1
|
Fang JR, Chen CL, Chen YQ, Luo SK. Inhibition of Small Extracellular Vesicles by GW4869 Does not Disrupt the Paracrine Regulation of Adipose-Derived Mesenchymal Stem Cells Over Keloid Fibroblasts. Aesthetic Plast Surg 2024:10.1007/s00266-024-04477-1. [PMID: 39496963 DOI: 10.1007/s00266-024-04477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Keloid, scar caused by atypical wound repair, represents a significant difficulty for specialists in plastic surgery and dermatology. Adipose-derived mesenchymal stem cells (ADSCs) can regulate fibrotic phenotypes of keloid fibroblasts (KFs) in a paracrine fashion, but whether small extracellular vesicles (SEVs) are the key functional carrier in ADSC paracrine regulation of KFs remains unknown. This study aims to explore whether the regulatory effects of conditioned medium (CM) obtained from ADSCs on KFs can be impaired by decreased SEV content in the ADSC-CM. METHODS Clinical specimens were utilized to extract keloid fibroblasts (KFs), normal fibroblasts (NFs), and adipose-derived stem cells (ADSCs). Fibroblasts were cultured with CM obtained from ADSCs untreated or treated with the sphingomyelinase inhibitor GW4869. The features of SEVs derived from ADSC-CM were characterized, and fibroblast proliferation, migration, apoptosis, and expression of ECM proteins were analyzed. RESULTS The sphingomyelinase inhibitor GW4869 successfully reduced the SEV content in ADSC-CM, and both control ADSC-CM and ADSC-CM with reduced SEV content significantly inhibited KF proliferation, migration, and α-SMA synthesis but not KF apoptosis, whereas only NF proliferation was inhibited by ADSC-CM. The reduced SEV content only affected the inhibition of KF proliferation induced by ADSC-CM. CONCLUSION ADSC-CM inhibits various fibrotic phenotypes of KFs, but decreasing the SEV content in ADSC-CM did not significantly alter the antifibrotic effects of ADSC-CM. Thus, SEVs may not be the key mediator of ADSCs paracrine regulation of KFs. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors . www.springer.com/00266 .
Collapse
Affiliation(s)
- Jun-Ren Fang
- Second School of Clinical Medicine, Southern Medical University, Guangzhou City, Guangdong Province, China
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, 510317, Guangdong Province, China
| | - Chun-Lin Chen
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, 510317, Guangdong Province, China
| | - Yi-Qing Chen
- Second School of Clinical Medicine, Southern Medical University, Guangzhou City, Guangdong Province, China
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, 510317, Guangdong Province, China
| | - Sheng-Kang Luo
- Second School of Clinical Medicine, Southern Medical University, Guangzhou City, Guangdong Province, China.
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, 510317, Guangdong Province, China.
| |
Collapse
|
2
|
You SJ, Li S, Hu CM, Zhong FY, Gan SH, Cai Y, Xiang XY. Safety and efficacy of intralesional bleomycin for keloids and hypertrophic scars: A systematic review and meta-analysis. J Cosmet Dermatol 2024; 23:3444-3455. [PMID: 39205503 DOI: 10.1111/jocd.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Bleomycin, originally an antitumor drug, was explored as a pathological scar treatment in the mid-1990s. However, its efficacy and safety profile varies among individuals. AIMS This study aimed to assess topical bleomycin's efficacy and safety in treating hypertrophic scars and keloids. METHODS We reviewed randomized controlled trials (RCTs) and controlled clinical trials (CCTs) published in English, comparing intralesional bleomycin to placebos or common intralesional scar treatments. Primary outcomes included percentage change in scar improvement, pigmentation, recurrence, atrophy, pain, telangiectasia, ulceration, patient self-assessment, and observer assessment (>50%). RESULTS Six trials met the criteria. Bleomycin significantly improved scar reduction compared to triamcinolone (p < 0.05). There was no significant difference in pigmentation (p = 0.05) and recurrence (p = 0.21) compared to other treatments. In terms of safety, bleomycin caused less skin atrophy (p < 0.01) and telangiectasia (p < 0.01) but more pain (p = 0.03) than other treatments. CONCLUSIONS Bleomycin was more effective than TAC, 5-FU, or TAC combined with 5-FU for treating keloids and hypertrophic scars with lower skin atrophy and telangiectasia risks. However, it may cause more pain than 5-FU or TAC. Further comprehensive studies, including RCTs, are required for objective analysis.
Collapse
Affiliation(s)
- Shun Jie You
- Plastic and Reconstructive Surgery & Burns, Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Si Li
- Dermatology, Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Chen Ming Hu
- Department of Vascular Surgery Dazhou, Sichuan, Nanchong, China
| | - Fang Yu Zhong
- Plastic and Reconstructive Surgery & Burns, Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Shi Han Gan
- Plastic and Reconstructive Surgery & Burns, Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Yan Cai
- Genetics and Prenatal Diagnosis Center, Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Xiao Yan Xiang
- Plastic and Reconstructive Surgery & Burns, Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| |
Collapse
|
3
|
Yudintceva NM, Kolesnichenko YV, Shatrova AN, Aksenov ND, Yartseva NM, Shevtsov MA, Fedorov VS, Khotin MG, Ziganshin RH, Mikhailova NA. Characterization and Physiological Differences of Two Primary Cultures of Human Normal and Hypertrophic Scar Dermal Fibroblasts: A Pilot Study. Biomedicines 2024; 12:2295. [PMID: 39457608 PMCID: PMC11504723 DOI: 10.3390/biomedicines12102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Dermal fibroblasts (DFs) are key participants in skin hypertrophic scarring, and their properties are being studied to identify the molecular and cellular mechanisms underlying the pathogenesis of skin scarring. Methods: In the present work, we performed a comparative analysis of DFs isolated from normal skin (normal dermal fibroblasts, NDFs), and hypertrophic scar skin (hypertrophic scar fibroblasts, HTSFs). The fibroblasts were karyotyped and phenotyped, and experiments on growth rate, wound healing, and single-cell motility were conducted. Results: Comparative analysis revealed a minor karyotype difference between cells. However, HTSFs are characterized by higher proliferation level and motility compared to NDFs. These significant differences may be associated with quantitative and qualitative differences in the cell secretome. A proteomic comparison of NDF and HTSF found that differences were associated with metabolic proteins reflecting physiological differences between the two cells lines. Numerous unique proteins were found only in the vesicular phase of vHTSFs. Some proteins involved in cell proliferation (protein-glutamine gamma-glutamyltransferase K) and cell motility (catenin delta-1), which regulate gene transcription and the activity of Rho family GTPases and downstream cytoskeletal dynamics, were identified. A number of proteins which potentially play a role in fibrosis and inflammation (mucin-5B, CD97, adhesion G protein-coupled receptor E2, antileukoproteinase, protein S100-A8 and S100-A9, protein caspase recruitment domain-containing protein 14) were detected in vHTSFs. Conclusions: A comparative analysis of primary cell cultures revealed their various properties, especially in the cell secretome. These proteins may be considered promising target molecules for developing treatment or prevention strategies for pathological skin scarring.
Collapse
Affiliation(s)
- Natalia M. Yudintceva
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Yulia V. Kolesnichenko
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Alla N. Shatrova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Nikolay D. Aksenov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Natalia M. Yartseva
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Maxim A. Shevtsov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
- School of Medicine and Life Sciences, Far Eastern Federal University, Campus 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Viacheslav S. Fedorov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Mikhail G. Khotin
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia;
| | - Natalia A. Mikhailova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| |
Collapse
|
4
|
Park JH, Jeong JW, Park JU. Efficacy of Nd:YAG Laser and Intralesional Triamcinolone Injection Combination Therapy in the Postoperative Management of Keloids. Aesthetic Plast Surg 2024:10.1007/s00266-024-04433-z. [PMID: 39373734 DOI: 10.1007/s00266-024-04433-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Keloids, characterized by protruding scars that extend beyond the original skin damage site, cause significant emotional stress and reduced quality of life. Their exact pathogenesis remains unclear, with various hypotheses including growth factor imbalances and extracellular matrix changes. No single treatment is universally accepted, but multiple modalities like triamcinolone acetonide injection (TAC), laser therapies, and surgery are commonly used. METHODS This retrospective study involved East Asian patients who underwent keloid scar excision between March 2019 and June 2022. Patients were divided into two groups: one receiving only TAC injections and the other a combination of TAC and Nd:YAG laser therapy. The efficacy of treatments was evaluated using the modified Vancouver Scar Scale (mVSS) and the Patient and Observer Scar Assessment Scale (POSAS), with follow-ups at six and twelve months after operation. RESULTS The study involved 111 patients. Both treatment groups showed significant improvements in mVSS and POSAS scores, but the combination therapy group demonstrated a statistically significant improvement in POSAS scores and lower recurrence rates at 12 months compared to the TAC-only group. However, there was no significant difference in patient satisfaction between the groups. CONCLUSION Dual therapy involving TAC injection and Nd:YAG laser treatment was more effective than TAC injection alone for managing keloid scars after surgery. This combination therapy showed better outcomes in preventing keloid recurrence and improving scar status at 12 months after operation, along with significant improvements in patient-reported outcomes. LEVEL OF EVIDENCE II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Jun Ho Park
- Department of Plastic and Reconstructive Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, 07061, Republic of Korea
| | - Ji Won Jeong
- Department of Plastic and Reconstructive Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, 07061, Republic of Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, 07061, Republic of Korea.
| |
Collapse
|
5
|
Chen Z, Gao J, Li L. New challenges in scar therapy: the novel scar therapy strategies based on nanotechnology. Nanomedicine (Lond) 2024; 19:2413-2432. [PMID: 39325688 PMCID: PMC11492664 DOI: 10.1080/17435889.2024.2401768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The pathological mechanism of pathological scar is highly complex, encompassing the abnormalities of diverse cytokines, signaling pathways and regulatory factors. To discover more preferable scar treatment options, a variety of distinct approaches have been utilized clinically. Nevertheless, these treatments possess certain side effects and are inclined to relapse. Presently, pathological scar treatment remains a clinical conundrum, and there is an urgent demand for treatment methods that are safe, less traumatic and have lower recurrence rates. New drug delivery systems, novel therapeutic drugs and therapy strategies can enable drugs to permeate the skin effectively, decrease side effects, enhance drug efficacy and even achieve pain-free self-administration. Currently, novel nanotechnologies such as nanomicroneedles, photodynamics mediated by novel photosensitizers, bioelectrical stimulation and 3D printed dressings have been developed for the effective treatment of pathological scars. Additionally, innovative nanoscale fillers, including nano-fat and engineered exosomes, can serve as novel therapeutic agents for the efficient treatment of pathological scars. The intervention of nanomaterials can enhance drug absorption, stabilize and safeguard the active ingredients of drugs, delay or control drug release and enhance bioavailability. This article reviews these new treatment strategies for scar to explore novel approaches for efficient and safe for keloid treatment.
