1
|
Yao JP, Feng XM, Wang L, Li YQ, Zhu ZY, Yan XY, Yang YQ, Li Y, Zhang W. Electroacupuncture Promotes Functional Recovery after Facial Nerve Injury in Rats by Regulating Autophagy via GDNF and PI3K/mTOR Signaling Pathway. Chin J Integr Med 2024; 30:251-259. [PMID: 38212498 DOI: 10.1007/s11655-023-3610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To explore the mechanism of electroacupuncture (EA) in promoting recovery of the facial function with the involvement of autophagy, glial cell line-derived neurotrophic factor (GDNF), and phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway. METHODS Seventy-two male Sprague-Dawley rats were randomly allocated into the control, sham-operated, facial nerve injury (FNI), EA, EA+3-methyladenine (3-MA), and EA+GDNF antagonist groups using a random number table, with 12 rats in each group. An FNI rat model was established with facial nerve crushing method. EA intervention was conducted at Dicang (ST 4), Jiache (ST 6), Yifeng (SJ 17), and Hegu (LI 4) acupoints for 2 weeks. The Simone's 10-Point Scale was utilized to monitor the recovery of facial function. The histopathological evaluation of facial nerves was performed using hematoxylin-eosin (HE) staining. The levels of Beclin-1, light chain 3 (LC3), and P62 were detected by immunohistochemistry (IHC), immunofluorescence, and reverse transcription-polymerase chain reaction, respectively. Additionally, IHC was also used to detect the levels of GDNF, Rai, PI3K, and mTOR. RESULTS The facial functional scores were significantly increased in the EA group than the FNI group (P<0.05 or P<0.01). HE staining showed nerve axons and myelin sheaths, which were destroyed immediately after the injury, were recovered with EA treatment. The expressions of Beclin-1 and LC3 were significantly elevated and the expression of P62 was markedly reduced in FNI rats (P<0.01); however, EA treatment reversed these abnormal changes (P<0.01). Meanwhile, EA stimulation significantly increased the levels of GDNF, Rai, PI3K, and mTOR (P<0.01). After exogenous administration with autophagy inhibitor 3-MA or GDNF antagonist, the repair effect of EA on facial function was attenuated (P<0.05 or P<0.01). CONCLUSIONS EA could promote the recovery of facial function and repair the facial nerve damages in a rat model of FNI. EA may exert this neuroreparative effect through mediating the release of GDNF, activating the PI3K/mTOR signaling pathway, and further regulating the autophagy of facial nerves.
Collapse
Affiliation(s)
- Jun-Peng Yao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiu-Mei Feng
- Department of Rehabilitation Medicine, Guanghan People's Hospital, Guanghan, Sichuan Province, 618399, China
| | - Lu Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yan-Qiu Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zi-Yue Zhu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang-Yun Yan
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu-Qing Yang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ying Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Zhang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Kuru Bektaşoğlu P, Arıkök AT, Ergüder Bİ, Sargon MF, Altun SA, Ünlüler C, Börekci A, Kertmen H, Çelikoğlu E, Gürer B. Cinnamaldehyde has ameliorative effects on rabbit spinal cord ischemia and reperfusion injury. World Neurosurg X 2024; 21:100254. [PMID: 38148767 PMCID: PMC10750183 DOI: 10.1016/j.wnsx.2023.100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/14/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Affiliation(s)
- Pınar Kuru Bektaşoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Ata Türker Arıkök
- Department of Pathology, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Berrin İmge Ergüder
- Department of Biochemistry, Ankara University School of Medicine, Ankara, Turkey
| | - Mustafa Fevzi Sargon
- Department of Anatomy, Lokman Hekim University School of Medicine, Ankara, Turkey
| | - Seda Akyıldız Altun
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Caner Ünlüler
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Ali Börekci
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Erhan Çelikoğlu
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Bora Gürer
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| |
Collapse
|
3
|
Spisni E, Valerii MC, Massimino ML. Essential Oil Molecules Can Break the Loop of Oxidative Stress in Neurodegenerative Diseases. BIOLOGY 2023; 12:1504. [PMID: 38132330 PMCID: PMC10740714 DOI: 10.3390/biology12121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Essential oils (EOs) are mixtures of volatile compounds, extracted from aromatic plants, with multiple activities including antioxidant and anti-inflammatory ones. EOs are complex mixtures easy to find on the market and with low costs. In this mini narrative review, we have collected the results of in vitro and in vivo studies, which tested these EOs on validated models of neurodegeneration and in particular of the two main neurodegenerative diseases (NDs) that afflict humans: Alzheimer's and Parkinson's. Since EO compositions can vary greatly, depending on the environmental conditions, plant cultivar, and extraction methods, we focused our attention to studies involving single EO molecules, and in particular those that have demonstrated the ability to cross the blood-brain barrier. These single EO molecules, alone or in defined mixtures, could be interesting new therapies to prevent or slow down oxidative and inflammatory processes which are common mechanisms that contribute to neuronal death in all NDs.
Collapse
Affiliation(s)
- Enzo Spisni
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- CIRI Life Sciences and Health Technologies, University of Bologna, 40126 Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- CIRI Life Sciences and Health Technologies, University of Bologna, 40126 Bologna, Italy
| | - Maria Lina Massimino
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padova, Italy
| |
Collapse
|
4
|
Jia W, He X, Jin W, Gu J, Yu S, He J, Yi Z, Cai B, Gao H, Yang L. Ramulus Cinnamomi essential oil exerts an anti-inflammatory effect on RAW264.7 cells through N-acylethanolamine acid amidase inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116747. [PMID: 37311500 DOI: 10.1016/j.jep.2023.116747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ramulus Cinnamomi, the dried twig of Cinnamomum cassia (L.) J.Presl., is a traditional Chinese medicine (TCM) with anti-inflammatory effects. The medicinal functions of Ramulus Cinnamomi essential oil (RCEO) have been confirmed, although the potential mechanisms by which RCEO exerts its anti-inflammatory effects have not been fully elucidated. AIM OF THE STUDY To investigate whether N-acylethanolamine acid amidase (NAAA) mediates the anti-inflammatory effects of RCEO. MATERIALS AND METHODS RCEO was extracted by steam distillation of Ramulus Cinnamomi, and NAAA activity was detected using HEK293 cells overexpressing NAAA. N-Palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), both of which are NAAA endogenous substrates, were detected by liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The anti-inflammatory effects of RCEO were analyzed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and the cell viability was measured with a Cell Counting Kit-8 (CCK-8) kit. The nitric oxide (NO) in the cell supernatant was measured using the Griess method. The level of tumor necrosis factor-α (TNF-α) in the RAW264.7 cell supernatant was determined using an enzyme-linked immunosorbent assay (ELISA) kit. The chemical composition of RCEO was assessed by gas chromatography-mass spectroscopy (GC-MS). The molecular docking study for (E)-cinnamaldehyde and NAAA was performed by using Discovery Studio 2019 software (DS2019). RESULTS We established a cell model for evaluating NAAA activity, and we found that RCEO inhibited the NAAA activity with an IC50 of 5.64 ± 0.62 μg/mL. RCEO significantly elevated PEA and OEA levels in NAAA-overexpressing HEK293 cells, suggesting that RCEO might prevent the degradation of cellular PEA and OEA by inhibiting the NAAA activity in NAAA-overexpressing HEK293 cells. In addition, RCEO also decreased NO and TNF-α cytokines in lipopolysaccharide (LPS)-stimulated macrophages. Interestingly, the GC-MS assay revealed that more than 93 components were identified in RCEO, of which (E)-cinnamaldehyde accounted for 64.88%. Further experiments showed that (E)-cinnamaldehyde and O-methoxycinnamaldehyde inhibited NAAA activity with an IC50 of 3.21 ± 0.03 and 9.62 ± 0.30 μg/mL, respectively, which may represent key components of RCEO that inhibit NAAA activity. Meanwhile, docking assays revealed that (E)-cinnamaldehyde occupies the catalytic cavity of NAAA and engages in a hydrogen bond interaction with the TRP181 and hydrophobic-related interactions with LEU152 of human NAAA. CONCLUSIONS RCEO showed anti-inflammatory effects by inhibiting NAAA activity and elevating cellular PEA and OEA levels in NAAA-overexpressing HEK293 cells. (E)-cinnamaldehyde and O-methoxycinnamaldehyde, two components in RCEO, were identified as the main contributors of the anti-inflammatory effects of RCEO by modulating cellular PEA levels through NAAA inhibition.
