylogeny, population genetics, and evolution of the artillery fungus, Sphaerobolus stellatus.
Collapse
Affiliation(s)
- Jinghua Ye
- College of Information Science & Technology, Chengdu University, Chengdu, China
| | - Jie Cheng
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuanhang Ren
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenlong Liao
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
36
|
Kan SL, Shen TT, Gong P, Ran JH, Wang XQ. The complete mitochondrial genome of Taxus cuspidata (Taxaceae): eight protein-coding genes have transferred to the nuclear genome. BMC Evol Biol 2020; 20:10. [PMID: 31959109 PMCID: PMC6971862 DOI: 10.1186/s12862-020-1582-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/13/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Gymnosperms represent five of the six lineages of seed plants. However, most sequenced plant mitochondrial genomes (mitogenomes) have been generated for angiosperms, whereas mitogenomic sequences have been generated for only six gymnosperms. In particular, complete mitogenomes are available for all major seed plant lineages except Conifer II (non-Pinaceae conifers or Cupressophyta), an important lineage including six families, which impedes a comprehensive understanding of the mitogenomic diversity and evolution in gymnosperms. RESULTS Here, we report the complete mitogenome of Taxus cuspidata in Conifer II. In comparison with previously released gymnosperm mitogenomes, we found that the mitogenomes of Taxus and Welwitschia have lost many genes individually, whereas all genes were identified in the mitogenomes of Cycas, Ginkgo and Pinaceae. Multiple tRNA genes and introns also have been lost in some lineages of gymnosperms, similar to the pattern observed in angiosperms. In general, gene clusters could be less conserved in gymnosperms than in angiosperms. Moreover, fewer RNA editing sites were identified in the Taxus and Welwitschia mitogenomes than in other mitogenomes, which could be correlated with fewer introns and frequent gene losses in these two species. CONCLUSIONS We have sequenced the Taxus cuspidata mitogenome, and compared it with mitogenomes from the other four gymnosperm lineages. The results revealed the diversity in size, structure, gene and intron contents, foreign sequences, and mutation rates of gymnosperm mitogenomes, which are different from angiosperm mitogenomes.
Collapse
Affiliation(s)
- Sheng-Long Kan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Ting Shen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ping Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
37
|
Konstantinov YM, Petrushin IS. Detection of CRISPR cassettes and cas genes in the Arabidopsis thaliana genome. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The state of the art in the evolution of plant viruses allows the genetic foundations of antiviral immunity in higher (including the most important crops) plants to be categorized as one of the most pressing issues of genetics and selection. According to the endosymbiotic theory, mitochondria descended from alphaproteobacteria that had been absorbed but not degraded by the host cell. The discovery of CRISPR-Cas systems (clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins), which implement the adaptive immunity function in prokaryotes, raises the question whether such a mechanism of antiviral protection could be caught up by evolution and used by representatives of eukaryotes (in particular, plants). The purpose of this work was to analyze the complete sequences of nuclear, mitochondrial, and chloroplast genomes of Arabidopsis thaliana in order to search for genetic elements similar to those in CRISPR-Cas systems of bacteria and archaea. As a result, in silico methods helped us to detect a locus of regularly intermittent short direct repeats in the mitochondrial genome of A. thaliana ecotypes. The structure of this locus corresponds to the CRISPR locus of the prokaryotic adaptive antiviral immune system. The probable connection between the locus found in the mitochondrial genome of the higher plant and the function of adaptive immunity is indicated by a similarity between the spacer sequences in the CRISPR cassette found and the genome of Cauliflower mosaic virus affecting Arabidopsis plants. Sequences of repeats and spacers of CRISPR cassettes in Arabidopsis C24 and Ler lines are perfectly identical. However, the locations of the CRISPR locus in the mitochondrial genomes of these lines differ significantly. The CRISPR cassette in the Col-0 line was found to be completely broken as a result of four deletions and one insertion. Although cas genes were not detected in the mitochondrial genome of the studied Arabidopsis ecotypes, their presence was detected in the nuclear genome. Both cas genes and numerous CRISPR cassettes were found on all the five chromosomes in the nuclear genome of the Col-0 ecotype. The results suggest the existence of a system of adaptive immunity in plants, which is similar to the CRISPR immunity of bacteria and archaea.