Collapse
Affiliation(s)
- Zhuoyang Chen
- The second clinical college, China Medical University, Shenyang, PR China
| | - Jia Gao
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China
| | - Lili Li
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China
| |
Collapse
|
6
|
Zhang Y, Liu E, Gao H, He Q, Chen A, Pang Y, Zhang X, Bai S, Zeng J, Guo J. Natural products for the treatment of hypertrophic scars: Preclinical and clinical studies. Heliyon 2024; 10:e37059. [PMID: 39296083 PMCID: PMC11408005 DOI: 10.1016/j.heliyon.2024.e37059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Hypertrophic scarring (HS) is a complication of wound healing that causes physiological and psychological distress in patients. However, the possible mechanism underlying HS is not fully understood, and there is no gold standard for its treatment. Natural products are more effective, economical, convenient, and safe than existing drugs, and they have a wide application prospect. However, there is a lack of literature on this topic, so we reviewed in vivo, in vitro, and clinical studies and screened natural products showing beneficial effects on HS that can become potential therapeutic agents for HS to fill in the gaps in the field. In addition, we discussed the drug delivery systems related to these natural products and their mechanisms in the treatment of HS. Generally speaking, natural products inhibit inflammation, myofibroblast activation, angiogenesis, and collagen accumulation by targeting interleukins, tumor necrosis factor-α, vascular endothelial growth factors, platelet-derived growth factors, and matrix metalloproteinases, so as to play an anti-HS effects of natural products are attributed to their anti-inflammatory, anti-proliferative, anti-angiogenesis, and pro-apoptotic (enhancing apoptosis and autophagy) roles, thus treating HS. We also screened the potential therapeutic targets of these natural compounds for HS through network pharmacology and constructed a protein-protein interaction (PPI) network, which may provide clues for the pharmacological mechanism of natural products in treating this disease and the development and application of drugs.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - E Liu
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | | | - Qingying He
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Anjing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Yaobing Pang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Xueer Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Sixian Bai
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| |
Collapse
|
7
|
Slavinsky V, Wong JH, Carney BC, Lee DT, Allely R, Shupp JW, Tejiram S, Travis TE. Addressing Burn Hypertrophic Scar Symptoms Earlier: Laser Scar Revision May Begin as Early as 3-6 Months After Injury. Lasers Surg Med 2024; 56:632-641. [PMID: 38973144 DOI: 10.1002/lsm.23822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVES Fractional ablative CO2 laser (FLSR) is used to treat hypertrophic scars (HTSs) resulting from burn injuries, which are characterized by factors, such as erythema, contracture, thickness, and symptoms of pain and itch. Traditionally, waiting a year after injury for scar maturation before starting laser treatment has been recommended; however, the potential benefits of earlier intervention have gained popularity. Still, the optimal timing for beginning laser intervention in patients with HTSs remains uncertain. This study aims to evaluate the ideal timing for the initiation of FLSR for HTSs using several qualitative and quantitative assessment measures. It was hypothesized that early intervention would lead to similar improvement trends as later intervention, however, would be more ideal due to the shortened time without symptom relief for patients. METHODS Patients who received three or more laser treatment sessions and completed both pre- and posttreatment evaluations were included in this analysis (n = 69). FLSR treatment was administered at 4-8-week intervals. Patients starting treatment before 6 months after injury were classified as the early-stage intervention group and those beginning treatment at 6-12 months after injury were classified as the late-stage intervention group. Demographic data, including the age of patients at the time of first treatment, age of scars at the time of first treatment, biological sex, ethnicity, Fitzpatrick skin type, and use of laser-assisted drug delivery, were collected by retrospective chart review. Patients were evaluated on six subjective scales and objectively for scar stiffness with durometry. For all scales, higher scores indicate worse scars. A two-way ANOVA, Student's t-test, and Mann-Whitney U-test were used to compare scores from the pre- to posttreatment evaluations. RESULTS There were no significant differences between the groups for any of the demographic or scar-specific variables; thus, differences in outcome can be attributed to the timing of intervention. Both groups demonstrated an improvement in scars with treatment over time (p < 0.05). Both early- and middle-stage initiation showed scar symptom improvement in five out of six scales. In the late-stage intervention, the Patient and Observer Scar Assessment Scale-Patient average score did not show improvement. In the early-stage intervention, the Vancouver Scar Scale total did not show improvement. Quantitative evaluation of scar stiffness by durometry did not show symptom improvement in either group. The Scar Comparison Scale demonstrated the greatest improvement across groups. CONCLUSION Laser treatment led to scar improvement in at least one scale at each stage of initiation. Both intervention timelines resulted in equivalent outcomes, and early intervention should be considered when initiating FLSR treatment in burn scars to alleviate symptoms earlier.
Collapse
Affiliation(s)
- Victoria Slavinsky
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- Georgetown University School of Medicine, Washington, DC, USA
| | - Jasmine H Wong
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- Georgetown University School of Medicine, Washington, DC, USA
| | - Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- Department of Biochemistry, Georgetown University School of Medicine, Washington, DC, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Davon T Lee
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- Howard University College of Medicine, Washington, DC, USA
| | - Rebekah Allely
- Department of Surgery, The Burn Center, MedStar Washington Hospital Center, Washington, DC, USA
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- Department of Biochemistry, Georgetown University School of Medicine, Washington, DC, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
- Department of Surgery, The Burn Center, MedStar Washington Hospital Center, Washington, DC, USA
- Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Shawn Tejiram
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
- Department of Surgery, The Burn Center, MedStar Washington Hospital Center, Washington, DC, USA
- Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Taryn E Travis
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
- Department of Surgery, The Burn Center, MedStar Washington Hospital Center, Washington, DC, USA
- Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
8
|
Xie Y, Chen Y, Hong Y, Chen Q. Effect of trapezoidal excision combined with modified embedded vertical mattress suture technique on postoperative scar formation after cesarean section. Am J Transl Res 2024; 16:3812-3821. [PMID: 39262742 PMCID: PMC11384344 DOI: 10.62347/mgkq5295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/13/2024] [Indexed: 09/13/2024]
Abstract
To study the impact of modified embedded vertical mattress suture technique in conjunction with trapezoidal resection on the formation of scars after cesarean section. This retrospective study involved 339 pregnant women who had cesarean sections at the Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University from September 2020 to August 2023. Among them, 150 patients who received traditional subcutaneous fat layer discontinuous suture during September 2020 and June 2022 were assigned to the control group, and 152 patients who received improved buried vertical mattress suture technique and trapezoidal resection between July 2022 and August 2023 were assigned to the observation group. The therapeutic effect, surgical parameters and cosmetic effects in the two groups were compared. The suture time of the observation group was longer than that of the control group (t=27.858, P<0.001). The grade A healing rate (96.05%) and cosmetic satisfaction rate (94.08%) in the observation group were significantly higher than those (76.00% and 74.00%) in the control group (all P<0.001); while the incidences of suture reaction (12.05%), complication (1.96%), and hypertrophic scar (5.26%) were significantly lower than those in the control group (38.00%, 22.00%, and 27.33%, respectively) (all P<0.001). The visual analogue scale (VAS) score in the observation group was lower than that of the control group (intergroup effect: F=1434.000, P<0.001; time effect: F=91.091, P<0.001; interaction effect: F=2.409, P=0.091). The postoperative VSS score and scar width in the observation group were lower than those in the control group (all P<0.001). Multivariate analysis showed that complications (P=0.006) and suture method (P=0.016) were independent influencing factors for the occurrence of hypertrophic scars in pregnant women. Trapezoidal resection combined with improved buried vertical mattress suture technique can promote incision healing, reduce suture reaction, incision pain, adverse complications and the incidence of hyperplastic scar, and improve the cosmetic effect of surgery.
Collapse
Affiliation(s)
- Yudi Xie
- Clinical Research Center for Gynecological and Reproductive Health of Fujian Province Xiamen 361000, Fujian, China
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province Xiamen 361000, Fujian, China
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City Xiamen 361000, Fujian, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University Xiamen 361000, Fujian, China
| | - Yiling Chen
- Clinical Research Center for Gynecological and Reproductive Health of Fujian Province Xiamen 361000, Fujian, China
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province Xiamen 361000, Fujian, China
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City Xiamen 361000, Fujian, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University Xiamen 361000, Fujian, China
| | - Yihuang Hong
- Clinical Research Center for Gynecological and Reproductive Health of Fujian Province Xiamen 361000, Fujian, China
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province Xiamen 361000, Fujian, China
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City Xiamen 361000, Fujian, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University Xiamen 361000, Fujian, China
| | - Qionghua Chen
- Clinical Research Center for Gynecological and Reproductive Health of Fujian Province Xiamen 361000, Fujian, China
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province Xiamen 361000, Fujian, China
- Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City Xiamen 361000, Fujian, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University Xiamen 361000, Fujian, China
| |
Collapse
|
9
|
Kim HJ, Kim YH. Comprehensive Insights into Keloid Pathogenesis and Advanced Therapeutic Strategies. Int J Mol Sci 2024; 25:8776. [PMID: 39201463 PMCID: PMC11354446 DOI: 10.3390/ijms25168776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Keloid scars, characterized by abnormal fibroproliferation and excessive extracellular matrix (ECM) production that extends beyond the original wound, often cause pruritus, pain, and hyperpigmentation, significantly impacting the quality of life. Keloid pathogenesis is multifactorial, involving genetic predisposition, immune response dysregulation, and aberrant wound-healing processes. Central molecular pathways such as TGF-β/Smad and JAK/STAT are important in keloid formation by sustaining fibroblast activation and ECM deposition. Conventional treatments, including surgical excision, radiation, laser therapies, and intralesional injections, yield variable success but are limited by high recurrence rates and potential adverse effects. Emerging therapies targeting specific immune pathways, small molecule inhibitors, RNA interference, and mesenchymal stem cells show promise in disrupting the underlying mechanisms of keloid pathogenesis, potentially offering more effective and lasting treatment outcomes. Despite advancements, further research is essential to fully elucidate the precise mechanisms of keloid formation and to develop targeted therapies. Ongoing clinical trials and research efforts are vital for translating these scientific insights into practical treatments that can markedly enhance the quality of life for individuals affected by keloid scars.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
10
|
Kidzeru EB, Sinkala M, Chalwa T, Matobole R, Alkelani M, Ghasemishahrestani Z, Mbandi SK, Blackburn J, Tabb DL, Adeola HA, Khumalo NP, Bayat A. Subcellular Fractionation and Metaproteogenomic Identification and Validation of Key Differentially Expressed Molecular Targets for Keloid Disease. J Invest Dermatol 2024:S0022-202X(24)01972-9. [PMID: 39122141 DOI: 10.1016/j.jid.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
Keloid disease (KD) is a common connective tissue disorder of unknown aetiopathogenesis with ill-defined treatment. Keloid scars present as exophytic fibroproliferative reticular lesions postcutaneous injury, and even though KD remains neoplastically benign, keloid lesions behave locally aggressive, invasive and expansive. To date, there is limited understanding and validation of biomarkers identified through combined proteomic and genomic evaluation of KD. Therefore, the aim in this study was to identify putative causative candidates in KD by performing a comprehensive proteomics analysis of subcellular fractions as well as the whole cell, coupled with transcriptomics data analysis of normal compared with KD fibroblasts. We then applied novel integrative bioinformatics analysis to demonstrate that NF-kB-p65 (RELA) from the cytosolic fraction and CAPN2 from the whole-cell lysate were statistically significantly upregulated in KD and associated with alterations in relevant key signaling pathways, including apoptosis. Our findings were further confirmed by showing upregulation of both RELA and CAPN2 in KD using flow cytometry and immunohistochemistry. Moreover, functional evaluation using real-time cell analysis and flow cytometry demonstrated that both omeprazole and dexamethasone inhibited the growth of KD fibroblasts by enhancing the rate of apoptosis. In conclusion, subcellular fractionation and metaproteogenomic analyses have identified, to our knowledge, 2 previously unreported biomarkers of significant relevance to keloid diagnostics and therapeutics.
Collapse
Affiliation(s)
- Elvis B Kidzeru
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa; Microbiology, Infectious Diseases, and Immunology Laboratory (LAMMII), Centre for Research on Health and Priority Pathologies (CRSPP), Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon; Division of Radiation Oncology, Department of Radiation Medicine, Groote Schuur Hospital, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Musalula Sinkala
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Temwani Chalwa
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Relebohile Matobole
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Madeha Alkelani
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Zeinab Ghasemishahrestani
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Stanley K Mbandi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Division of Immunology, Department of Pathology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Jonathan Blackburn
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - David L Tabb
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa; Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Henry Ademola Adeola
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ardeshir Bayat
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
11
|
Wang P, Peng Z, Yu L, Liu Y, Wang H, Zhou Z, Liu H, Hong S, Nie Y, Deng Y, Liu Y, Xie J. Verteporfin-Loaded Bioadhesive Nanoparticles for the Prevention of Hypertrophic Scar. SMALL METHODS 2024; 8:e2301295. [PMID: 38084464 DOI: 10.1002/smtd.202301295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 08/18/2024]
Abstract
Hypertrophic scarring (HS) is a common skin injury complication with unmet needs. Verteporfin (VP) should be an ideal HS-targeted therapeutic drug due to its efficient fibrosis and angiogenesis inhibitory abilities. However, its application is restricted by its side effects such as dose-dependent cytotoxicity on normal cells. Herein, the bioadhesive nanoparticles encapsulated VP (VP/BNPs) are successfully developed to attenuate the side effects of VP and enhance its HS inhibition effects by limiting VP releasing slowly and stably in the lesion site but not diffusing easily to normal tissues. VP/BNPs displayed significant inhibition on the proliferation, migration, collagen deposition, and vessel formation of human hypertrophic scar fibroblasts (HSFBs) and dermal vascular endothelial cells (HDVECs). In a rat tail HS model, VP/BNPs treated HS exhibits dramatic scar repression with almost no side effects compared with free VP or VP-loaded non-bioadhesive nanoparticles (VP/NNPs) administration. Further immunofluorescence analysis on scar tissue serial sections validated VP/BNPs effectively inhibited the collagen deposition and angiogenesis by firmly confined in the scar tissue and persistently releasing VP targeted to nucleus Yes-associated protein (nYAP) of HSFBs and HDVECs. These findings collectively suggest that VP/BNPs can be a promising and technically advantageous agent for HS therapies.