Collapse
Affiliation(s)
- Wei Jia
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiwen He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Wenhui Jin
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Jinping Gu
- College of Pharmaceutical Sciences, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310006, China
| | - Siyu Yu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jianlin He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Zhiwei Yi
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Bing Cai
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China.
| |
Collapse
|
5
|
Manoharan A, Oh JM, Benny F, Kumar S, Abdelgawad MA, Ghoneim MM, Shaker ME, El-Sherbiny M, Almohaimeed HM, Gahtori P, Kim H, Mathew B. Assembling a Cinnamyl Pharmacophore in the C3-Position of Substituted Isatins via Microwave-Assisted Synthesis: Development of a New Class of Monoamine Oxidase-B Inhibitors for the Treatment of Parkinson's Disease. Molecules 2023; 28:6167. [PMID: 37630420 PMCID: PMC10458360 DOI: 10.3390/molecules28166167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Monoamine oxidase (MAO, EC 1.4.3.4) is responsible for the oxidative breakdown of both endogenous and exogenous amines and exists in MAO-A and MAO-B isomers. Eighteen indole-based phenylallylidene derivatives were synthesized via nucleophilic addition reactions comprising three sub-series, IHC, IHMC, and IHNC, and were developed and examined for their ability to inhibit MAO. Among them, compound IHC3 showed a strong MAO-B inhibitory effect with an IC50 (half-maximal inhibitory concentration) value of 1.672 μM, followed by IHC2 (IC50 = 16.934 μM). Additionally, IHC3 showed the highest selectivity index (SI) value of >23.92. The effectiveness of IHC3 was lower than the reference pargyline (0.14 μM); however, the SI value was higher than pargyline (17.16). Structurally, the IHC (-H in the B-ring) sub-series exhibited relatively stronger MAO-B inhibition than the others. In the IHC series, IHC3 (-F in the A-ring) exhibited stronger MAO-B suppression than the other substituted derivatives in the order -F > -Br > -Cl > -OCH3, -CH3, and -H at the 2-position in the A-ring. In the reversibility and enzyme kinetics experiments, IHC3 was a reversible inhibitor with a Ki value of 0.51 ± 0.15 μM for MAO-B. Further, it was observed that IHC3 greatly decreased the cell death caused by rotenone in SH-SY5Y neuroblastoma cells. A molecular docking study of the lead molecule was also performed to determine hypothetical interactions in the enzyme-binding cavity. These findings suggest that IHC3 is a strong, specific, and reversible MAO-B inhibitor that can be used to treat neurological diseases.
Collapse
Affiliation(s)
- Amritha Manoharan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India; (A.M.); (F.B.); (S.K.)
| | - Jong Min Oh
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea;
| | - Feba Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India; (A.M.); (F.B.); (S.K.)
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India; (A.M.); (F.B.); (S.K.)
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed E. Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia;
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hailah M. Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University, Dehradun 248002, India;
| | - Hoon Kim
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea;
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India; (A.M.); (F.B.); (S.K.)
| |
Collapse
|
6
|
Wang YC, Wang V, Chen BH. Analysis of bioactive compounds in cinnamon leaves and preparation of nanoemulsion and byproducts for improving Parkinson's disease in rats. Front Nutr 2023; 10:1229192. [PMID: 37599679 PMCID: PMC10433916 DOI: 10.3389/fnut.2023.1229192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Cinnamomum osmophloeum Kanehira (C. osmophloeum), a broad-leaved tree species of Taiwan, contains phenolic acids, flavonoids, and phenylpropanoids such as cinnamaldehyde and cinnamic acid in leaves. Many reports have shown that the cinnamon leaf extract possesses anti-inflammatory, hypoglycemic, hypolipidemic and neuroprotective functions. This study aims to analyze bioactive compounds in C. osmophloeum (cinnamon leaves) by UPLC-MS/MS and prepare hydrosol, cinnamon leaf extract and cinnamon leaf nanoemulsion for comparison in improving Parkinson's disease (PD) in rats. Methods After extraction and determination of total phenolic and total flavonoid contents, cinnamaldehyde and the other bioactive compounds were analyzed in cinnamon leaves and hydrosol by UPLC-MS/MS. Cinnamon leaf nanoemulsion was prepared by mixing a suitable proportion of cinnamon leaf extract, soybean oil, lecithin, Tween 80 and deionized water, followed by characterization of particle size and polydispersity index by dynamic light scattering analyzer, particle size and shape by transmission electron microscope, encapsulation efficiency, as well as storage and heating stability. Fifty-six male Sprague-Dawley rats aged 8 weeks were divided into seven groups with group 1 as control (sunflower oil) and group 2 as induction (2 mg/kg bw rotenone in sunflower oil plus 10 mL/kg bw saline), while the other groups including rotenone injection (2 mg/kg bw) followed by high-dose of 60 mg/kg bw (group 3) or low-dose of 20 mg/kg bw (group 4) for tube feeding of cinnamon leaf extract or cinnamon leaf nanoemulsion at the same doses (groups 5 and 6) every day for 5 weeks as well as group 7 with rotenone plus hydrosol containing 0.5 g cinnamon leaf powder at a dose of 10 mL/kg bw. Biochemical analysis of brain tissue (striatum and midbrain) was done to determine dopamine, α-synuclein, tyrosine hydroxylase, superoxide dismutase, catalase, glutathione peroxidase and malondialdehyde contents by using commercial kits, while catalepsy performed by bar test. Results and discussion An extraction solvent of 80% ethanol was found to be the most optimal with a high yield of 15 bioactive compounds being obtained following UPLC analysis. A triple quadrupole tandem mass spectrometer with electrospray ionization mode was used for identification and quantitation, with cinnamaldehyde present at the highest amount (17985.2 µg/g). The cinnamon leaf nanoemulsion was successfully prepared with the mean particle size, zeta potential, polydispersity index and encapsulation efficiency being 30.1 nm, -43.1 mV, 0.149 and 91.6%, respectively. A high stability of cinnamon leaf nanoemulsion was shown over a 90-day storage period at 4 and heating at 100 for 2 h. Animal experiments revealed that the treatments of cinnamon leaf extract, nanoemulsion and hydrosol increased the dopamine contents from 17.08% to 49.39% and tyrosine hydroxylase levels from 17.07% to 25.59%, while reduced the α-synuclein levels from 17.56% to 15.95% in the striatum of rats. Additionally, in the midbrain of rats, an elevation of activities of superoxide dismutase (6.69-16.82%), catalase (8.56-16.94%), and glutathione peroxidase (2.09-16.94%) was shown, while the malondialdehyde content declined by 15.47-22.47%. Comparatively, the high-dose nanoemulsion exerted the most pronounced effect in improving PD in rats and may be a promising candidate for the development of health food or botanic drug.