Collapse
Affiliation(s)
- Yu. M. Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS; Irkutsk State University
| | | |
Collapse
|
38
|
Zhao N, Grover CE, Chen Z, Wendel JF, Hua J. Intergenomic gene transfer in diploid and allopolyploid Gossypium. BMC PLANT BIOLOGY 2019; 19:492. [PMID: 31718541 PMCID: PMC6852956 DOI: 10.1186/s12870-019-2041-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/20/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Intergenomic gene transfer (IGT) between nuclear and organellar genomes is a common phenomenon during plant evolution. Gossypium is a useful model to evaluate the genomic consequences of IGT for both diploid and polyploid species. Here, we explore IGT among nuclear, mitochondrial, and plastid genomes of four cotton species, including two allopolyploids and their model diploid progenitors (genome donors, G. arboreum: A2 and G. raimondii: D5). RESULTS Extensive IGT events exist for both diploid and allotetraploid cotton (Gossypium) species, with the nuclear genome being the predominant recipient of transferred DNA followed by the mitochondrial genome. The nuclear genome has integrated 100 times more foreign sequences than the mitochondrial genome has in total length. In the nucleus, the integrated length of chloroplast DNA (cpDNA) was between 1.87 times (in diploids) to nearly four times (in allopolyploids) greater than that of mitochondrial DNA (mtDNA). In the mitochondrion, the length of nuclear DNA (nuDNA) was typically three times than that of cpDNA. Gossypium mitochondrial genomes integrated three nuclear retrotransposons and eight chloroplast tRNA genes, and incorporated chloroplast DNA prior to divergence between the diploids and allopolyploid formation. For mitochondrial chloroplast-tRNA genes, there were 2-6 bp conserved microhomologies flanking their insertion sites across distantly related genera, which increased to 10 bp microhomologies for the four cotton species studied. For organellar DNA sequences, there are source hotspots, e.g., the atp6-trnW intergenic region in the mitochondrion and the inverted repeat region in the chloroplast. Organellar DNAs in the nucleus were rarely expressed, and at low levels. Surprisingly, there was asymmetry in the survivorship of ancestral insertions following allopolyploidy, with most numts (nuclear mitochondrial insertions) decaying or being lost whereas most nupts (nuclear plastidial insertions) were retained. CONCLUSIONS This study characterized and compared intracellular transfer among nuclear and organellar genomes within two cultivated allopolyploids and their ancestral diploid cotton species. A striking asymmetry in the fate of IGTs in allopolyploid cotton was discovered, with numts being preferentially lost relative to nupts. Our results connect intergenomic gene transfer with allotetraploidy and provide new insight into intracellular genome evolution.
Collapse
Affiliation(s)
- Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding /Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education / Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Zhiwen Chen
- Laboratory of Cotton Genetics, Genomics and Breeding /Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education / Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding /Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education / Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
39
|
Choi IS, Schwarz EN, Ruhlman TA, Khiyami MA, Sabir JSM, Hajarah NH, Sabir MJ, Rabah SO, Jansen RK. Fluctuations in Fabaceae mitochondrial genome size and content are both ancient and recent. BMC PLANT BIOLOGY 2019; 19:448. [PMID: 31653201 PMCID: PMC6814987 DOI: 10.1186/s12870-019-2064-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/02/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Organelle genome studies of Fabaceae, an economically and ecologically important plant family, have been biased towards the plastid genome (plastome). Thus far, less than 15 mitochondrial genome (mitogenome) sequences of Fabaceae have been published, all but four of which belong to the subfamily Papilionoideae, limiting the understanding of size variation and content across the family. To address this, four mitogenomes were sequenced and assembled from three different subfamilies (Cercidoideae, Detarioideae and Caesalpinioideae). RESULTS Phylogenetic analysis based on shared mitochondrial protein coding regions produced a fully resolved and well-supported phylogeny that was completely congruent with the plastome tree. Comparative analyses suggest that two kinds of mitogenome expansions have occurred in Fabaceae. Size expansion of four genera (Tamarindus, Libidibia, Haematoxylum, and Leucaena) in two subfamilies (Detarioideae and Caesalpinioideae) occurred