Collapse
Affiliation(s)
- Peng Wang
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zhangwen Peng
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Liu Yu
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Yiling Liu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Hanwen Wang
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ziheng Zhou
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Hengdeng Liu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Sheng Hong
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Yichu Nie
- Department of Translational medicine research institute, First People's Hospital of Foshan, No. 81, North Lingnan Road, Foshan, Guangdong, 528000, China
| | - Yang Deng
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Yang Liu
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Julin Xie
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| |
Collapse
|
12
|
Boraldi F, Lofaro FD, Bonacorsi S, Mazzilli A, Garcia-Fernandez M, Quaglino D. The Role of Fibroblasts in Skin Homeostasis and Repair. Biomedicines 2024; 12:1586. [PMID: 39062158 PMCID: PMC11274439 DOI: 10.3390/biomedicines12071586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Fibroblasts are typical mesenchymal cells widely distributed throughout the human body where they (1) synthesise and maintain the extracellular matrix, ensuring the structural role of soft connective tissues; (2) secrete cytokines and growth factors; (3) communicate with each other and with other cell types, acting as signalling source for stem cell niches; and (4) are involved in tissue remodelling, wound healing, fibrosis, and cancer. This review focuses on the developmental heterogeneity of dermal fibroblasts, on their ability to sense changes in biomechanical properties of the surrounding extracellular matrix, and on their role in aging, in skin repair, in pathologic conditions and in tumour development. Moreover, we describe the use of fibroblasts in different models (e.g., in vivo animal models and in vitro systems from 2D to 6D cultures) for tissue bioengineering and the informative potential of high-throughput assays for the study of fibroblasts under different disease contexts for personalized healthcare and regenerative medicine applications.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Francesco Demetrio Lofaro
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Susanna Bonacorsi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Alessia Mazzilli
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Institute of Biomedical Investigation (IBIMA), University of Málaga, 29010 Málaga, Spain;
| | - Daniela Quaglino
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| |
Collapse
|
13
|
Zhao W, Ye J, Yang X, Wang J, Cong L, Zhang Q, Li J. Rynchopeterine inhibits the formation of hypertrophic scars by regulating the miR-21/HIF1AN axis. Exp Cell Res 2024; 440:114114. [PMID: 38823472 DOI: 10.1016/j.yexcr.2024.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Hypertrophic scar (HS) is a fibroproliferative skin disease characterized by abnormal wound healing and pathological excessive fibrosis of the skin. Currently, the molecular mechanism of the disease is still largely unknown, and there is no effective drug treatment. In this study, we explored the effect of Rynchopeterine on the formation of HS. HS fibroblasts (HSFs) were isolated from the HS tissues of patients recovering from severe burns. After treating HSFs with different concentrations of Rynchopeterine, CCK-8, EdU, and Annexin V-FITC/PI assays were used to detect the proliferation, apoptosis, and contractile ability of HSFs. RT-qPCR and Western blotting were performed to evaluate the effect of Rynchopeterine on the expression of miR-21 and hypoxia-inducible factor 1-alpha subunit suppressor (HIF1AN). The dual-luciferase reporter gene was used to verify the targeting relationship between miR-21 and HIF1AN. Rynchopeterine reduced the expression of Col1a2, Col3a1, and α-SMA, inhibited proliferation and contraction of HSFs, and increased apoptosis in a dose-dependent manner. miR-21 was highly expressed in HS tissues and HSFs, and Rynchopeterine could inhibit miR-21 expression. Overexpression of miR-21 and knockdown of HIF1AN increased proliferation, activation, contraction, and collagen synthesis of HSFs, and inhibited their apoptosis. In vivo, Rynchopeterine could reduce the collagen content of the dermis and the positive ratio of PCNA and α-SMA. Rynchopeterine is a good therapeutic agent for HS, which up-regulates the expression of HIF1AN by inhibiting miR-21, thereby inhibiting the formation of HS.
Collapse
Affiliation(s)
- Wenbin Zhao
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, Yunnan, China.
| | - Jianzhou Ye
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, Yunnan, China
| | - Xuesong Yang
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, Yunnan, China
| | - Jialan Wang
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, Yunnan, China
| | - Lin Cong
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, Yunnan, China
| | - Qiongyu Zhang
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, Yunnan, China
| | - Jiaqi Li
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, Yunnan, China
| |
Collapse
|
14
|
Xiang W, Guo Z, Zhang Y, Xu Y. The Role of Tenascin-C in Hypertrophic Scar Formation: Insights from Cell and Animal Experiments. Clin Cosmet Investig Dermatol 2024; 17:1637-1648. [PMID: 39045340 PMCID: PMC11264284 DOI: 10.2147/ccid.s461760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/23/2024] [Indexed: 07/25/2024]
Abstract
Background Hypertrophic scars (HS) are dermal diseases characterized by excessive fibroblast proliferation and collagen deposition following burns or trauma. While Tenascin-C (TNC)'s role in promoting visceral fibrosis has been established, its impact on skin tissue fibrosis remains unclear. This study aims to investigate the effects of TNC on HS. Methods RNA sequence and IHC techniques were used to examine the upregulation of TNC gene in human hypertrophic scar tissue compared to normal tissues. Knockdown of TNC in Human skin fibroblasts (HFF-1) cells was achieved, and expression of Col1 and Col3 was evaluated using qPCR. Sirius red collagen staining assessed impact on total collagen content and ECM deposition. Effects on cell proliferation and migration were investigated through cck-8 and cell scratch experiments. Lentivirus infection was used to knock out TNC, and resulting samples were injected into ear wound of rabbits. Effects of TNC knockout on ear scar formation were measured using digital morphology, ultrasound, SEI, H&E, and Masson trichrome methods. Results Cell experiments: downregulation of TNC decreased Col1 and Col3 expression, leading to reduced collagen production and extracellular matrix deposition. It did not affect HFF-1 cell proliferation and migration. Animal experiments: TNC knockdown promoted wound healing and reduced collagen deposition in rabbit ears. Conclusion This study suggests that knocking down TNC inhibits collagen formation and extracellular matrix deposition, thereby inhibiting hypertrophic scar formation. Therefore, TNC can be considered a potential biomarker for HS formation and may offer promising treatment strategies for clinical management of hypertrophic scars.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Stomatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Zhen Guo
- Department of Stomatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yiming Zhang
- Department of Stomatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
15
|
Shucheng H, Li J, Liu YL, Chen X, Jiang X. Causal relationship between gut microbiota and pathological scars: a two-sample Mendelian randomization study. Front Med (Lausanne) 2024; 11:1405097. [PMID: 39015789 PMCID: PMC11250559 DOI: 10.3389/fmed.2024.1405097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Background Pathological scars, including keloids and hypertrophic scars, represent a significant dermatological challenge, and emerging evidence suggests a potential role for the gut microbiota in this process. Methods Utilizing a two-sample Mendelian randomization (MR) methodology, this study meticulously analyzed data from genome-wide association studies (GWASs) relevant to the gut microbiota, keloids, and hypertrophic scars. The integrity and reliability of the results were rigorously evaluated through sensitivity, heterogeneity, pleiotropy, and directionality analyses. Results By employing inverse variance weighted (IVW) method, our findings revealed a causal influence of five bacterial taxa on keloid formation: class Melainabacteria, class Negativicutes, order Selenomonadales, family XIII, and genus Coprococcus2. Seven gut microbiota have been identified as having causal relationships with hypertrophic scars: class Alphaproteobacteria, family Clostridiaceae1, family Desulfovibrionaceae, genus Eubacterium coprostanoligenes group, genus Eubacterium fissicatena group, genus Erysipelotrichaceae UCG003 and genus Subdoligranulum. Additional sensitivity analyses further validated the robustness of the associations above. Conclusion Overall, our MR analysis supports the hypothesis that gut microbiota is causally linked to pathological scar formation, providing pivotal insights for future mechanistic and clinical research in this domain.
Collapse
Affiliation(s)
- Huidi Shucheng
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Jiaqi Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yu-ling Liu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Xinghan Chen
- Research Institute of Tissue Engineering and Stem Cells, Nanchong, China
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Menashe S, Heller L. Keloid and Hypertrophic Scars Treatment. Aesthetic Plast Surg 2024; 48:2553-2560. [PMID: 38453710 DOI: 10.1007/s00266-024-03869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Hypertrophic scars are contained within the site of injury and may regress over time, while keloids spread beyond the borders of the initial injury and do not regress. On histologic examination, hypertrophic scars tend to have collagen in a wavy, regular pattern, whereas keloids have no distinct pattern of collagen. OBJECTIVE To retrospectively analyze improvement in keloid and hypertrophic scars characteristics following treatment with Ablative 10600 nm and a non-Ablative 1570 nm Hybrid Laser Device. METHODS Treatment parameters with the ProScan Hybrid Mode were 40 W/1.3-1.5 ms for the CO2 and 12 W/4 ms for the 1570 nm in a 1:1 ratio. Outcomes were assessed based on physician scar grading as measured by the Vancouver Scar Scale and patient-reported satisfaction. Excel was used for data analysis, and a p value < 0.05 was considered statistically significant. Adverse events and patient pain were also recorded. RESULTS A total of 31 hypertrophic scars and 30 keloid scars were treated. There was a significant reduction in Vancouver Scar Scale scores for both hypertrophic and keloid scars (62% ± 8% and 58% ± 7%; p = 2.6E-17 and p = 8.29E-26, respectively). In a scar-based comparison, a statistically significant difference was observed for all measures reflecting favorable outcomes for hypertrophic scars (VSS, p = 1.1E-05; satisfaction, p = 0.0112; pain, p = 0.00081). Only one adverse event was reported, a superficial burn treated with topical antibiotics. CONCLUSIONS The device was found to be safe and effective, with promising results for the treatment of hypertrophic and keloid scars. LEVEL OF EVIDENCE II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Shaked Menashe
- The Department of Adult and Pediatric Plastic, Aesthetic and Reconstructive Surgery, Shamir Medical Center Be'er Ya'akov, Shamir Medical Center Assaf Harofeh, Tel Aviv, Israel.
| | - Lior Heller
- The Department of Adult and Pediatric Plastic, Aesthetic and Reconstructive Surgery, Shamir Medical Center Be'er Ya'akov, Shamir Medical Center Assaf Harofeh, Tel Aviv, Israel
| |
Collapse
|
17
|
Stumpfe MC, Platzer J, Horch RE, Geierlehner A, Arkudas A, Mueller-Seubert W, Cai A, Promny T, Ludolph I. Analysis of laboratory markers in body contouring procedures after bariatric surgery does not indicate particular risks for perioperative complications. Perioper Med (Lond) 2024; 13:63. [PMID: 38937810 PMCID: PMC11210174 DOI: 10.1186/s13741-024-00422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Body contouring surgery after massive weight loss is associated with different risk factors. Wound healing disorders and seromas commonly occur postoperatively. Bariatric interventions lead to massive weight loss with excess skin and soft tissue. In this study, perioperatively collected laboratory markers of this special patient population were analyzed. METHODS Fifty-nine patients were analyzed retrospectively regarding bariatric surgery, weight loss, body contouring surgery, laboratory markers, and complication rates. RESULTS Body contouring surgery (n = 117) was performed in 59 patients. Weight loss was achieved after gastric bypass (40.1%), gastric banding (33.9%), or sleeve gastrectomy (26.0%), with an average of 69.2 kg. The most common body contouring procedure included abdominoplasty (n = 50), followed by thigh lift (n = 29), mammaplasty (n = 19), brachioplasty (n = 14), and upper body lift (n = 5). Analysis of laboratory markers revealed no exceptional and clinically relevant variations. Correlation analysis revealed associations between resection weight, amount of drain fluid, and particular laboratory markers. CONCLUSION Analysis of perioperative laboratory markers in this special patient population after massive weight loss did not indicate clinically relevant risk factors regardless of the type of bariatric or body contouring surgery. Body contouring surgeries after bariatric interventions prove to be safe and low risk concerning perioperative laboratory markers and postoperative hospitalization.
Collapse
Affiliation(s)
- Maximilian C Stumpfe
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg FAU, Krankenhausstraße 12, Erlangen, 91054, Germany.
| | - Juliane Platzer
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg FAU, Krankenhausstraße 12, Erlangen, 91054, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg FAU, Krankenhausstraße 12, Erlangen, 91054, Germany
| | - Alexander Geierlehner
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg FAU, Krankenhausstraße 12, Erlangen, 91054, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg FAU, Krankenhausstraße 12, Erlangen, 91054, Germany
| | - Wibke Mueller-Seubert
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg FAU, Krankenhausstraße 12, Erlangen, 91054, Germany
| | - Aijia Cai
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg FAU, Krankenhausstraße 12, Erlangen, 91054, Germany
| | - Theresa Promny
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg FAU, Krankenhausstraße 12, Erlangen, 91054, Germany
| | - Ingo Ludolph
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg FAU, Krankenhausstraße 12, Erlangen, 91054, Germany
| |
Collapse
|
18
|
Zhang SY, Guo SX, Chen LL, Zhu JY, Hou MS, Lu JK, Shen XX. Exploring the potential mechanism of WuFuYin against hypertrophic scar using network pharmacology and molecular docking. World J Clin Cases 2024; 12:3505-3514. [PMID: 38983404 PMCID: PMC11229930 DOI: 10.12998/wjcc.v12.i18.3505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Hypertrophic scar (HTS) is dermal fibroproliferative disorder, which may cause physiological and psychological problems. Currently, the potential mechanism of WuFuYin (WFY) in the treatment of HTS remained to be elucidated. AIM To explore the potential mechanism of WFY in treating HTS. METHODS Active components and corresponding targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. HTS-related genes were obtained from the GeneCards, DisGeNET, and National Center for Biotechnology Information. The function of targets was analyzed by performing Gene Ontology and Kyoto Encyclopaedia of Genes and Genome (KEGG) enrichment analysis. A protein + IBM-protein interaction (PPI) network was developed using STRING database and Cytoscape. To confirm the high affinity between compounds and targets, molecular docking was performed. RESULTS A total of 65 core genes, which were both related to compounds and HTS, were selected from multiple databases. PPI analysis showed that CKD2, ABCC1, MMP2, MMP9, glycogen synthase kinase 3 beta (GSK3B), PRARG, MMP3, and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma (PIK3CG) were the hub targets and MOL004941, MOL004935, MOL004866, MOL004993, and MOL004989 were the key compounds of WFY against HTS. The results of KEGG enrichment analysis demonstrated that the function of most genes were enriched in the PI3K-Akt pathway. Moreover, by performing molecular docking, we confirmed that GSK3B and 8-prenylated eriodictyol shared the highest affinity. CONCLUSION The current findings showed that the GSK3B and cyclin dependent kinase 2 were the potential targets and MOL004941, MOL004989, and MOL004993 were the main compounds of WFY in HTS treatment.