Collapse
Affiliation(s)
- Yi Chun Wang
- Department of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Vinchi Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Bing Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Li K, Wang M, Huang ZH, Wang M, Sun WY, Kurihara H, Huang RT, Wang R, Huang F, Liang L, Li YF, Duan WJ, He RR. ALOX5 inhibition protects against dopaminergic neurons undergoing ferroptosis. Pharmacol Res 2023:106779. [PMID: 37121496 DOI: 10.1016/j.phrs.2023.106779] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
Oxidative disruption of dopaminergic neurons is regarded as a crucial pathogenesis in Parkinson's disease (PD), eventually causing neurodegenerative progression. (-)-Clausenamide (Clau) is an alkaloid isolated from plant Clausena lansium (Lour.), which is well-known as a scavenger of lipid peroxide products and exhibiting neuroprotective activities both in vivo and in vitro, yet with the in-depth molecular mechanism unrevealed. In this study, we evaluated the protective effects and mechanisms of Clau on dopaminergic neuron. Our results showed that Clau directly interacted with the Ser663 of ALOX5, the PKCα-phosphorylation site, and thus prevented the nuclear translocation of ALOX5, which was essential for catalyzing the production of toxic lipids 5-HETE. LC-MS/MS-based phospholipidomics analysis demonstrated that the oxidized membrane lipids were involved in triggering ferroptotic death in dopaminergic neurons. Furthermore, the inhibition of ALOX5 was found to significantly improving behavioral defects in PD mouse model, which was confirmed associated with the effects of attenuating the accumulation of lipid peroxides and neuronal damages. Collectively, our findings provide an attractive strategy for PD therapy by targeting ALOX5 and preventing ferroptosis in dopaminergic neurons.
Collapse
Affiliation(s)
- Kun Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Meng Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Zi-Han Huang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Min Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Rui-Ting Huang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Rong Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Feng Huang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lei Liang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research.
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research.
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
8
|
Park J, Gong JH, Chen Y, Nghiem THT, Chandrawanshi S, Hwang E, Yang CH, Kim BS, Park JW, Ryter SW, Ahn B, Joe Y, Chung HT, Yu R. Activation of ROS-PERK-TFEB by Filbertone Ameliorates Neurodegenerative Diseases via Enhancing the Autophagy-Lysosomal Pathway. J Nutr Biochem 2023; 118:109325. [PMID: 36958418 DOI: 10.1016/j.jnutbio.2023.109325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
The molecular mechanisms underlying the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease (PD), and Huntington's disease remain enigmatic, resulting in an unmet need for therapeutics development. Here, we suggest that filbertone, a key flavor compound found in the fruits of hazel trees of the genus Corylus, can ameliorate PD via lowering the abundance of aggregated α-synuclein. We previously reported that inhibition of hypothalamic inflammation by filbertone is mediated by suppression of nuclear factor kappa-B (NF-κB). Here, we report that filbertone activates PERK through mitochondrial ROS (mtROS) production, resulting in the increased nuclear translocation of transcription factor-EB (TFEB) in SH-SY5Y human neuroblastoma cells. TFEB activation by filbertone promotes the autophagy-lysosomal pathway (ALP), which in turn alleviates the accumulation of α-synuclein. We also demonstrate that filbertone prevented the loss of dopaminergic neurons in the substantia nigra and striatum of mice on high-fat diet (HFD). Filbertone treatment also reduced HFD-induced α-synuclein accumulation through upregulation of the ALP pathway. In addition, filbertone improved behavioral abnormalities (i.e., latency time to fall and decrease of running distance) in the MPTP-induced PD murine model. In conclusion, filbertone may show promise as a potential therapeutic for neurodegenerative disease.
Collapse
Affiliation(s)
- Jeongmin Park
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jeong Heon Gong
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Yubing Chen
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Thu-Hang Thi Nghiem
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Sonam Chandrawanshi
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Eunyeong Hwang
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea
| | - Byung-Sam Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | | | - Byungyong Ahn
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
9
|
Kartik S, Pal R, Chaudhary MJ, Nath R, Kumar M, Binwal M, Bawankule DU. Neuroprotective role of chloroquine via modulation of autophagy and neuroinflammation in MPTP-induced Parkinson's disease. Inflammopharmacology 2023; 31:927-941. [PMID: 36715843 DOI: 10.1007/s10787-023-01141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is a neuro-motor ailment that strikes adults in their older life and results in both motor and non-motor impairments. In neuronal and glial cells, PD has recently been linked to a dysregulated autophagic system and cerebral inflammation. Chloroquine (CQ), an anti-malarial drug, has been demonstrated to suppress autophagy in a variety of diseases, including cerebral ischemia, Alzheimer's disease (AD), and Traumatic brain injury (TBI), while its involvement in PD is still unclear. BALB/c mice were randomly allocated to one of four groups: 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), CQ treatment with or without MPTP, or control. The CQ treatment group received CQ (intraperitoneally, 8 mg/kg body weight) after 1 h of MPTP induction on day 1, and it lasted for 7 days. CQ therapy preserves dopamine levels stable, inhibits tyrosine hydroxylase (TH) positive dopaminergic cell death, and lowers oxidative stress. CQ reduces the behavioural, motor, and cognitive deficits caused by MPTP after injury. Furthermore, CQ therapy slowed aberrant neuronal autophagy (microtubule-associated protein-1 light chain 3B; LC3B & Beclin1) and lowered expression levels of the inflammatory cytokines interleukin 1 (IL-1β) and tumour necrosis factor (TNF-α) in the mice brain. In addition, CQ's antioxidant and anti-inflammatory effects were also tested in MPTP-mediated cell death in PC12 cells, demonstrating that CQ has a neurorestorative impact by successfully rescuing MPTP-induced ROS generation and cell loss. Our findings show that CQ's can help to prevent dopaminergic degeneration and improve neurological function after MPTP intoxication by lowering the harmful effects of neuronal autophagy and cerebral inflammation.
Collapse
Affiliation(s)
- Shipra Kartik
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, UP, 226003, India
| | - Rishi Pal
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, UP, 226003, India.
| | - Manju J Chaudhary
- Department of Physiology, Government Medical College, Tirwa Road, Kannauj, UP, India
| | - Rajendra Nath
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, UP, 226003, India
| | - Madhu Kumar
- Department of Pathology, King George's Medical University, Lucknow, UP, 226003, India
| | - Monika Binwal
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, UP, 226015, India
| | - D U Bawankule
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, UP, 226015, India
| |
Collapse
|
10
|
Saeedi M, Iraji A, Vahedi-Mazdabadi Y, Alizadeh A, Edraki N, Firuzi O, Eftekhari M, Akbarzadeh T. Cinnamomum verum J. Presl. Bark essential oil: in vitro investigation of anti-cholinesterase, anti-BACE1, and neuroprotective activity. BMC Complement Med Ther 2022; 22:303. [DOI: 10.1186/s12906-022-03767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Cinnamomum verum J. Presl. (Lauraceae), Myrtus communis L. (Myrtaceae), Ruta graveolens L. (Rutaaceae), Anethum graveolens L. (Apiaceae), Myristica fragrans Houtt. (Myristicaceae), and Crocus sativus L. (Iridaceae) have been recommended for improvement of memory via inhalation, in Iranian Traditional Medicine (ITM). In this respect, the essential oils (EOs) from those plants were obtained and evaluated for cholinesterase (ChE) inhibitory activity as ChE inhibitors are the available drugs in the treatment of Alzheimer’s disease (AD).
Methods
EOs obtained from the plants under investigation, were evaluated for their potential to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro based on the modified Ellman’s method. The most potent EO was candidate for the investigation of its beta-secretase 1 (BACE1) inhibitory activity and neuroprotectivity.