in relatively deep nodes, and was mainly caused by intercellular gene transfer and/or interspecific horizontal gene transfer (HGT). The second, more recent expansion occurred in the Papilionoideae as a result of duplication of native mitochondrial sequences. Family-wide gene content analysis revealed 11 gene losses, four (rps2, 7, 11 and 13) of which occurred in the ancestor of Fabaceae. Losses of the remaining seven genes (cox2, rpl2, rpl10, rps1, rps19, sdh3, sdh4) were restricted to specific lineages or occurred independently in different clades. Introns of three genes (cox2, ccmFc and rps10) showed extensive lineage-specific length variation due to large sequence insertions and deletions. Shared DNA analysis among Fabaceae mitogenomes demonstrated a substantial decay of intergenic spacers and provided further insight into HGT between the mimosoid clade of Caesalpinioideae and the holoparasitic Lophophytum (Balanophoraceae). CONCLUSION This study represents the most exhaustive analysis of Fabaceae mitogenomes so far, and extends the understanding the dynamic variation in size and gene/intron content. The four newly sequenced mitogenomes reported here expands the phylogenetic coverage to four subfamilies. The family has experienced multiple mitogenome size fluctuations in both ancient and recent times. The causes of these size variations are distinct in different lineages. Fabaceae mitogenomes experienced extensive size fluctuation by recruitment of exogenous DNA and duplication of native mitochondrial DNA.
Collapse
Affiliation(s)
- In-Su Choi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| | - Erika N. Schwarz
- Department of Biological Sciences, St. Edward’s University, Austin, TX 78704 USA
| | - Tracey A. Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| | - Mohammad A. Khiyami
- King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442 Saudi Arabia
| | - Jamal S. M. Sabir
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Nahid H. Hajarah
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mernan J. Sabir
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Samar O. Rabah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
40
|
Li Q, Wang Q, Jin X, Chen Z, Xiong C, Li P, Liu Q, Huang W. Characterization and comparative analysis of six complete mitochondrial genomes from ectomycorrhizal fungi of the Lactarius genus and phylogenetic analysis of the Agaricomycetes. Int J Biol Macromol 2019; 121:249-260. [DOI: 10.1016/j.ijbiomac.2018.10.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023]
|
41
|
Editorial for Special Issue "Plant Mitochondria". Int J Mol Sci 2018; 19:ijms19123849. [PMID: 30513904 PMCID: PMC6321511 DOI: 10.3390/ijms19123849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
|
42
|
Li Q, Wang Q, Chen C, Jin X, Chen Z, Xiong C, Li P, Zhao J, Huang W. Characterization and comparative mitogenomic analysis of six newly sequenced mitochondrial genomes from ectomycorrhizal fungi (Russula) and phylogenetic analysis of the Agaricomycetes. Int J Biol Macromol 2018; 119:792-802. [PMID: 30076929 DOI: 10.1016/j.ijbiomac.2018.07.197] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/06/2023]
Abstract
In this study, the mitochondrial genomes of six Russula species were sequenced using next generation sequencing. The six mitogenomes were all composed of circular DNA molecules, with lengths ranging from 40,961 bp to 69,423 bp. The length and number of protein coding genes (PCGs), GC content, AT skew, and GC skew varied among the six mitogenomes. The increased number and total size of introns likely contributed to the size expansion of mitogenomes in some Russula species. Gene synteny analysis revealed some gene rearrangements among the six mitochondrial genomes. The nad4L gene had the lowest K2P genetic distance of the 15 core PCGs among the six Russula species, indicating that this gene was highly conserved. The Ka/Ks values for all 15 core PCGs were <1, suggesting that they were all subject to purifying selection. Phylogenetic analyses based on two gene datasets (15 core PCGs, and 15 core PCGs + rnl + rns) recovered identical and well-supported trees. In addition, cox1 was identified as a potential single-gene molecular marker for the phylogenetic analysis of relationships among Agaricomycetes species. This study provides the first report of mitogenomes from the Russulaceae family and facilitates the investigation of population genetics and evolution of other ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Qiang Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Qiangfeng Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Zuqin Chen
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Jian Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China.
| |
Collapse
|