Collapse
Affiliation(s)
- Shu-Yang Zhang
- Department of General Surgery, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing 312000, Zhejiang Province, China
| | - Song-Xue Guo
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Lei-Lei Chen
- Hand and Plastic Surgery, The first People’s Hospital of Linping District, Hangzhou 311013, Zhejiang Province, China
| | - Jia-Yan Zhu
- Department of General Surgery, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing 312000, Zhejiang Province, China
| | - Ming-Sheng Hou
- Department of Pathology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing 312000, Zhejiang Province, China
| | - Jia-Ke Lu
- Department of Traumatology, Yuyao Hospital of Traditional Chinese Medicine, Ningbo 315400, Zhejiang Province, China
| | - Xue-Xiang Shen
- Department of General Surgery, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing 312000, Zhejiang Province, China
| |
Collapse
|
19
|
Yang L, Li X, Wang Y. Ferrostatin-1 inhibits fibroblast fibrosis in keloid by inhibiting ferroptosis. PeerJ 2024; 12:e17551. [PMID: 38887622 PMCID: PMC11182022 DOI: 10.7717/peerj.17551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Background Keloid is a chronic proliferative fibrotic disease caused by abnormal fibroblasts proliferation and excessive extracellular matrix (ECM) production. Numerous fibrotic disorders are significantly influenced by ferroptosis, and targeting ferroptosis can effectively mitigate fibrosis development. This study aimed to investigate the role and mechanism of ferroptosis in keloid development. Methods Keloid tissues from keloid patients and normal skin tissues from healthy controls were collected. Iron content, lipid peroxidation (LPO) level, and the mRNA and protein expression of ferroptosis-related genes including solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), transferrin receptor (TFRC), and nuclear factor erythroid 2-related factor 2 (Nrf2) were determined. Mitochondrial morphology was observed using transmission electron microscopy (TEM). Keloid fibroblasts (KFs) were isolated from keloid tissues, and treated with ferroptosis inhibitor ferrostatin-1 (fer-1) or ferroptosis activator erastin. Iron content, ferroptosis-related marker levels, LPO level, mitochondrial membrane potential, ATP content, and mitochondrial morphology in KFs were detected. Furthermore, the protein levels of α-smooth muscle actin (α-SMA), collagen I, and collagen III were measured to investigate whether ferroptosis affect fibrosis in KFs. Results We found that iron content and LPO level were substantially elevated in keloid tissues and KFs. SLC7A11, GPX4, and Nrf2 were downregulated and TFRC was upregulated in keloid tissues and KFs. Mitochondria in keloid tissues and KFs exhibited ferroptosis-related pathology. Fer-1 treatment reduced iron content, restrained ferroptosis and mitochondrial dysfunction in KFs, Moreover, ferrostatin-1 restrained the protein expression of α-SMA, collagen I, and collagen III in KFs. Whereas erastin treatment showed the opposite results. Conclusion Ferroptosis exists in keloid. Ferrostatin-1 restrained ECM deposition and fibrosis in keloid through inhibiting ferroptosis, and erastin induced ECM deposition and fibrosis through intensifying ferroptosis.
Collapse
Affiliation(s)
- Liu Yang
- Plastic & Cosmetics Surgery Department, Zibo Central Hospital, Zibo, China
| | - Xiuli Li
- Plastic & Cosmetics Surgery Department, Zibo Central Hospital, Zibo, China
| | - Yanli Wang
- Plastic & Cosmetics Surgery Department, Zibo Central Hospital, Zibo, China
| |
Collapse
|
20
|
Han X, Jiang S, Hu C, Wang Y, Zhao L, Wang W. Inhibition of keloid fibroblast proliferation by artesunate is mediated by targeting the IRE1α/XBP1 signaling pathway and decreasing TGF-β1. Burns 2024; 50:1259-1268. [PMID: 38492983 DOI: 10.1016/j.burns.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/24/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Keloid is a benign hyperplastic dermatosis with high recurrence rate and complex pathogenesis. There is no universally effective treatment yet. New therapies and elucidation of pathogenesis are urgently required. AIMS To explore the function of IRE1α/XBP1 in keloid fibroblasts and to investigate the potential mechanism of artesunate in inhibiting keloid hyperplasia. METHODS Human keloid fibroblasts (KFs) were cultured, and the expressions of XBP1 and TGF-β1 were detected by immunohistochemistry. The expression of IRE1 was interfered with through cell transfection and the effects of IRE1 interference on cell proliferation and the cell cycle were assessed using MTS, colony formation assays, and flow cytometry. Detection of the expressions of XBP1 and TGF-β1 by qRT-PCR and Western blot. Then artesunate was applied to a subset of the cells, and its effects on cell viability and the expression of related proteins using the same methods. RESULTS The IRE1α/XBP1 pathway was activated in KFs. Knocking out the gene IRE1α can inhibit the expression of TGF-β1, in addition, the cell viability and cell cycle progression of KFs were also significantly affected. After artesunate treatment, there was a remarkable reduction in cell proliferation. Meanwhile, the cell cycle of KFs treated with artesunate was blocked in G1 phase.After upregulating the expression of IRE1α and treating KFs with artesunate, both cell cycle and proliferation showed inhibitory effects, and related proteins also exhibited suppressed expression. CONCLUSIONS The IRE1α/XBP1 pathway is activated in keloid, and inhibiting the expression of this pathway can affect the cell proliferation activity. In addition, artesunate also has a significant effect on fibroblast proliferation, and the IRE1α/XBP1 pathway may participate in this process. These findings suggest that IRE1α/XBP1 signal pathway may be a potential target for scar treatment, and artesunate could also be a powerful candidate for keloid treatment.
Collapse
Affiliation(s)
- Xiaomei Han
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Shaoqian Jiang
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Caixia Hu
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ying Wang
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lu Zhao
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenqing Wang
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Zhou P, Jiang Y, Liu AY, Chen XL, Wang F. Patients with hypertrophic scars following severe burn injury express different long noncoding RNAs. Burns 2024; 50:1247-1258. [PMID: 38503573 DOI: 10.1016/j.burns.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE Research indicates that long noncoding RNAs (lncRNAs) contribute significantly to fibrotic diseases. Although lncRNAs may play a role in hypertrophic scars after burns, its mechanisms remain poorly understood. METHODS Using chip technology, we compared the lncRNA expression profiles of burn patients and healthy controls (HCs). Microarray results were examined by quantitative reverse-transcription polymerase chain reaction (RT-PCR) to verify their reliability. The biological functions of differentially expressed mRNAs and the relationships between genes and signaling pathways were investigated by Gene Ontology (GO) and pathway analyses, respectively. RESULTS In contrast with HCs, it was found that 2738 lncRNAs (1628 upregulated) and 2166 mRNAs (1395 upregulated) were differentially expressed in hypertrophic scars after burn. Results from RT-PCR were consistent with those from microarray. GO and pathway analyses revealed that the differentially expressed mRNAs are mainly associated with processes related to cytokine secretion in the immune system, notch signaling, and MAPK signaling. CONCLUSION The lncRNA expression profiles of hypertrophic scars after burn changed significantly compared with HCs. It was believed that the transcripts could be used as potential targets for inhibiting abnormal scar formation in burn patients.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yan Jiang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Ao-Ya Liu
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xu-Lin Chen
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Fei Wang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
22
|
Foppiani JA, Khaity A, Al-Dardery NM, Hasan MT, El-Samahy M, Lee D, Abdelwahab OA, Abd-Alwahed AE, Khitti HM, Albakri K, Lin SJ. Laser Therapy in Hypertrophic and Keloid Scars: A Systematic Review and Network Meta-analysis. Aesthetic Plast Surg 2024:10.1007/s00266-024-04027-9. [PMID: 38760539 DOI: 10.1007/s00266-024-04027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/11/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Laser therapy has emerged as a promising treatment modality for improving the appearance and symptoms associated with hypertrophic and keloid scars. In this network meta-analysis, we aimed to evaluate the efficacy of different laser types in treating hypertrophic and keloid scars. METHODS A comprehensive search of four databases was conducted to identify relevant studies published up until July 2023. Data were extracted from eligible studies and pooled as mean difference (MD) for continuous outcomes and risk ratio (RR) for dichotomous data in a network meta-analysis (NMA) model, using R software. RESULTS A total of 18 studies, comprising 550 patients, were included in the analysis. Pooling our data showed that fractional carbon dioxide (FCO2) plus 5-fluorouracil (5-FU) was superior to control in terms of Vancouver Scar Scale (VSS), pliability score, and thickness; [MD = - 5.97; 95% CI (- 7.30; - 4.65)], [MD = - 2.68; 95% CI (- 4.03; - 1.33)], [MD = - 2.22; 95% CI (- 3.13; - 1.31)], respectively. However, insignificant difference was observed among FCO2 plus 5-FU compared to control group in terms of erythema, vascularity, redness and perfusion, and pigmentation [MD = - 0.71; 95% CI (- 2.72; 1.30)], [MD = - 0.44; 95% CI (- 1.26; 0.38)], respectively. CONCLUSION Our NMA found that the FCO2 plus 5-FU was the most effective intervention in decreasing the VSS and thickness, while FCO2 plus CO2 was the most effective intervention in decreasing the pliability score. Further research is needed to determine the optimal laser parameters and long-term efficacy of laser therapy in hypertrophic and keloid scars. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these evidence-based medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Jose A Foppiani
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street Suite 5A, Boston, USA
- 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | - Daniela Lee
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street Suite 5A, Boston, USA
| | | | | | | | - Khaled Albakri
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Samuel J Lin
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street Suite 5A, Boston, USA.
| |
Collapse
|
23
|
Wang X, Wei P, Hu C, Zeng H, Fan Z. 3D printing of Rg3-loaded hydrogel scaffolds: anti-inflammatory and scar-formation related collagen inhibitory effects for scar-free wound healing. J Mater Chem B 2024; 12:4673-4685. [PMID: 38647236 DOI: 10.1039/d3tb02941g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
During the process of wound healing, the stimulation of inflammatory factors often leads to abnormal proliferation of blood vessels and collagen, ultimately resulting in scar formation. To address this challenge, we fabricate a novel dermal extracellular matrix (DECM) hydrogel scaffold loaded with ginsenoside Rg3 (Rg3) using 3D printing technology. Mesoporous silica nanoparticles (MSNs) are introduced into the system to encase the Rg3 to control its release rate and enhance its bioavailability. We systematically evaluate the biological, physicochemical, and wound healing properties of this scaffold. In vitro studies demonstrate that the hydrogel exhibits excellent biocompatibility and solid-like rheological properties, ensuring its successful printing. In vivo studies reveal that the composite hydrogel scaffolds effectively accelerate wound healing and achieve scar-free wound healing within three weeks. Histological and immunohistochemical (IHC) analyses show that the composite hydrogel scaffolds reduce the inflammatory response and inhibit excessive collagen accumulation. These combined effects underscore the potential of our approach in effectively inhibiting scar formation.