Results
Among all EOs, C. verum demonstrated the most potent activity toward AChE and BChE with IC50 values of 453.7 and 184.7 µg/mL, respectively. It also showed 62.64% and 41.79% inhibition against BACE1 at the concentration of 500 and 100 mg/mL, respectively. However, it depicted no neuroprotective potential against β-amyloid (Aβ)-induced neurotoxicity in PC12 cells. Also, identification of chemical composition of C. verum EO was achieved via gas chromatography-mass spectrometry (GC-MS) analysis and the major constituent; (E)-cinnamaldehyde, was detected as 68.23%.
Conclusion
Potent BChE inhibitory activity of C. verum EO can be considered in the development of cinnamon based dietary supplements for the management of patients with advanced AD.
Collapse
|
11
|
Gao ZY, Chen TY, Yu TT, Zhang LP, Zhao SJ, Gu XY, Pan Y, Kong LD. Cinnamaldehyde prevents intergenerational effect of paternal depression in mice via regulating GR/miR-190b/BDNF pathway. Acta Pharmacol Sin 2022; 43:1955-1969. [PMID: 34983931 PMCID: PMC9343651 DOI: 10.1038/s41401-021-00831-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/23/2021] [Indexed: 11/09/2022] Open
Abstract
Paternal stress exposure-induced high corticosterone (CORT) levels may contribute to depression in offspring. Clinical studies disclose the association of depressive symptoms in fathers with their adolescent offspring. However, there is limited information regarding the intervention for intergenerational inheritance of depression. In this study we evaluated the intervention of cinnamaldehyde, a major constituent of Chinese herb cinnamon bark, for intergenerational inheritance of depression in CORT- and CMS-induced mouse models of depression. Depressive-like behaviors were induced in male mice by injection of CORT (20 mg·kg-1·d-1, sc) for 6 weeks or by chronic mild stress (CMS) for 6 weeks. We showed that co-administration of cinnamaldehyde (10, 20, or 40 mg·kg-1·d-1, ig) for 6 weeks in F0 males prevented the depressive-like phenotypes of F1 male offspring. In addition, co-administration of cinnamaldehyde (20 mg·kg-1·d-1, ig) for 4 weeks significantly ameliorated depressive-like behaviors of chronic variable stress (CVS)-stimulated F1 offspring born to CMS mice. Notably, cinnamaldehyde had no reproductive toxicity, while positive drug fluoxetine showed remarkable reproductive toxicity. We revealed that CMS and CORT significantly reduced testis glucocorticoid receptor (GR) expression, and increased testis and sperm miR-190b expression in F0 depressive-like models. Moreover, pre-miR-190b expression was upregulated in testis of F0 males. The amount of GR on miR-190b promoter regions was decreased in testis of CORT-stimulated F0 males. Cinnamaldehyde administration reversed CORT-induced GR reduction in testis, miR-190b upregulation in testis and sperm, pre-miR-190b upregulation in testis, and the amount of GR on miR-190b promoter regions of F0 males. In miR-190b-transfected Neuro 2a (N2a) cells, we demonstrated that miR-190b might directly bind to the 3'-UTR of brain-derived neurotrophic factor (BDNF). In the hippocampus of F1 males of CORT- or CMS-induced depressive-like models, increased miR-190b expression was accompanied by reduced BDNF and GR, which were ameliorated by cinnamaldehyde. In conclusion, cinnamaldehyde is a potential intervening agent for intergenerational inheritance of depression, probably by regulating GR/miR-190b/BDNF pathway.
Collapse
Affiliation(s)
- Zhi-ying Gao
- grid.41156.370000 0001 2314 964XSchool of Life Sciences, Nanjing University, Nanjing, 210023 China
| | - Tian-yu Chen
- grid.41156.370000 0001 2314 964XSchool of Life Sciences, Nanjing University, Nanjing, 210023 China
| | - Ting-ting Yu
- grid.41156.370000 0001 2314 964XSchool of Life Sciences, Nanjing University, Nanjing, 210023 China
| | - Li-ping Zhang
- grid.41156.370000 0001 2314 964XSchool of Life Sciences, Nanjing University, Nanjing, 210023 China
| | - Si-jie Zhao
- grid.41156.370000 0001 2314 964XSchool of Life Sciences, Nanjing University, Nanjing, 210023 China
| | - Xiao-yang Gu
- grid.41156.370000 0001 2314 964XSchool of Life Sciences, Nanjing University, Nanjing, 210023 China
| | - Ying Pan
- School of Life Sciences, Nanjing University, Nanjing, 210023, China. .,Institute of Chinese Medicine, Nanjing University, Nanjing, 210023, China.
| | - Ling-dong Kong
- grid.41156.370000 0001 2314 964XSchool of Life Sciences, Nanjing University, Nanjing, 210023 China ,grid.41156.370000 0001 2314 964XInstitute of Chinese Medicine, Nanjing University, Nanjing, 210023 China
| |
Collapse
|
12
|
Iranshahy M, Javadi B, Sahebkar A. Protective effects of functional foods against Parkinson's disease: A narrative review on pharmacology, phytochemistry, and molecular mechanisms. Phytother Res 2022; 36:1952-1989. [PMID: 35244296 DOI: 10.1002/ptr.7425] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022]
Abstract
In Persian Medicine (PM), PD (brain-based tremor) is a known CNS disorder with several therapeutic and preventive options. In their medical textbooks and pharmacopeias, Persian great scientists such as Rhazes (854-925 AD), Avicenna (980-1037 AD), and Jorjani (1042-1136 AD), have discussed pharmacological and nutritional strategies for the prevention, slowing progression, and treatment of PD. In the present study, we surveyed plant- and animal-based foods recommended by PM for the prevention and treatment of CNS-related tremors. In vivo and in-vitro pharmacological evidence supporting the beneficial effects of PM-recommended foods in prevention and alleviating PD, major active phytochemicals along with the relevant mechanisms of action were studied. Several PM plants possess potent antioxidant, antiinflammatory, and PD preventing properties. Garlic and allicin, cabbage and isothiocyanates, chickpea seed and its O-methylated isoflavones biochanin A and formononetin, cinnamon, and cinnamaldehyde, saffron and its crocin, crocetin, and safranal, black cumin and its thymoquinone, black pepper and piperine, pistachio and genistein and daidzein, and resveratrol are among the most effective dietary itemsagainst PD. They act through attenuating neurotoxin-induced memory loss and behavioral impairment, oxidative stress, and dopaminergic cell death. PM-recommended foods can help alleviate PD progression and also discovering and developing new neuroprotective anti-PD pharmaceuticals.
Collapse
Affiliation(s)
- Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer's Disease. Nutrients 2022. [PMID: 35215469 DOI: 10.3390/nu14040819.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cognitive impairment, also known as cognitive decline, can occur gradually or suddenly and can be temporary or more permanent. It represents an increasingly important public health problem and can depend on normal aging or be linked to different neurodegenerative disorders, including Alzheimer's disease (AD). It is now well-established that lifestyle factors including dietary patterns play an important role in healthy aging as well as in the prevention of cognitive decline in later life. Among the natural compounds, dietary polyphenols including phenolic acids have been recently the focus of major attention, with their supplementation being associated with better cognitive status and prevention of cognitive decline. Despite their therapeutic potential, human studies investigating the relation between phenolic acids intake and cognitive outcomes are rather scarce. In this review, we provide preclinical evidence that different dietary polyphenols such as rosmarinic acid, ellagic acid, and cinnamic aldehyde can exert neuroprotective and pro-cognitive activities through different molecular mechanisms including the modulation of pro-oxidant and antioxidant machinery as well as inflammatory status. Future and more numerous in vivo studies are needed to strengthen the promising results obtained at the preclinical level. Despite the excellent pharmacokinetic properties of phenolic acids, which are able to be accumulated in the brain at pharmacologically relevant levels, future studies should also identify which among the different metabolites produced as a consequence of phenolic acids' consumption may be responsible for the potential neuroprotective effects of this subgroup of polyphenols.
Collapse
|
14
|
Caruso G, Godos J, Privitera A, Lanza G, Castellano S, Chillemi A, Bruni O, Ferri R, Caraci F, Grosso G. Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer's Disease. Nutrients 2022; 14:nu14040819. [PMID: 35215469 PMCID: PMC8875888 DOI: 10.3390/nu14040819] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Cognitive impairment, also known as cognitive decline, can occur gradually or suddenly and can be temporary or more permanent. It represents an increasingly important public health problem and can depend on normal aging or be linked to different neurodegenerative disorders, including Alzheimer's disease (AD). It is now well-established that lifestyle factors including dietary patterns play an important role in healthy aging as well as in the prevention of cognitive decline in later life. Among the natural compounds, dietary polyphenols including phenolic acids have been recently the focus of major attention, with their supplementation being associated with better cognitive status and prevention of cognitive decline. Despite their therapeutic potential, human studies investigating the relation between phenolic acids intake and cognitive outcomes are rather scarce. In this review, we provide preclinical evidence that different dietary polyphenols such as rosmarinic acid, ellagic acid, and cinnamic aldehyde can exert neuroprotective and pro-cognitive activities through different molecular mechanisms including the modulation of pro-oxidant and antioxidant machinery as well as inflammatory status. Future and more numerous in vivo studies are needed to strengthen the promising results obtained at the preclinical level. Despite the excellent pharmacokinetic properties of phenolic acids, which are able to be accumulated in the brain at pharmacologically relevant levels, future studies should also identify which among the different metabolites produced as a consequence of phenolic acids' consumption may be responsible for the potential neuroprotective effects of this subgroup of polyphenols.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
- Research Operative Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute—IRCCS, 94018 Troina, Italy;
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy;
| | - Alessio Chillemi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, 00185 Rome, Italy;
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology IC, Oasi Research Institute—IRCCS, 94018 Troina, Italy;
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
- Research Operative Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute—IRCCS, 94018 Troina, Italy
- Correspondence:
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| |
Collapse
|
15
|
Trans-cinnamaldehyde suppresses microtubule detyrosination and alleviates cardiac hypertrophy. Eur J Pharmacol 2022; 914:174687. [PMID: 34883072 DOI: 10.1016/j.ejphar.2021.174687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Trans-cinnamaldehyde (TCA) is a main compound of Cinnamomum cassia, used in traditional Chinese medicine to treat many ailments. Increasing evidence has demonstrated the therapeutic effects of TCA in cardiovascular diseases. PURPOSE The present study aimed to determine whether TCA exerts antihypertrophic effects in vitro and in vivo and to elucidate the underlying mechanisms of these effects. METHODS Neonatal rat cardiac myocytes (NRCMs) and adult mouse cardiac myocytes (AMCMs) were treated with 50 μΜ phenylephrine (PE) for 48 h. Tubulin detyrosination, store-operated Ca2+ entry (SOCE), stromal interaction molecule-1 (STIM1)/Orai1 translocation, and calcineurin/nuclear factor of activated T-cells (NFAT) signaling pathways were analyzed in NRCMs. Meanwhile, tubulin detyrosination, junctophilin-2, T-tubule distribution pattern, Ca2+ handling, and sarcomere shortening were observed in AMCMs. Male C57BL/6 mice were stimulated with PE (70 mg/kg per day) with or without TCA treatment for 2 weeks. Cardiac hypertrophy and tubulin detyrosination were also assessed. RESULTS TCA was confirmed to alleviate cardiac hypertrophy induced by PE stimulation in vitro and in vivo. PE-induced cardiac hypertrophy was associated with excessive tubulin detyrosination and overexpression of vasohibin 1 (VASH1) and small vasohibin binding protein (SVBP), two key proteins responsible for tubulin detyrosination. These effects were largely blocked by TCA administration. PE treatment also enhanced SOCE with massive translocation of STIM1 and Orai1, Ca2+ mishandling, reduced sarcomere shortening, junctophilin-2, and T-tubule redistribution, all of which were significantly ameliorated by TCA administration. CONCLUSION Our study indicated that the therapeutic effects of TCA against cardiac hypertrophy may be associated with its ability to reduce tubulin detyrosination.
Collapse
|
16
|
Kuru Bektaşoğlu P, Koyuncuoğlu T, Demir D, Sucu G, Akakın D, Peker Eyüboğlu İ, Yüksel M, Çelikoğlu E, Yeğen BÇ, Gürer B. Neuroprotective Effect of Cinnamaldehyde on Secondary Brain Injury After Traumatic Brain Injury in a Rat Model. World Neurosurg 2021; 153:e392-e402. [PMID: 34224887 DOI: 10.1016/j.wneu.2021.06.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the possible neuroprotective effects of cinnamaldehyde (CA) on secondary brain injury after traumatic brain injury (TBI) in a rat model. METHODS Rats were randomly divided into 4 groups: control (n = 9), TBI (n = 9), vehicle (0.1% Tween 80; n = 8), and CA (100 mg/kg) (n = 9). TBI was induced by the weight-drop model. In brain tissues, myeloperoxidase activity and the levels of luminol-enhanced and lucigenin-enhanced chemiluminescence were measured. Interleukin 1β, interleukin 6, tumor necrosis factor α, tumor growth factor β, caspase-3, and cleaved caspase-3 were evaluated with an enzyme-linked immunosorbent assay method. Brain injury was histopathologically graded after hematoxylin-eosin staining. Y-maze and novel object recognition tests were performed before TBI and within 24 hours of TBI. RESULTS Higher myeloperoxidase activity levels in the TBI group (P < 0.001) were suppressed in the CA group (P < 0.05). Luminol-enhanced and lucigenin-enhanced chemiluminescence, which were increased in the TBI group (P < 0.001, for both), were decreased in the group that received CA treatment (P < 0.001 for both). Compared with the increased histologic damage scores in the cerebral cortex and dentate gyrus of the TBI group (P < 0.001), scores of the CA group were lower (P < 0.001). Decreased number of entries and spontaneous alternation percentage in the Y-maze test of the TBI group (P < 0.05 and P < 0.01, respectively) were not evident in the CA group. CONCLUSIONS CA has shown neuroprotective effects by limiting neutrophil recruitment, suppressing reactive oxygen species and reducing histologic damage and acute hippocampal dysfunction.
Collapse
Affiliation(s)
- Pınar Kuru Bektaşoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey; Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey.