Collapse
Affiliation(s)
- Xusen Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Pengyu Wei
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Cewen Hu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Huajing Zeng
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
24
|
Xiang Y, Fan B, Shang P, Ding R, Du J, Zhu T, Zhang H, Yan X. VR23 and Bisdemethoxycurcumin Enhanced Nanofiber Niche with Durable Bidirectional Functions for Promoting Wound Repair and Inhibiting Scar Formation. SMALL METHODS 2024:e2400273. [PMID: 38733258 DOI: 10.1002/smtd.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Chronic wounds pose a significant clinical challenge worldwide, which is characterized by impaired tissue regeneration and excessive scar formation due to over-repair. Most studies have focused on developing wound repair materials that either facilitate the healing process or control hyperplastic scars caused by over-repair, respectively. However, there are limited reports on wound materials that can both promote wound healing and prevent scar hyperplasia at the same time. In this study, VR23-loaded dendritic mesoporous bioglass nanoparticles (dMBG) are synthesized and electrospun in poly(ester-curcumin-urethane)urea (PECUU) random composite nanofibers (PCVM) through the synergistic effects of physical adsorption, hydrogen bond, and electrospinning. The physicochemical characterization reveals that PCVM presented matched mechanical properties, suitable porosity, and wettability, and enabled sustained and temporal release of VR23 and BDC with the degradation of PCVM. In vitro experiments demonstrated that PCVM can modulate the functions and polarization of macrophages under an inflammatory environment, and possess effective anti-scarring potential and reliable cytocompatibility. Animal studies further confirmed that PCVM can efficiently promote re-epithelialization and angiogenesis and reduce excessive inflammation, thereby remarkably accelerating wound healing while preventing potential scarring. These findings suggest that the prepared PCVM holds promise as a bidirectional regulatory dressing for effectively promoting scar-free healing of chronic wounds.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai, 200233, P. R. China
| | - Beibei Fan
- Department of Pharmacy, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, 181 Youyi Rd., Shanghai, 201999, P. R. China
| | - Panpan Shang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Ren Ding
- Department of Orthopedics, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, 181 Youyi Rd., Shanghai, 201999, P. R. China
| | - Juan Du
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Hongmei Zhang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Xiaoyu Yan
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai, 200233, P. R. China
| |
Collapse
|
25
|
Chen M, Pan Y, Chen Z, Qi F, Gu J, Qiu Y, He A, Liu J. miRSNP rs188493331: A key player in genetic control of microRNA-induced pathway activation in hypertrophic scars and keloids. Skin Res Technol 2024; 30:e13686. [PMID: 38682767 PMCID: PMC11057055 DOI: 10.1111/srt.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Our study aims to delineate the miRSNP-microRNA-gene-pathway interactions in the context of hypertrophic scars (HS) and keloids. MATERIALS AND METHODS We performed a computational biology study involving differential expression analysis to identify genes and their mRNAs in HS and keloid tissues compared to normal skin, identifying key hub genes and enriching their functional roles, comprehensively analyzing microRNA-target genes and related signaling pathways through bioinformatics, identifying MiRSNPs, and constructing a pathway-based network to illustrate miRSNP-miRNA-gene-signaling pathway interactions. RESULTS Our results revealed a total of 429 hub genes, with a strong enrichment in signaling pathways related to proteoglycans in cancer, focal adhesion, TGF-β, PI3K/Akt, and EGFR tyrosine kinase inhibitor resistance. Particularly noteworthy was the substantial crosstalk between the focal adhesion and PI3K/Akt signaling pathways, making them more susceptible to regulation by microRNAs. We also identified specific miRNAs, including miRNA-1279, miRNA-429, and miRNA-302e, which harbored multiple SNP loci, with miRSNPs rs188493331 and rs78979933 exerting control over a significant number of miRNA target genes. Furthermore, we observed that miRSNP rs188493331 shared a location with microRNA302e, microRNA202a-3p, and microRNA20b-5p, and these three microRNAs collectively targeted the gene LAMA3, which is integral to the focal adhesion signaling pathway. CONCLUSIONS The study successfully unveils the complex interactions between miRSNPs, miRNAs, genes, and signaling pathways, shedding light on the genetic factors contributing to HS and keloid formation.
Collapse
Affiliation(s)
- Meiqing Chen
- Department of DermatologyZhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
- Xiamen Clinical Research Center for Cancer TherapyZhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| | - Yuyan Pan
- Department of Plastic and Reconstructive SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhiwei Chen
- Big Data and Artificial Intelligence CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Fazhi Qi
- Department of Plastic and Reconstructive SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Jianying Gu
- Department of Plastic and Reconstructive SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Artificial Intelligence Center for Plastic Surgery and Cutaneous Soft Tissue CancersZhongshan HospitalFudan UniversityShanghaiChina
| | - Yangyang Qiu
- Department of DermatologyZhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
- Xiamen Clinical Research Center for Cancer TherapyZhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| | - Anqi He
- Xiamen Clinical Research Center for Cancer TherapyZhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
- Department of Plastic and Reconstructive SurgeryZhongshan hospital (Xiamen)Fudan UniversityXiamenChina
| | - Jiaqi Liu
- Department of Plastic and Reconstructive SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Artificial Intelligence Center for Plastic Surgery and Cutaneous Soft Tissue CancersZhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
26
|
Zhu F, Ye Y, Shao Y, Xue C. MEG3 shuttled by exosomes released from human bone marrow mesenchymal stem cells promotes TP53 stability to regulate MCM5 transcription in keloid fibroblasts. J Gene Med 2024; 26:e3688. [PMID: 38686583 DOI: 10.1002/jgm.3688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Despite the interest in mesenchymal stem cells (MSC), their potential to treat abnormal scarring, especially keloids, is yet to be described. The present study aimed to investigate the therapeutic potential of exosomes derived from human bone marrow MSCs (hBMSC-Exos) in alleviating keloid formation. METHODS Exosomes were isolated from hBMSC, and keloid fibroblasts (KFs) were treated with hBMSC-Exos. Cell counting kit-8, wound healing, transwell invasion, immunofluorescence, and western blot assays were conducted to study the malignant phenotype of KFs. Mice were induced with keloids and treated with hBMSC-Exos. The effect of hBMSC-Exos on keloid formation in vivo was evaluated by hematoxylin and eosin staining, Masson staining, immunohistochemistry, and western blotting. The GSE182192 dataset was screened for differentially expressed long non-coding RNA during keloid formation. Next, maternally expressed gene 3 (MEG3) was knocked down in hBMSC to obtain hBMSC-Exossh-MEG3. The molecular mechanism of MEG3 was investigated by bioinformatic screening, and the relationship between MEG3 and TP53 or MCM5 was verified. RESULTS hBMSC-Exos inhibited the malignant proliferation, migration, and invasion of KFs at same time as promoting their apoptosis, Moreover, hBMSC-Exos reduced the expression of fibrosis- and collagen-related proteins in the cells and the formation of keloids caused by KFs. The reduction in MEG3 enrichment in hBMSC-Exos weakened the inhibitory effect of hBMSC-Exos on KF activity. hBMSC-Exos delivered MEG3 to promote MCM5 transcription by TP53 in KFs. Overexpression of MCM5 in KFs reversed the effects of hBMSC-Exossh-MEG3, leading to reduced KF activity. CONCLUSIONS hBMSC-Exos delivered MEG3 to promote the protein stability of TP53, thereby activating MCM5 and promoting KF activity.
Collapse
Affiliation(s)
- Feibin Zhu
- Department of Burn Surgery, Huizhou Central People's Hospital, Huizhou, China
| | - Yuanjian Ye
- Hand and Foot Microsurgery & Wound Repair Department, Huizhou First Hospital, Huizhou, China
| | - Ying Shao
- Department of Tumor Radiotherapy, Huizhou Central People's Hospital, Huizhou, China
| | - Chunli Xue
- Department of Burn Surgery, Huizhou Central People's Hospital, Huizhou, China
| |
Collapse
|
27
|
Liu B, Lin H, Zhang M. The clinical efficacy of single-hole punch excision combined with intralesional steroid injection for nodular keloid treatment: a self-controlled trial. Sci Rep 2024; 14:9793. [PMID: 38684804 PMCID: PMC11058828 DOI: 10.1038/s41598-024-60670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
There are many methods to treat keloid, including various excision operations, laser, injection and radiotherapy. However, few studies have explored the effectiveness of single-hole punch excision in keloid treatment. This study aimed to investigate the efficacy and safety of lateral punch excision combined with intralesional steroid injection for keloid treatment through self-control trial. In this self-controlled trial, 50 patients meet the diagnosis of nodular keloid, and try to choose left-right symmetrical control, one skin lesion in the control group (50 skin lesionsin total) and the other in the observation group (50 skin lesions in total).The keloids in the treatment group were initially treated with punch excision combined with intralesional steroid injection, followed by injection treatment alone. Keloids in the control group received intralesional steroid injection alone. The Vancouver Scar Scale (VSS) of the keloid before and after the punch excision was evaluated; the keloid scores at different time points and the number of injection treatments required in both groups were compared, and adverse reactions were observed. The effective rate of the observation group was 86.0%, which was significantly higher than that of the control group (66.0%), and the recurrence rate of 22% was lower than that of the control group (χ2 = 4.141,63417), all of which were statistically significant (all P < 0.05). At the end of treatment, the VSS and total injection times in the observation group were significantly lower than those in the control group (t = 5.900,3.361), with statistical significance (P < 0.01). The combination of single-hole punch excision and intralesional steroid injection is an effective method to treat multiple nodular keloids, shortening the treatment course of tralesional steroid injection without obvious adverse reactions.
Collapse
Affiliation(s)
- Bingbing Liu
- Department of Dermatology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, 238000, Anhui, China
| | - Haoying Lin
- Department of Dermatology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, 238000, Anhui, China
| | - Minghai Zhang
- Department of Dermatology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, 238000, Anhui, China.
| |
Collapse
|
28
|
Murakami T, Shigeki S. Pharmacotherapy for Keloids and Hypertrophic Scars. Int J Mol Sci 2024; 25:4674. [PMID: 38731893 PMCID: PMC11083137 DOI: 10.3390/ijms25094674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Keloids (KD) and hypertrophic scars (HTS), which are quite raised and pigmented and have increased vascularization and cellularity, are formed due to the impaired healing process of cutaneous injuries in some individuals having family history and genetic factors. These scars decrease the quality of life (QOL) of patients greatly, due to the pain, itching, contracture, cosmetic problems, and so on, depending on the location of the scars. Treatment/prevention that will satisfy patients' QOL is still under development. In this article, we review pharmacotherapy for treating KD and HTS, including the prevention of postsurgical recurrence (especially KD). Pharmacotherapy involves monotherapy using a single drug and combination pharmacotherapy using multiple drugs, where drugs are administered orally, topically and/or through intralesional injection. In addition, pharmacotherapy for KD/HTS is sometimes combined with surgical excision and/or with physical therapy such as cryotherapy, laser therapy, radiotherapy including brachytherapy, and silicone gel/sheeting. The results regarding the clinical effectiveness of each mono-pharmacotherapy for KD/HTS are not always consistent but rather scattered among researchers. Multimodal combination pharmacotherapy that targets multiple sites simultaneously is more effective than mono-pharmacotherapy. The literature was searched using PubMed, Google Scholar, and Online search engines.
Collapse
Affiliation(s)
- Teruo Murakami
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Higashi-Hiroshima 731-2631, Japan;
| | - Sadayuki Shigeki
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima 731-2631, Japan
| |
Collapse
|
29
|
Wu H, Jiang Z, Chen X, Zhao S, Chen Z. Application of high-precision 3D scanner in keloids evaluation to improve patients' compliance: a questionnaire-based study. J Transl Med 2024; 22:354. [PMID: 38622582 PMCID: PMC11020470 DOI: 10.1186/s12967-024-05079-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/17/2024] Open
Affiliation(s)
- Huayi Wu
- School of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Zixi Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Zeyu Chen
- School of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China.
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
30
|
Meikle B, Simons M, Mahoney T, Reddan T, Dai B, Kimble RM, Tyack Z. Ultrasound measurement of traumatic scar and skin thickness: a scoping review of evidence across the translational pipeline of research-to-practice. BMJ Open 2024; 14:e078361. [PMID: 38594186 PMCID: PMC11015304 DOI: 10.1136/bmjopen-2023-078361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
OBJECTIVES To identify the ultrasound methods used in the literature to measure traumatic scar thickness, and map gaps in the translation of these methods using evidence across the research-to-practice pipeline. DESIGN Scoping review. DATA SOURCES Electronic database searches of Ovid MEDLINE, Embase, Cumulative Index of Nursing and Allied Health Literature and Web of Science. Grey literature searches were conducted in Google. Searches were conducted from inception (date last searched 27 May 2022). DATA EXTRACTION Records using brightness mode (B-mode) ultrasound to measure scar and skin thickness across the research-to-practice pipeline of evidence were included. Data were extracted from included records pertaining to: methods used; reliability and measurement error; clinical, health service, implementation and feasibility outcomes; factors influencing measurement methods; strengths and limitations; and use of measurement guidelines and/or frameworks. RESULTS Of the 9309 records identified, 118 were analysed (n=82 articles, n=36 abstracts) encompassing 5213 participants. Reporting of methods used was poor. B-mode, including high-frequency (ie, >20 MHz) ultrasound was the most common type of ultrasound used (n=72 records; 61% of records), and measurement of the combined epidermal and dermal thickness (n=28; 24%) was more commonly measured than the epidermis or dermis alone (n=7, 6%). Reliability of ultrasound measurement was poorly reported (n=14; 12%). The scar characteristics most commonly reported to be measured were epidermal oedema, dermal fibrosis and hair follicle density. Most records analysed (n=115; 97%) pertained to the early stages of the research-to-practice pipeline, as part of research initiatives. CONCLUSIONS The lack of evaluation of measurement initiatives in routine clinical practice was identified as an evidence gap. Diverse methods used in the literature identified the need for greater standardisation of ultrasound thickness measurements. Findings have been used to develop nine methodological considerations for practitioners to guide methods and reporting.