| | - Türkan Koyuncuoğlu
- Department of Physiology, Biruni University Faculty of Medicine, Istanbul, Turkey
| | - Dilan Demir
- Department of Neurosurgery, University of Health Sciences, Kartal Dr. Lutfi Kırdar Education and Research Hospital, Istanbul, Turkey
| | - Gizem Sucu
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Dilek Akakın
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - İrem Peker Eyüboğlu
- Department of Medical Biology, Marmara University School of Medicine, Istanbul, Turkey
| | - Meral Yüksel
- Department of Medical Laboratory, Marmara University Vocational School of Health-Related Services, Istanbul, Turkey
| | - Erhan Çelikoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Bora Gürer
- Department of Neurosurgery, Istinye University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
17
|
Angelopoulou E, Nath Paudel Y, Piperi C, Mishra A. Neuroprotective potential of cinnamon and its metabolites in Parkinson's disease: Mechanistic insights, limitations, and novel therapeutic opportunities. J Biochem Mol Toxicol 2021:e22711. [PMID: 33587308 DOI: 10.1002/jbt.22711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 01/09/2021] [Indexed: 11/08/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder with obscure etiology and no disease-modifying therapy to date. Hence, novel, safe, and low cost-effective approaches employing medicinal plants are currently receiving increased attention. A growing body of evidence has revealed that cinnamon, being widely used as a spice of unique flavor and aroma, may exert neuroprotective effects in several neurodegenerative diseases, including PD. In vitro evidence has indicated that the essential oils of Cinnamomum species, mainly cinnamaldehyde and sodium benzoate, may protect against oxidative stress-induced cell death, reactive oxygen species generation, and autophagy dysregulation, thus acting in a potentially neuroprotective manner. In vivo evidence has demonstrated that oral administration of cinnamon powder and sodium benzoate may protect against dopaminergic cell death, striatal neurotransmitter dysregulation, and motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse models of PD. The underlying mechanisms of its action include autophagy regulation, antioxidant effects, upregulation of Parkin, DJ-1, glial cell line-derived neurotrophic factor, as well as modulation of the Toll-like receptors/nuclear factor-κB pathway and inhibition of the excessive proinflammatory responses. In addition, in vitro and in vivo studies have shown that cinnamon extracts may affect the oligomerization process and aggregation of α-synuclein. Herein, we discuss recent evidence on the novel therapeutic opportunities of this phytochemical against PD, indicating additional mechanistic aspects that should be explored and potential obstacles/limitations that need to be overcome for its inclusion in experimental PD therapeutics.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
18
|
Ahmed WMS, Abdel-Azeem NM, Ibrahim MA, Helmy NA, Radi AM. Neuromodulatory effect of cinnamon oil on behavioural disturbance, CYP1A1, iNOStranscripts and neurochemical alterations induced by deltamethrin in rat brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111820. [PMID: 33385678 DOI: 10.1016/j.ecoenv.2020.111820] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
The objective of this study was to investigate the influence of deltamethrin (DLM)on brain function and to find whether DLM-induced neurotoxicity is prevented by the treatment with cinnamon oil. Four groups of ten Wistar albino male rats each were used. Group I (control) received saline only. Group II received cinnamon oil alone at 0.5 mg/kg B.W. intraperitonally, whereas Group III received orally DLM alone at 6 mg/kg B.W. Groups IV was treated with cinnamon oil plus DLM for 21 days to induce neurotoxicity. Rat behaviour, brain acetylcholine esterase (AChE), serotonin, oxidative stress profile were assessed. Serum sampling for the assessment of corticosterone concentration was also carried out. Finally, we demonstrate the gene expression of CYP1A1 and iNOS and the histological picture of the brain. Considering the behaviour assessment, DLM administration alone caused neurobehavioral deficits manifested by anxiety-like behavior which represented ina marked decrease in the sleeping frequency and duration, and marked increase the digging frequency and a wake non-active behavior duration. Moreover, the open field result showed a significant decrease in central square entries and duration. The neurochemical analysis revealed that DLM significantly suppressed AChE activity and elevated serotonin and corticosterone concentrations. Furthermore, results revealed thatthe brain reduced glutathione (GSH) content, superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentration were significantly altered in DLM treated rats. Neurochemical disturbances were confirmed by histopathological changes in the brain. Furthermore, DLM up-regulates the mRNA expression of brain CYP1A1 and iNOS. Co-treatment with cinnamon oil exhibited significant improvement in behavioural performance and the brain antioxidant capacities with an increase in AChE activity and diminished the concentration of serotonin, serum corticosterone and MDA. Cinnamon oil treatment resulted in down-regulation of CYP1A1 and iNOS and improve the histologically picture. In conclusion, cinnamon oil ameliorated DLM-induced neurotoxicity through preventing oxidative stress-induced genotoxicity and apoptosis of brain in rats.
Collapse
Affiliation(s)
- Walaa M S Ahmed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Naglaa M Abdel-Azeem
- Department of Animal and Poultry Management and Wealth Development, Faculty of Veterinary Medicine,Beni-Suef University, Beni-Suef 62511, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza Egypt
| | - Nermeen A Helmy
- Department of Physiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abeer M Radi
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
19
|
Angelopoulou E, Paudel YN, Piperi C, Mishra A. Neuroprotective potential of cinnamon and its metabolites in Parkinson's disease: Mechanistic insights, limitations, and novel therapeutic opportunities. J Biochem Mol Toxicol 2021; 35:e22720. [PMID: 33491302 DOI: 10.1002/jbt.22720] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/21/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder with obscure etiology and no disease-modifying therapy to date. Hence, novel, safe, and low cost-effective approaches employing medicinal plants are currently receiving increased attention. A growing body of evidence has revealed that cinnamon, being widely used as a spice of unique flavor and aroma, may exert neuroprotective effects in several neurodegenerative diseases, including PD. In vitro evidence has indicated that the essential oils of Cinnamomum species, mainly cinnamaldehyde and sodium benzoate may protect against oxidative stress-induced cell death, reactive oxygen species generation, and autophagy dysregulation, thus acting in a potentially neuroprotective manner. In vivo evidence has demonstrated that oral administration of cinnamon powder and sodium benzoate may protect against dopaminergic cell death, striatal neurotransmitter dysregulation, and motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse models of PD. The underlying mechanisms of its action include autophagy regulation, antioxidant effects, upregulation of Parkin, DJ-1, glial cell line-derived neurotrophic factor, as well as modulation of the TLR/NF-κB pathway and inhibition of the excessive proinflammatory responses. In addition, in vitro and in vivo studies have shown that cinnamon extracts may affect the oligomerization process and aggregation of α-synuclein. Herein, we discuss recent evidence on the novel therapeutic opportunities of this phytochemical against PD, indicating additional mechanistic aspects that should be explored, and potential obstacles/limitations that need to be overcome, for its inclusion in experimental PD therapeutics.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam N Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
20
|
Mosaddeghi P, Eslami M, Farahmandnejad M, Akhavein M, Ranjbarfarrokhi R, Khorraminejad-Shirazi M, Shahabinezhad F, Taghipour M, Dorvash M, Sakhteman A, Zarshenas MM, Nezafat N, Mobasheri M, Ghasemi Y. A systems pharmacology approach to identify the autophagy-inducing effects of Traditional Persian medicinal plants. Sci Rep 2021; 11:336. [PMID: 33431946 PMCID: PMC7801619 DOI: 10.1038/s41598-020-79472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
Aging is correlated with several complex diseases, including type 2 diabetes, neurodegeneration diseases, and cancer. Identifying the nature of this correlation and treatment of age-related diseases has been a major subject of both modern and traditional medicine. Traditional Persian Medicine (TPM) embodies many prescriptions for the treatment of ARDs. Given that autophagy plays a critical role in antiaging processes, the present study aimed to examine whether the documented effect of plants used in TPM might be relevant to the induction of autophagy? To this end, the TPM-based medicinal herbs used in the treatment of the ARDs were identified from modern and traditional references. The known phytochemicals of these plants were then examined against literature for evidence of having autophagy inducing effects. As a result, several plants were identified to have multiple active ingredients, which indeed regulate the autophagy or its upstream pathways. In addition, gene set enrichment analysis of the identified targets confirmed the collective contribution of the identified targets in autophagy regulating processes. Also, the protein-protein interaction (PPI) network of the targets was reconstructed. Network centrality analysis of the PPI network identified mTOR as the key network hub. Given the well-documented role of mTOR in inhibiting autophagy, our results hence support the hypothesis that the antiaging mechanism of TPM-based medicines might involve autophagy induction. Chemoinformatics study of the phytochemicals using docking and molecular dynamics simulation identified, among other compounds, the cyclo-trijuglone of Juglans regia L. as a potential ATP-competitive inhibitor of mTOR. Our results hence, provide a basis for the study of TPM-based prescriptions using modern tools in the quest for developing synergistic therapies for ARDs.