Collapse
Affiliation(s)
- Brandon Meikle
- Centre for Children's Burns and Trauma Research, Queensland Children's Hospital, South Brisbane, Queensland, Australia
- Children's Health Research Centre, The University of Queensland Faculty of Medicine, South Brisbane, Queensland, Australia
| | - Megan Simons
- Children's Health Research Centre, The University of Queensland Faculty of Medicine, South Brisbane, Queensland, Australia
- Occupational Therapy, Queensland Children's Hospital, South Brisbane, Queensland, Australia
- Pegg Leditschke Children's Burns Centre, Children's Health Queensland Hospital and Health Service, South Brisbane, Queensland, Australia
| | - Tamsin Mahoney
- Surgical, Treatment and Rehabilitation Services (STARS), Metro North Hospital and Health Service, Herston, Queensland, Australia
| | - Tristan Reddan
- Medical Imaging and Nuclear Medicine, Children's Health Queensland Hospital and Health Service, South Brisbane, Queensland, Australia
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Bryan Dai
- The University of Queensland, Saint Lucia, Queensland, Australia
| | - Roy M Kimble
- Centre for Children's Burns and Trauma Research, Queensland Children's Hospital, South Brisbane, Queensland, Australia
- Children's Health Research Centre, The University of Queensland Faculty of Medicine, South Brisbane, Queensland, Australia
- Pegg Leditschke Children's Burns Centre, Children's Health Queensland Hospital and Health Service, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Zephanie Tyack
- Children's Health Research Centre, The University of Queensland Faculty of Medicine, South Brisbane, Queensland, Australia
- Australian Centre for Health Service Innovation (AusHI), Centre for Healthcare Transformation, and School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Jiang Z, Chen Z, Xu Y, Li H, Li Y, Peng L, Shan H, Liu X, Wu H, Wu L, Jian D, Su J, Chen X, Chen Z, Zhao S. Low-Frequency Ultrasound Sensitive Piezo1 Channels Regulate Keloid-Related Characteristics of Fibroblasts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305489. [PMID: 38311578 PMCID: PMC11005750 DOI: 10.1002/advs.202305489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/16/2024] [Indexed: 02/06/2024]
Abstract
Keloids are benign fibroproliferative tumors that severely diminish the quality of life due to discomfort, dysfunction, and disfigurement. Recently, ultrasound technology as a noninvasive adjuvant therapy is developed to optimize treatment protocols. However, the biophysical mechanisms have not yet been fully elucidated. Here, it is proposed that piezo-type mechanosensitive ion channel component 1 (Piezo1) plays an important role in low-frequency sonophoresis (LFS) induced mechanical transduction pathways that trigger downstream cellular signaling processes. It is demonstrated that patient-derived primary keloid fibroblasts (PKF), NIH 3T3, and HFF-1 cell migration are inhibited, and PKF apoptosis is significantly increased by LFS stimulation. And the effects of LFS is diminished by the application of GsMTx-4, the selective inhibitor of Piezo1, and the knockdown of Piezo1. More importantly, the effects of LFS can be imitated by Yoda1, an agonist of Piezo1 channels. Establishing a patient-derived xenograft keloid implantation mouse model further verified these results, as LFS significantly decreased the volume and weight of the keloids. Moreover, blocking the Piezo1 channel impaired the effectiveness of LFS treatment. These results suggest that LFS inhibits the malignant characteristics of keloids by activating the Piezo1 channel, thus providing a theoretical basis for improving the clinical treatment of keloids.
Collapse
|
32
|
Gao Y, Wang J, Gao Z, Zhou J. Classification and surgical treatment methods for partial traumatic upper lip deformity. Oral Dis 2024; 30:1245-1251. [PMID: 36577655 DOI: 10.1111/odi.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Establish a classification method for partial traumatic upper lip deformity and verify the classified repair method is superior to the traditional non-classified method. SUBJECTS AND METHODS Lip deformities caused by partial tissue defects of less than one-third of total lip length were classified into three types and conducted corresponding surgery based on philtrum ridge and orbicularis oris muscle involvement as well as the extent of roll line discontinuity. In this review, 42 cases were non-classified historical controls before the classification was devised, and 67 cases were classified. Data were collected 12 months after surgery. The pre- and post-operative data of all patients were compared. RESULTS In classified patients, the scar width decreased significantly, from 3.1 ± 0.6 mm to 1.2 ± 0.2 mm; the height difference of the groove line was significantly reduced from 3.3 ± 0.9 mm to 0.9 ± 0.1 mm; the ratio of the vermilion area of the affected to healthy side decreased significantly from 1.37 ± 0.31 to 1.05 ± 0.17; the ratio of the lip peak height of the affected to healthy side in type III decreased significantly from 1.91 ± 0.32 to 1.07 ± 0.12; patient satisfaction rate was about 98.5 percent. CONCLUSIONS Clinical outcomes showed significant improvement of lip aesthetics with a high patient satisfaction rate in the classified group than the non-classified group.
Collapse
Affiliation(s)
- Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Zhang C, Luo X, Wei M, Jing B, Wang J, Lin L, Shi B, Zheng Q, Li C. Lithium chloride promotes mesenchymal-epithelial transition in murine cutaneous wound healing via inhibiting CXCL9 and IGF2. Exp Dermatol 2024; 33:e15078. [PMID: 38610097 DOI: 10.1111/exd.15078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Cutaneous wound healing is a challenge in plastic and reconstructive surgery. In theory, cells undergoing mesenchymal transition will achieve re-epithelialization through mesenchymal-epithelial transition at the end of wound healing. But in fact, some pathological stimuli will inhibit this biological process and result in scar formation. If mesenchymal-epithelial transition can be activated at the corresponding stage, the ideal wound healing may be accomplished. Two in vivo skin defect mouse models and dermal-derived mesenchymal cells were used to evaluate the effect of lithium chloride in wound healing. The mesenchymal-epithelial transition was detected by immunohistochemistry staining. In vivo, differentially expressed genes were analysed by transcriptome analyses and the subsequent testing was carried out. We found that lithium chloride could promote murine cutaneous wound healing and facilitate mesenchymal-epithelial transition in vivo and in vitro. In lithium chloride group, scar area was smaller and the collagen fibres are also orderly arranged. The genes related to mesenchyme were downregulated and epithelial mark genes were activated after intervention. Moreover, transcriptome analyses suggested that this effect might be related to the inhibition of CXCL9 and IGF2, subsequent assays demonstrated it. Lithium chloride can promote mesenchymal-epithelial transition via downregulating CXCL9 and IGF2 in murine cutaneous wound healing, the expression of IGF2 is regulated by β-catenin. It may be a potential promising therapeutic drug for alleviating postoperative scar and promoting re-epithelialization in future.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Mianxing Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bingshuai Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lanling Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qian Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenghao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Chen S, Tian X, Li S, Wu Z, Li Y, Guo J, Liao Z. The role of traditional Chinese medicine in postoperative wound complications of gastric cancer. Int Wound J 2024; 21:e14847. [PMID: 38584331 PMCID: PMC10999554 DOI: 10.1111/iwj.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Due to the high risks of postoperative complications brought on by gastric cancer, traditional Chinese medicine (TCM) as a commonly used therapy, has exerted its vital role in postoperative recovery care. In this sense, this meta-analysis was conducted to explore the related documents about TCM's impact on gastric cancer postoperative recovery. During the research, we explored a total of 1549 results from databases PubMed, China National Knowledge Infrastructure (CNKI), Embase, Cochrane Library and Web of Science (WoS). Thirty-two clinical randomized trials (RCTs) were then selected and analysed for this meta-analysis by using the software RevMan 5.4 (under PRISMA 2020 regulations), with a population of 3178 patients. Data prove that TCM therapy reduced the risks for postoperative complications exposure by an estimated average of 19% (95% CI). Among the complications, TCM therapy suppressed the risks of wound infection and incisional infections by 53% and 48% respectively. Meanwhile, the patient's wound healing duration exhibited a significant reduction compared to those without TCM treatment, with a difference at around 0.74 days (95% CI). TCM also exerted its potential to strengthen the patient's immune and health conditions, leading to a significantly promoted gastrointestinal function in the patients with a shorter duration to release first exhaustion and defecation compared to those with no TCM therapy. In addition, similar promoted phenomena also exist in those patients with TCM therapy in terms of their immunity and nutritional conditions. These facts all indicate a positive impact of TCM therapy in clinical applications.
Collapse
Affiliation(s)
- Shiwang Chen
- Department of GastroenterologyGansu Provincial Hospital of Traditional Chinese MedicineLanzhouChina
| | - Xudong Tian
- Department of GastroenterologyGansu Provincial Hospital of Traditional Chinese MedicineLanzhouChina
| | - Shengcai Li
- Department of GastroenterologyGansu Provincial Hospital of Traditional Chinese MedicineLanzhouChina
| | - Zhengquan Wu
- Department of GastroenterologyGansu Provincial Hospital of Traditional Chinese MedicineLanzhouChina
| | - Yanlong Li
- Department of GastroenterologyGansu Provincial Hospital of Traditional Chinese MedicineLanzhouChina
| | - Jun Guo
- Department of GastroenterologyGansu Provincial Hospital of Traditional Chinese MedicineLanzhouChina
| | - Zhifeng Liao
- Department of GastroenterologyGansu Provincial Hospital of Traditional Chinese MedicineLanzhouChina
| |
Collapse
|
35
|
Schneider AM, Rice SJ, Lancaster N, McGraw M, Farid Y, Finn HA. Low-Dose Irradiation and Rotating-Hinge Revision for the Treatment of Severe Idiopathic Arthrofibrosis Following Total Knee Arthroplasty: A Review of 60 Patients With a Mean 6-Year Follow-Up. J Arthroplasty 2024; 39:1075-1082. [PMID: 37863275 DOI: 10.1016/j.arth.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Severe idiopathic arthrofibrosis after total knee arthroplasty (TKA) is a challenging problem to treat. Low-dose irradiation may decrease fibro-osseous proliferation, while rotating-hinge (RH) revision allows for distal femur shortening and collateral ligament sacrifice. This study reports the clinical outcomes and implant survivorship in patients treated with low-dose irradiation and RH revision for severe idiopathic arthrofibrosis following TKA. METHODS A retrospective review was performed on 60 consecutive patients. Patients who had greater than 80° arc of knee motion or less than 15° flexion contracture were excluded. Mean follow-up was 6 years (range, 2 to 14). Kaplan-Meier survivorship analyses were performed, and logistic regressions were used to determine associations between preoperative patient characteristics and clinical outcomes. RESULTS Median flexion contracture and median terminal flexion at presentation were 20 and 70°, respectively; at final follow-up, 59 of 60 patients (98%) had ≤10° flexion contracture and 49 of 60 patients (82%) had ≥90° of flexion. The 10-year survivorship free from reoperation for any reason, revision for any reason, and revision for aseptic loosening were 63, 87, and 97%, respectively. There were 27% percent of patients who underwent a manipulation under anesthesia postoperatively, which was the most common reason for return to the operating room. A greater number of prior surgeries was significantly associated with worse range of motion at the final follow-up (P = .004). There were no known radiation-associated complications. CONCLUSIONS Patients with severe idiopathic arthrofibrosis following TKA treated with low-dose irradiation and RH revision maintained a gain in knee range of motion of 60° with reliable flexion contracture correction at a mean 6-year follow-up. A manipulation under anesthesia was common in the postoperative period. Survivorship free from revision for aseptic loosening was excellent at 10 years.
Collapse
Affiliation(s)
- Andrew M Schneider
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Steven J Rice
- Department of Orthopaedic Surgery, University of Chicago, Chicago, Illinois
| | - Neil Lancaster
- Department of Orthopaedic Surgery, Franciscan Health, Olympia Fields, Illinois
| | - Michael McGraw
- Department of Orthopaedic Surgery, Franciscan Health, Olympia Fields, Illinois
| | - Yasser Farid
- Department of Orthopaedic Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Henry A Finn
- Department of Orthopaedic Surgery, University of Chicago, Chicago, Illinois
| |
Collapse
|
36
|
Liu X, Sun Y, Wang J, Kang Y, Wang Z, Cao W, Ye J, Gao C. A tough, antibacterial and antioxidant hydrogel dressing accelerates wound healing and suppresses hypertrophic scar formation in infected wounds. Bioact Mater 2024; 34:269-281. [PMID: 38261887 PMCID: PMC10794931 DOI: 10.1016/j.bioactmat.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Wound management is an important issue that places enormous pressure on the physical and mental health of patients, especially in cases of infection, where the increased inflammatory response could lead to severe hypertrophic scars (HSs). In this study, a hydrogel dressing was developed by combining the high strength and toughness, swelling resistance, antibacterial and antioxidant capabilities. The hydrogel matrix was composed of a double network of polyvinyl alcohol (PVA) and agarose with excellent mechanical properties. Hyperbranched polylysine (HBPL), a highly effective antibacterial cationic polymer, and tannic acid (TA), a strong antioxidant molecule, were added to the hydrogel as functional components. Examination of antibacterial and antioxidant properties of the hydrogel confirmed the full play of the efficacy of HBPL and TA. In the in vivo studies of methicillin-resistant Staphylococcus aureus (MRSA) infection, the hydrogel had shown obvious promotion of wound healing, and more profoundly, significant suppression of scar formation. Due to the common raw materials and simple preparation methods, this hydrogel can be mass produced and used for accelerating wound healing while preventing HSs in infected wounds.
Collapse
Affiliation(s)
- Xiaoqing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yiming Sun
- Eye Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Jie Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhaolong Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wangbei Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| |
Collapse
|
37
|
Xue K, Zhang G, Li Z, Zeng X, Li Z, Wang F, Zhang X, Lin C, Mao C. Dissecting the association between gut microbiota and hypertrophic scarring: a bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1345717. [PMID: 38577682 PMCID: PMC10991740 DOI: 10.3389/fmicb.2024.1345717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Hypertrophic scars affect a significant number of individuals annually, giving rise to both cosmetic concerns and functional impairments. Prior research has established that an imbalance in the composition of gut microbes, termed microbial dysbiosis, can initiate the progression of various diseases through the intricate interplay between gut microbiota and the host. However, the precise nature of the causal link between gut microbiota and hypertrophic scarring remains uncertain. In this study, after compiling summary data from genome-wide association studies (GWAS) involving 418 instances of gut microbiota and hypertrophic scarring, we conducted a bidirectional Mendelian randomization (MR) to investigate the potential existence of a causal relationship between gut microbiota and the development of hypertrophic scar and to discern the directionality of causation. By utilizing MR analysis, we identified seven causal associations between gut microbiome and hypertrophic scarring, involving one positive and six negative causal directions. Among them, Intestinimonas, Ruminococcus2, Barnesiella, Dorea, Desulfovibrio piger, and Ruminococcus torques act as protective factors against hypertrophic scarring, while Eubacterium rectale suggests a potential role as a risk factor for hypertrophic scars. Additionally, sensitivity analyses of these results revealed no indications of heterogeneity or pleiotropy. The findings of our MR study suggest a potential causative link between gut microbiota and hypertrophic scarring, opening up new ways for future mechanistic research and the exploration of nanobiotechnology therapies for skin disorders.
Collapse
Affiliation(s)
- Kaikai Xue
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guojian Zhang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zihao Li
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangtao Zeng
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi Li
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fulin Wang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cai Lin
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cong Mao
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Komulainen T, Daymond P, Hietanen KE, Kaartinen IS, Järvinen TAH. Myofibroblasts reside in the middle dermis of the keloids but do not predict the response to injection therapies: a double-blinded, randomized, controlled trial. Front Med (Lausanne) 2024; 11:1293028. [PMID: 38495113 PMCID: PMC10943694 DOI: 10.3389/fmed.2024.1293028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction Keloids form as a pathological response to skin wound healing, and their etiopathology is poorly understood. Myofibroblasts, which are cells transformed from normal fibroblasts, are believed to contribute to pathological scar formation in wounds. Methods We carried out a double-blinded randomized controlled trial (RCT) comparing the efficacy of intralesional 5-fluorouracil (5-FU) and triamcinolone (TAC) injections in treating keloids. A total of 43 patients with 50 keloids were treated with either intralesional TAC or 5-FU injections, and their clinical response was evaluated. Biopsies were collected before, during, and after injection therapy from the active border of a keloid. To understand the role of myofibroblasts in keloids, we conducted an immunohistochemical analysis to identify myofibroblasts [α-smooth muscle actin (αSMA)] from the biopsies. We first defined the three histologically distinct regions-superficial, middle, and deep dermis-in each keloid. Results We then demonstrated that myofibroblasts almost exclusively exist in the middle dermis of the keloids as 80% of the cells in the middle dermis were αSMA positive. However, both the percentage of myofibroblasts as well as the area covered by them was substantially lower in the superficial and deep dermis than in the middle dermis of the keloids. Myofibroblasts do not predict the clinical response to intralesional injection therapies. There is no difference in the myofibroblast numbers in keloids or in the induced change in myofibroblasts between the responders and non-responders after treatment. Discussion This study demonstrates that myofibroblasts reside almost exclusively in the middle dermis layer of the keloids, but their numbers do not predict the clinical response to intralesional injection therapies in the RCT.
Collapse
Affiliation(s)
- Tuomas Komulainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Musculoskeletal Surgery and Diseases, Tampere University Hospital, Tampere, Finland
| | - Patrik Daymond
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kristiina E. Hietanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Plastic Surgery, Hospital Nova, Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | - Ilkka S. Kaartinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Musculoskeletal Surgery and Diseases, Tampere University Hospital, Tampere, Finland
| | - Tero A. H. Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Musculoskeletal Surgery and Diseases, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
39
|
Zhao X, Chen Y, Lin Z, Jin X, Su B, Liu X, Yang M, Chen K, Zhu M, Wang L, Zhu YZ. H 2S donor S-propargyl-cysteine for skin wound healing improvement via smart transdermal delivery. MedComm (Beijing) 2024; 5:e485. [PMID: 38434762 PMCID: PMC10908363 DOI: 10.1002/mco2.485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 03/05/2024] Open
Abstract
Hydrogen sulfide for wound healing has drawn a lot of attention recently. In this research, the S-propargyl-cysteine (SPRC), an endogenous H2S donor, was loaded on carbomer hydrogel, and a copper sheet rat burn model was developed. Pathological changes in rat skin tissue were examined using hematoxylin-eosin (HE) and Masson staining. The immunohistochemistry (IHC) staining was performed to detect the expression of Collagen I (Col I) and Collagen III (Col III). The mRNA levels of interleukin (IL)-6, Col Iα2, Col IIIα1, tissue inhibitors of metalloproteinase (TIMP)-1, matrix metalloproteinase (MMP)-9, vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-β1 were examined by quantitative real-time chain polymerase reaction. The findings demonstrated that the collagen layer was thicker in the SPRC group during the proliferative phase, SPRC hydrogel promoted VEGF expression. In the late stage of wound healing, the expression of IL-6, TIMP-1, MMP-9, and TGF-β1 was inhibited, and the Col I content was closer to that of normal tissue. These results surface that SPRC hydrogel can promote wound healing and play a positive role in reducing scar formation. Our results imply that SPRC can facilitate wound healing and play a positive role in reducing scar formation.
Collapse
Affiliation(s)
- Xiaoqing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Yao Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese MedicineMacau University of Science and TechnologyMacauChina
- Department of Medical CosmetologyAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Zhongxiao Lin
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Xinyang Jin
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Bolun Su
- School of MedicineMacau University of Science and TechnologyMacauChina
| | - Xiaotong Liu
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Mao Yang
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Keyuan Chen
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Menglin Zhu
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Lei Wang
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese MedicineMacau University of Science and TechnologyMacauChina
- School of PharmacyMacau University of Science and TechnologyMacauChina
| |
Collapse
|
40
|
Zhang Y, Zhang X, Yu A. Expression of macrophage activation‑specific factors in hyperplastic scar tissue during hyperplasia phase by antibody array blotting membrane assay and its clinical significance. Exp Ther Med 2024; 27:116. [PMID: 38361512 PMCID: PMC10867714 DOI: 10.3892/etm.2024.12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
The expression of macrophage activation-specific factors in hyperplastic scar (HS) tissues during hyperplasia phase was detected by antibody array imprinted membrane method and the role of macrophage activation in the natural evolution of HS was explored. A total of 83 patients with HS admitted to the Affiliated Hospital of Beihua University (Jilin, China) between February 2021 and July 2021 were enrolled. The clinical data of the patients were retrospectively analyzed. These patients were divided into the hyperplasia HS group (n=26) and the decline HS group (the HS tissues ceased to grow and were in regression periods; n=57) according to the time of scar formation and clinical characteristics. The HS tissues were collected from patients in both groups. The contents of IL-12, IL-10, VEGF and basic fibroblast growth factor (bFGF) were detected by antibody array imprinted membrane method and the contents of IL-12, IL-10, VEGF and bFGF in tissues with various groups of tissues and clinical features were compared. The connection between macrophage activation-specific factors with VEGF and bFGF was analyzed using Pearson correlation analysis. The contents of IL-10 (9.48±1.06), VEGF (24.15±2.64) and bFGF (37.48±2.56) were much lower and IL-12 levels (16.45±0.85) were strongly higher in hyperplasia HS group compared with those in the decline HS group (14.56±1.26 for IL-10, 27.85±2.63 for VEGF, 43.15±3.16 for bFGF and 10.46±0.75 for IL-12, P<0.001). In the hyperplasia HS group, the contents of IL-10, VEGF and bFGF were obviously higher and the IL-12 levels were markedly lower in patients with age ≥30 years, protuberance height <2 mm, soft flexibility, low hyperemia degree and no concomitant symptoms than those in the patients with age <30 years, protuberance height ≥2 mm, hard flexibility, high hyperemia degree and concomitant symptoms (P<0.001). Pearson correlation analysis showed that IL-12 was negatively correlated with VEGF and bFGF (r=-0.328, 0.600, P<0.01). IL-10 was positively correlated with VEGF and bFGF (r=0.486, 0.684, respectively, P<0.001). In conclusion, macrophage activation-specific factors were abnormally expressed in hyperplasia HS, mainly M1 macrophages, accompanied by severe inflammatory reaction. The transformation of M1 macrophage into M2 macrophage usually occurred during the declining HS phase, which accelerated scar formation by promoting the formation of fibroblasts and angiogenesis. Detection of macrophage activation-specific factors may contribute to evaluate the clinical stage of HS.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Dermatology, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Xiaodong Zhang
- Department of Dermatology, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Aiping Yu
- Department of Ultrasound, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| |
Collapse
|
41
|
Fu S, Duan L, Zhong Y, Zeng Y. Comparison of surgical excision followed by adjuvant radiotherapy and laser combined with steroids for the treatment of keloids: A systematic review and meta-analysis. Int Wound J 2024; 21:e14449. [PMID: 37967571 PMCID: PMC10895202 DOI: 10.1111/iwj.14449] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023] Open
Abstract
This meta-analysis aims to evaluate and compare the effect of surgical excision followed by adjuvant radiotherapy and laser combined with steroids on keloids. Relevant studies reporting the recurrence rate or incidence of adverse events (AEs) were retrieved from the PubMed, Web of Science, Embase and Cochrane Library databases through August 2023. The quality of noncomparative single-arm clinical trials was evaluated using the methodological index for nonrandomised studies (MINORS) Methodological items. This meta-analysis was conducted utilizing Stata 12.0 statistical software. 26 studies involving 989 patients were included in the analysis. The recurrence rate in the laser combined with steroids therapy group (12.2%, 95% confidence interval [CI]: 5.9%-18.5%) was lower than that of the surgical excision combined with radiotherapy group (13.5%, 95% CI: 6.6%-22.2%). For the incidence of AEs, relatively low incidence of atrophy (0.0%, 95% CI: 0.0%-1.2%), telangiectasia (3.2%, 95% CI: 0.4%-7.6%), erythema (2.3%, 95% CI: 0.0%-10.6%), infection (0.2%, 95% CI: 0.0%-1.6%) and high hyperpigmentation rate (8.3%, 95% CI: 4.2%-13.4%) were obtained in the surgical excision combined with radiotherapy group. Compared with surgical resection followed by radiotherapy, the combination of laser and steroids for keloids showed a lower hyperpigmentation rate (6.5%), as well as a higher incidence of atrophy (22.7%), telangiectasia (6.4%), erythema (3.3%) and infection (3.3%). Only a hypopigmentation rate of 2.9% was obtained in patients treated with surgical excision plus radiotherapy. Current evidence revealed that surgical excision followed by adjuvant radiotherapy and laser combined with steroids therapy were effective and safe treatments for keloids, with relatively low recurrence rate and complication rate. Comparative studies are needed to further compare the effects of these two combination therapies on keloids.
Collapse
Affiliation(s)
- Siqi Fu
- Department of DermatologySecond Xiangya Hospital, Central South UniversityChangshaChina
| | - Liu Duan
- Department of DermatologyThe Third Hospital of ChangshaChangshaChina
| | - Yan Zhong
- Department of Preventive MedicineSchool of Medicine, Hunan Normal UniversityChangshaChina
| | - Yu Zeng
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative DiseasesChangsha Medical UniversityChangshaChina
| |
Collapse
|
42
|
Yang Z, Yang Z, Zuo Z. Early intervention of carbon dioxide fractional laser in hypertrophic scar through TGFβ-1/ Smad3 signaling pathway. Lasers Med Sci 2024; 39:78. [PMID: 38388742 DOI: 10.1007/s10103-024-04026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Hypertrophic scars are usually the result of surgical trauma or burn,and more common in individuals with a darker skin color. They appear as red and raised lesions around the wound that continually expand over a period of weeks or months, causing itching, pain, burning sensation and discomfort. Severe scarring affects interpersonal and social relationships, and decreases the quality of life of the patients.The aim of this study was to evaluate the effect of carbon dioxide fractional laser as an early intervention against hypertrophic scars using a rabbit ear scar model, and explore the role of the TGFβ-1/ Smad3 signaling pathway in scar hyperplasia. Four wounds were made into each ear of rabbits, and divided into the untreated control and three laser-treatment groups. The experimental groups received laser intervention once, twice and thrice respectively. laser treatment significantly inhibited the formation of hypertrophic scars, and maximum benefits were seen in the wounds that received three laser treatments. Immunohistochemical staining showed that the in situ expression of TGFβ-1 and Smad3 in the scars decreased by varying degrees after laser intervention, and was most obvious after three laser interventions. Furthermore, the expression levels were the lowest at the end of 6 months after modeling. Therefore, we can assume that early intervention with carbon dioxide fractional laser can prevent formation of hypertrophic scars by regulating the TGF-β1/Smad3 pathway.