Collapse
Affiliation(s)
- Pouria Mosaddeghi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahboobeh Eslami
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Mitra Farahmandnejad
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahshad Akhavein
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Ratin Ranjbarfarrokhi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadhossein Khorraminejad-Shirazi
- grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Farbod Shahabinezhad
- grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadjavad Taghipour
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadreza Dorvash
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Amirhossein Sakhteman
- grid.412571.40000 0000 8819 4698Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.9668.10000 0001 0726 2490Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mohammad M. Zarshenas
- grid.412571.40000 0000 8819 4698Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Meysam Mobasheri
- grid.472338.9Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Islamic Azad University of Medical Sciences, Tehran, Iran ,Iranian Institute of New Sciences (IINS), Tehran, Iran
| | - Younes Ghasemi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| |
Collapse
|
21
|
Natural Cinnamaldehyde and Its Derivatives Ameliorate Neuroinflammatory Pathways in Neurodegenerative Diseases. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1034325. [PMID: 33274192 PMCID: PMC7683109 DOI: 10.1155/2020/1034325] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/15/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are devastating and incurable disorders characterized by neuronal dysfunction. The major focus of experimental and clinical studies are conducted on the effects of natural products and their active components on neurodegenerative diseases. This review will discuss an herbal constituent known as cinnamaldehyde (CA) with the neuroprotective potential to treat neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Accumulating evidence supports the notion that CA displays neuroprotective effects in AD and PD animal models by modulating neuroinflammation, suppressing oxidative stress, and improving the synaptic connection. CA exerts these effects through its action on multiple signaling pathways, including TLR4/NF-κB, NLRP3, ERK1/2-MEK, NO, and Nrf2 pathways. To summarize, CA and its derivatives have been shown to improve pathological changes in AD and PD animal models, which may provide a new therapeutic option for neurodegenerative interventions. To this end, further experimental and clinical studies are required to prove the neuroprotective effects of CA and its derivatives.
Collapse
|
22
|
Trans-Cinnamaldehyde Alleviates Amyloid-Beta Pathogenesis via the SIRT1-PGC1α-PPARγ Pathway in 5XFAD Transgenic Mice. Int J Mol Sci 2020; 21:ijms21124492. [PMID: 32599846 PMCID: PMC7352815 DOI: 10.3390/ijms21124492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Abnormal amyloid-β (Aβ) accumulation is the most significant feature of Alzheimer’s disease (AD). Among the several secretases involved in the generation of Aβ, β-secretase (BACE1) is the first rate-limiting enzyme in Aβ production that can be utilized to prevent the development of Aβ-related pathologies. Cinnamon extract, used in traditional medicine, was shown to inhibit the aggregation of tau protein and Aβ aggregation. However, the effect of trans-cinnamaldehyde (TCA), the main component of cinnamon, on Aβ deposition is unknown. Five-month-old 5XFAD mice were treated with TCA for eight weeks. Seven-month-old 5XFAD mice were evaluated for cognitive and spatial memory function. Brain samples collected at the conclusion of the treatment were assessed by immunofluorescence and biochemical analyses. Additional in vivo experiments were conducted to elucidate the mechanisms underlying the effect of TCA in the role of Aβ deposition. TCA treatment led to improvements in cognitive impairment and reduced Aβ deposition in the brains of 5XFAD mice. Interestingly, the levels of BACE1 were decreased, whereas the mRNA and protein levels of three well-known regulators of BACE1, silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC1α), and PPARγ, were increased in TCA-treated 5XFAD mice. TCA led to an improvement in AD pathology by reducing BACE1 levels through the activation of the SIRT1-PGC1α-PPARγ pathway, suggesting that TCA might be a useful therapeutic approach in AD.
Collapse
|
23
|
Mok SWF, Wong VKW, Lo HH, de Seabra Rodrigues Dias IR, Leung ELH, Law BYK, Liu L. Natural products-based polypharmacological modulation of the peripheral immune system for the treatment of neuropsychiatric disorders. Pharmacol Ther 2020; 208:107480. [DOI: 10.1016/j.pharmthera.2020.107480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023]
|
24
|
Ramazani E, YazdFazeli M, Emami SA, Mohtashami L, Javadi B, Asili J, Tayarani-Najaran Z. Protective effects of Cinnamomum verum, Cinnamomum cassia and cinnamaldehyde against 6-OHDA-induced apoptosis in PC12 cells. Mol Biol Rep 2020; 47:2437-2445. [DOI: 10.1007/s11033-020-05284-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/31/2022]
|
25
|
Günaydın C, Arslan G, Bilge SS. Proconvulsant effect of trans-cinnamaldehyde in pentylenetetrazole-induced kindling model of epilepsy: The role of TRPA1 channels. Neurosci Lett 2020; 721:134823. [PMID: 32035165 DOI: 10.1016/j.neulet.2020.134823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/27/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily, is widely distributed in the central nervous system (CNS) and plays an important role in pain and inflammation. However, no data has been reported regarding the effects of TRPA1 on epileptic seizures. Thus, this study was designed to investigate the sub-chronic effect of trans-cinnamaldehyde (TCA), an agonist of TRPA1, in pentylenetetrazole (PTZ) induced kindling model via electrocorticography (ECoG). Furthermore, the expressions of cAMP response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), and NMDA receptor subunit NR2B were measured using Western blotting. Rats were kindled by intraperitoneal (i.p.) PTZ (35 mg/kg) injections. After electrode implantation and healing period, 10 and 30 mg/kg TCA was given i.p. for 14 consecutive days. On the next day, ECoG recordings were obtained after the injection of PTZ (35 mg/kg, i.p.), and twenty-four hours later, rats were decapitated for molecular analyses. TCA, at a dose of 30 mg/kg, decreased the first myoclonic jerk latency and increased seizure duration and total spike activity. Additionally, both doses of TCA enhanced CREB, BDNF, and NR2B expressions, which were increased by the kindling. The evidence from this study suggests that long term activation of TRPA1 channels causes an exacerbated seizure activity. Moreover, PTZ-induced increases in CREB, BDNF, and NR2B levels were enhanced by the repeated administrations of TCA.
Collapse
Affiliation(s)
- Caner Günaydın
- Department of Pharmacology, School of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Gökhan Arslan
- Department of Physiology, School of Medicine, Ondokuz Mayis University, Samsun, Turkey.
| | - S Sırrı Bilge
- Department of Pharmacology, School of Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
26
|
Neto JGO, Boechat SK, Romão JS, Pazos-Moura CC, Oliveira KJ. Treatment with cinnamaldehyde reduces the visceral adiposity and regulates lipid metabolism, autophagy and endoplasmic reticulum stress in the liver of a rat model of early obesity. J Nutr Biochem 2019; 77:108321. [PMID: 31869758 DOI: 10.1016/j.jnutbio.2019.108321] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Nutrition at early stages of life contributes to the alarming incidence of childhood obesity, insulin resistance and hepatoesteatosis. Cinnamaldehyde, major component of cinnamon, increases insulin sensitivity and modulates adiposity and lipid metabolism. The aim of this study was to analyze the impact of cinnamaldehyde treatment during adolescence in a rat model of early obesity. Litter size reduction was used to induce overfeeding and early obesity. At postnatal day 30 (adolescence), the male Wistar rats received cinnamaldehyde by gavage (40 mg/kg of body weight/day) for 29 days and were studied at the end of treatment at 60 days old or 4 months thereafter (180 days old). At 60 days of age, the treatment with cinnamaldehyde promoted reduced visceral adiposity, serum triacylglycerol, and attenuation of energy efficiency and insulin resistance. In the liver, it reduced lipid synthesis, stimulated autophagy and reduced ER stress. At 180 days of age, animals treated with cinnamaldehyde during the adolescence exhibited normalization of visceral adiposity and energy efficiency, and attenuation of hyperphagia, serum hypertriglyceridemia and hepatic triacylglycerol content, with molecular markers indicative of reduced hepatic synthesis. However, the beneficial effect observed at 60 days of age on glucose homeostasis, autophagy and ER stress was lost. Therefore, the cinnamaldehyde supplementation during the adolescence has short- and long-term metabolic beneficial effects, highlighting its potential as an adjuvant in the treatment of early obesity.
Collapse
Affiliation(s)
- Jessika Geisebel Oliveira Neto
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Rua Hernani Pires de Melo, 101, São domingos, Niterói, 24210-130, RJ, Brazil
| | - Silvia Karl Boechat
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Rua Hernani Pires de Melo, 101, São domingos, Niterói, 24210-130, RJ, Brazil
| | - Juliana Santos Romão
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Rua Hernani Pires de Melo, 101, São domingos, Niterói, 24210-130, RJ, Brazil
| | - Carmen Cabanelas Pazos-Moura
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Ilha do Fundão, Rio de Janeiro,21949-900, RJ, Brazil
| | - Karen Jesus Oliveira
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Rua Hernani Pires de Melo, 101, São domingos, Niterói, 24210-130, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Ilha do Fundão, Rio de Janeiro,21949-900, RJ, Brazil.
| |
Collapse
|
27
|
Lee SB, Youn J, Jang W, Yang HO. Neuroprotective effect of anodal transcranial direct current stimulation on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice through modulating mitochondrial dynamics. Neurochem Int 2019; 129:104491. [PMID: 31229553 DOI: 10.1016/j.neuint.2019.104491] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/07/2019] [Accepted: 06/16/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the accumulation of protein inclusions and the loss of dopaminergic neurons. Abnormal mitochondrial homeostasis is thought to be important for the pathogenesis of PD. Transcranial direct current stimulation (tDCS), a noninvasive brain stimulation technique, constitutes a promising approach for promoting recovery of various neurological conditions. However, little is known about its mechanism of action. The present study elucidated the neuroprotective effects of tDCS on the mitochondrial quality control pathway in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. We used the MPTP-induced neurotoxicity in vivo model. Mice were stimulated for 5 consecutive days with MPTP treatment. After observation of behavioral alteration using the rotarod test, mice were sacrificed for the measurement of the PD- and mitochondrial quality control-related protein levels in the substantia nigra. tDCS improved the behavioral alterations and changes in tyrosine hydroxylase levels in MPTP-treated mice. Furthermore, tDCS attenuated mitochondrial damage, as indicated by diminished mitochondrial swelling and mitochondrial glutamate dehydrogenase activity in the MPTP-induced PD mouse model. MPTP significantly increased mitophagy and decreased mitochondrial biogenesis-related proteins. These changes were attenuated by tDCS. Furthermore, MPTP significantly increased fission-related protein dynamin-related protein 1 with no effect on fusion-related protein mitofusin-2, and tDCS attenuated these changes. Our findings demonstrated the neuroprotective effect of anodal tDCS on the MPTP-induced neurotoxic mouse model through suppressing excessive mitophagy and balancing mitochondrial dynamics. The neuroprotective effect of anodal tDCS with modulation of mitochondrial dynamics provides a new therapeutic strategy for the treatment of PD.
Collapse
Affiliation(s)
- Sang-Bin Lee
- Natural Medicine Center, Korea Institute of Science and Technology, Gangneung, 25457, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Wooyoung Jang
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea.
| | - Hyun Ok Yang
- Natural Medicine Center, Korea Institute of Science and Technology, Gangneung, 25457, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
28
|
Oveissi V, Ram M, Bahramsoltani R, Ebrahimi F, Rahimi R, Naseri R, Belwal T, Devkota HP, Abbasabadi Z, Farzaei MH. Medicinal plants and their isolated phytochemicals for the management of chemotherapy-induced neuropathy: therapeutic targets and clinical perspective. Daru 2019; 27:389-406. [PMID: 30852764 PMCID: PMC6593128 DOI: 10.1007/s40199-019-00255-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/26/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Chemotherapy, as one of the main approaches of cancer treatment, is accompanied with several adverse effects, including chemotherapy-induced peripheral neuropathy (CIPN). Since current methods to control the condition are not completely effective, new treatment options should be introduced. Medicinal plants can be suitable candidates to be assessed regarding their effects in CIPN. Current paper reviews the available preclinical and clinical studies on the efficacy of herbal medicines in CIPN. METHODS Electronic databases including PubMed, Scopus, and Cochrane library were searched with the keywords "neuropathy" in the title/abstract and "plant", "extract", or "herb" in the whole text. Data were collected from inception until April 2018. RESULTS Plants such as chamomile (Matricaria chamomilla L.), sage (Salvia officinalis L.), cinnamon (Cinnamomum cassia (L.) D. Don), and sweet flag (Acorus calamus L.) as well as phytochemicals like matrine, curcumin, and thioctic acid have demonstrated beneficial effects in animal models of CIPN via prevention of axonal degeneration, decrease in total calcium level, improvement of endogenous antioxidant defense mechanisms such as superoxide dismutase and reduced glutathione, and regulation of neural cell apoptosis, nuclear factor-ĸB, cyclooxygenase-2, and nitric oxide signaling. Also, five clinical trials have evaluated the effect of herbal products in patients with CIPN. CONCLUSIONS There are currently limited clinical evidence on medicinal plants for CIPN which shows the necessity of future mechanistic studies, as well as well-designed clinical trial for further confirmation of the safety and efficacy of herbal medicines in CIPN. Graphical abstract Schematic mechanisms of medicinal plants to prevent chemotherapy-induced neuropathy: NO: nitric oxide, TNF: tumor necrosis factor, PG: prostaglandin, NF-ĸB: nuclear factor kappa B, LPO: lipid peroxidation, ROS: reactive oxygen species, COX: cyclooxygenase, IL: interleukin, ERK: extracellular signal-related kinase, X: inhibition, ↓: induction.
Collapse
Affiliation(s)
- Vahideh Oveissi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahboobe Ram
- Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Ebrahimi
- Pharmacy Students' Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rozita Naseri
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tarun Belwal
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, 263643, India
| | - Hari Prasad Devkota
- School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo ku, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools, Health life science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, 5-1 Oe-honmachi, Chuo ku, Kumamoto, 862-0973, Japan
| | - Zahra Abbasabadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
29
|
Raza C, Anjum R, Shakeel NUA. Parkinson's disease: Mechanisms, translational models and management strategies. Life Sci 2019; 226:77-90. [PMID: 30980848 DOI: 10.1016/j.lfs.2019.03.057] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder. The classical motor symptoms include resting tremors, bradykinesia, rigidity and postural instability and are accompanied by the loss of dopaminergic neurons and Lewy pathology. Diminished neurotransmitter level, oxidative stress, mitochondrial dysfunction and perturbed protein homeostasis over time worsen the disease manifestations in elderly people. Current management strategies aim to provide symptomatic relief and to slow down the disease progression. However, no pharmacological breakthrough has been made to protect dopaminergic neurons and associated motor circuitry components. Deep brain stimulation, stem cells-derived dopaminergic neurons transplantation, gene editing and gene transfer remain promising approaches for the potential management of neurodegenerative disease. Toxin or genetically induced rodent models replicating Parkinson's disease pathology are of high predictive value for translational research. This review addresses the current understanding, management strategies and the Parkinson's disease models for translational research. Preclinical research may provide powerful tools to quest the potential therapeutic and neuroprotective compounds for dopaminergic neurons and hence possible cure for the Parkinson's disease.
Collapse
Affiliation(s)
- Chand Raza
- Department of Zoology, Government College University, Lahore 54000, Pakistan.
| | - Rabia Anjum
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Noor Ul Ain Shakeel
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|