Collapse
Affiliation(s)
- Zizheng Yang
- Department of Plastic and Cosmetic Burns, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei, China
| | - Zhiguo Yang
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongbao Zuo
- Department of Plastic and Cosmetic Burns, Anhui No.2 Provincial People's Hospital, Anhui Medical University, Hefei, China.
| |
Collapse
|
43
|
Han Y, Sun Y, Yang F, Liu Q, Fei W, Qiu W, Wang J, Li L, Zhang X, Wang A, Cui Y. Non-invasive imaging of pathological scars using a portable handheld two-photon microscope. Chin Med J (Engl) 2024; 137:329-337. [PMID: 37519215 PMCID: PMC10836882 DOI: 10.1097/cm9.0000000000002715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Pathological scars are a disorder that can lead to various cosmetic, psychological, and functional problems, and no effective assessment methods are currently available. Assessment and treatment of pathological scars are based on cutaneous manifestations. A two-photon microscope (TPM) with the potential for real-time non-invasive assessment may help determine the under-surface pathophysiological conditions in vivo . This study used a portable handheld TPM to image epidermal cells and dermal collagen structures in pathological scars and normal skin in vivo to evaluate the effectiveness of treatment in scar patients. METHODS Fifteen patients with pathological scars and three healthy controls were recruited. Imaging was performed using a portable handheld TPM. Five indexes were extracted from two dimensional (2D) and three dimensional (3D) perspectives, including collagen depth, dermo-epidermal junction (DEJ) contour ratio, thickness, orientation, and occupation (proportion of collagen fibers in the field of view) of collagen. Two depth-dependent indexes were computed through the 3D second harmonic generation image and three morphology-related indexes from the 2D images. We assessed index differences between scar and normal skin and changes before and after treatment. RESULTS Pathological scars and normal skin differed markedly regarding the epidermal morphological structure and the spectral characteristics of collagen fibers. Five indexes were employed to distinguish between normal skin and scar tissue. Statistically significant differences were found in average depth ( t = 9.917, P <0.001), thickness ( t = 4.037, P <0.001), occupation ( t = 2.169, P <0.050), orientation of collagen ( t = 3.669, P <0.001), and the DEJ contour ratio ( t = 5.105, P <0.001). CONCLUSIONS Use of portable handheld TPM can distinguish collagen from skin tissues; thus, it is more suitable for scar imaging than reflectance confocal microscopy. Thus, a TPM may be an auxiliary tool for scar treatment selection and assessing treatment efficacy.
Collapse
Affiliation(s)
- Yang Han
- Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yuxuan Sun
- College of Engineering, Peking University, Beijing 100871, China
| | - Feili Yang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Qingwu Liu
- Department of Dermatology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wenmin Fei
- Department of Dermatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wenzhuo Qiu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junjie Wang
- College of Future Technology, Peking University, Beijing 100871, China
| | - Linshuang Li
- Beijing Transcend Vivoscope Biotech, Beijing 100085, China
| | - Xuejun Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230001, China
| | - Aimin Wang
- School of Electronics, Peking University, Beijing 100871, China
| | - Yong Cui
- Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
44
|
Wang Y, Hua Z, Tang L, Song Q, Cui Q, Sun S, Yuan Y, Zhang L. Therapeutic implications of extracorporeal shock waves in burn wound healing. J Tissue Viability 2024; 33:96-103. [PMID: 38155029 DOI: 10.1016/j.jtv.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Burns are a common type of trauma that seriously affect not only the physical health, but also the mental health and quality of life of the patient. Extracorporeal shock wave therapy (ESWT) is an emerging treatment that has been used in clinical treatment. It has many advantages, including safety, non-invasiveness, efficiency, short treatment duration, fewer complications, and relatively low prices. In clinical settings, ESWT has played an important role in the healing process of burns and the prevention of sequelae. This article reviews the history of ESWT, the mechanism of ESWT to promote burn healing, and the application of ESWT in burns. Current status of ESWT treatment for burns as well as future perspectives for research have been summarized and proposed. However, patients with burns cannot be considered recovered when the wounds have healed, we need some new technology to adjust to the challenges of the future.
Collapse
Affiliation(s)
- Yashi Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Zuoyu Hua
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Liang Tang
- Department of Rehabilitation Medicine, Anshan Central Hospotal (6 Th Clinical College of China Medical University), Anshan, Liaoning Province, 114001, China
| | - Qifeng Song
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Qian Cui
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Shi Sun
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Yin Yuan
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Lixin Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China.
| |
Collapse
|
45
|
Meng S, Wei Q, Chen S, Liu X, Cui S, Huang Q, Chu Z, Ma K, Zhang W, Hu W, Li S, Wang Z, Tian L, Zhao Z, Li H, Fu X, Zhang C. MiR-141-3p-Functionalized Exosomes Loaded in Dissolvable Microneedle Arrays for Hypertrophic Scar Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305374. [PMID: 37724002 DOI: 10.1002/smll.202305374] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Hypertrophic scar (HS) is a common fibroproliferative disease caused by abnormal wound healing after deep skin injury. However, the existing approaches have unsatisfactory therapeutic effects, which promote the exploration of newer and more effective strategies. MiRNA-modified functional exosomes delivered by dissolvable microneedle arrays (DMNAs) are expected to provide new hope for HS treatment. In this study, a miRNA, miR-141-3p, which is downregulated in skin scar tissues and in hypertrophic scar fibroblasts (HSFs), is identified. MiR-141-3p mimics inhibit the proliferation, migration, and myofibroblast transdifferentiation of HSFs in vitro by targeting TGF-β2 to suppress the TGF-β2/Smad pathway. Subsequently, the engineered exosomes encapsulating miR-141-3p (miR-141-3pOE -Exos) are isolated from adipose-derived mesenchymal stem cells transfected with Lv-miR-141-3p. MiR-141-3pOE -Exos show the same inhibitive effects as miR-141-3p mimics on the pathological behaviors of HSFs in vitro. The DMNAs for sustained release of miR-141-3pOE -Exos are further fabricated in vivo. MiR-141OE -Exos@DMNAs effectively decrease the thickness of HS and improve fibroblast distribution and collagen fiber arrangement, and downregulate the expression of α-SMA, COL-1, FN, TGF-β2, and p-Smad2/3 in the HS tissue. Overall, a promising, effective, and convenient exosome@DMNA-based miRNA delivery strategy for HS treatment is provided.
Collapse
Affiliation(s)
- Sheng Meng
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shengqiu Chen
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shengnan Cui
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Qilin Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Ziqiang Chu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shiyi Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Zihao Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Lige Tian
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Zhiliang Zhao
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Haihong Li
- Department of Burns and Plastic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| |
Collapse
|
46
|
Xu Q, Bao C, Liu J, Zou Y, Zhu Y, Shen S, Fang F, Wang S, Lin M, Huang J, Gong T, Cheng B, Huang Z, Ji C. Effect of Epidermoid Cysts on the Efficacy of Intralesional Corticosteroid Therapy for Hypertrophic Scars and Keloids: A Prospective Pilot Study. Dermatol Surg 2024; 50:160-164. [PMID: 37962160 DOI: 10.1097/dss.0000000000004001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
BACKGROUND Patients with hypertrophic scars (HSs) or keloids occasionally have epidermoid cysts (ECs), and the effect of ECs on the effectiveness of intralesional corticosteroids (ILCs) treatment in these patients has not been reported. OBJECTIVE This study aims to evaluate the influence of ECs on the outcomes of ILCs treatment in patients with HSs or keloids. MATERIALS AND METHODS This prospective study included 572 patients with keloids ( n = 461) or HSs ( n = 111). Patients received intralesional triamcinolone acetonide injection (0.05 mL/injection) at a concentration of 40 mg/mL and every 28 days for 4 sessions, with a 1-year follow-up. RESULTS A higher incidence of ECs was observed in keloid patients (16.92%) compared with HSs patients (7.21%). Keloid patients with ECs were older ( p = .008) and had a longer disease duration ( p = .0148), higher Vancouver scar scale (VSS) scores ( p = .04), and greater thickness ( p = .006). Keloid patients with ECs showed less improvement in VSS scores ( p < .0001) and thickness ( p < .0001) after ILCs treatment, with a higher recurrence rate ( p < .0001). The overall complication rate in keloid patients with ECs after ILCs treatment was 49.51%. CONCLUSION Epidermoid cysts under keloids were associated with a poor response to ILCs therapy. Therefore, it is recommended to incorporate ultrasonography as a routine examination for keloid patients to aid in better decision making in clinical practice.
Collapse
Affiliation(s)
- Qiuyun Xu
- Department of Dermatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Dermatology and Venereology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chengbei Bao
- Department of Dermatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Dermatology and Venereology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jian Liu
- Fuzhou Minebuty Medical Cosmetology Clinic, Fuzhou, Fujian, China
| | - Ying Zou
- Department of Dermatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Dermatology and Venereology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanting Zhu
- Department of Dermatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Dermatology and Venereology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shuyi Shen
- Department of Dermatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Dermatology and Venereology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Fang Fang
- Department of Dermatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Dermatology and Venereology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Songyu Wang
- Department of Dermatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Dermatology and Venereology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Mengting Lin
- Department of Dermatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Dermatology and Venereology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinwen Huang
- Department of Dermatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Dermatology and Venereology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ting Gong
- Department of Dermatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Central Laboratory, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Bo Cheng
- Department of Dermatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Dermatology and Venereology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zugen Huang
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Chao Ji
- Department of Dermatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Dermatology and Venereology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
47
|
Qian Y, Wei W, Pan T, Lu J, Wei Y. Comparison research on the therapeutic effects of botulinum toxin type A and stromal vascular fraction gel on hypertrophic scars in the rabbit ear model. Burns 2024; 50:178-189. [PMID: 37783633 DOI: 10.1016/j.burns.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/05/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Botulinum toxin type A (BTA) is often used for wrinkles and muscle convulsive diseases due to its blocking of the transmission of nerve impulses. Stromal vascular fraction gel (SVF-gel) prepared from adipose tissue has novel effects on skin depression and poor texture. Both BTA and SVF-gel are proved to possess anti-scar potential. This study aimed to assess and compare their therapeutic effects on hypertrophic scars. MATERIALS AND METHODS The rabbit ear scar model was established and treated with BTA and SVF-gel, alone or in combination. Gross evaluation using Manchester Scar Scale (MSS) was conducted immediately, 4 and 8 weeks after initial treatment. After tissue sample harvest, histological and Western blot analyses were performed. RESULTS All the treatments alleviated scar hyperplasia in different degrees by inhibiting fibroblast activation (Ki-67, α-SMA), tissue inflammation (CD45, IL-1β) and the transforming growth factor-β1 (TGF-β1)/Smad3 pathway. Despite an excellent anti-inflammatory effect, improvement of scar appearance and pathological characteristics in SVF-gel-contained groups was not as good as that in BTA-only group, which might be related to the retention of M2-type macrophages (CD163 +) and partial maintenance of TGF-β1 expression. CONCLUSION Our data suggest that BTA has better anti-scar efficacy than SVF-gel, and the combination of these two treatments shows no obvious combinatorial effect.
Collapse
Affiliation(s)
- Yao Qian
- Department of Plastic Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Wang Wei
- Department of Plastic Surgery, Changxing People's Hospital, Huzhou, China
| | - Tianyun Pan
- Department of Pathology, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Huzhou, China
| | - Jianfeng Lu
- Department of Plastic Surgery, Changxing People's Hospital, Huzhou, China
| | - Ying Wei
- Department of Plastic Surgery, Changxing People's Hospital, Huzhou, China; Department of Plastic Surgery, Jiahui Medical Beauty Clinic Co.Ltd, Huzhou, China.
| |
Collapse
|
48
|
Shao J, Hu M, Wang W, Pan Z, Zhao D, Liu J, Lv M, Zhang Y, Li Z. Indocyanine green based photodynamic therapy for keloids: Fundamental investigation and clinical improvement. Photodiagnosis Photodyn Ther 2024; 45:103903. [PMID: 37989473 DOI: 10.1016/j.pdpdt.2023.103903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Keloid, a prevalent pathological skin lesion, presents significant challenges in terms of treatment efficacy. Photodynamic therapy (PDT), an increasingly popular adjuvant treatment, has shown significant potential in the management of various disorders, including cancer. However, the therapeutic potential of indocyanine green-mediated photodynamic therapy (ICG-PDT) for keloids has not yet been demonstrated. METHODS In this study, we divided the experimental groups into control group, Photothermal Therapy group, Photodynamic Therapy group, and Combined Therapy group. The in vitro investigation aimed to optimize the clinical application of PDT for keloid treatment by elucidating its underlying mechanism. Subsequently, on this basis, we endeavored to manage a clinical case of keloid by employing surgical intervention in conjunction with modified ICG-PDT. RESULTS Our investigation revealed an unexpected outcome that ICG-PDT maximally inhibited the cellular activity and migration of keloid fibroblasts only when photodynamic mechanism took effect. Additionally, the induction of autophagy and apoptosis, as well as the inhibition of collagen synthesis, were particularly evident in this experimental group. Furthermore, the above therapeutic effect could be achieved at remarkably low drug concentrations. Building upon the aforementioned experimental findings, we successfully optimized the treatment modality for the latest case and obtained a more favorable treatment outcome. CONCLUSIONS This study investigated the mechanism of ICG-PDT treatment and optimized the in vivo treatment regimen, demonstrating the significant therapeutic potential of ICG-PDT treatment in clinical keloid treatment.
Collapse
Affiliation(s)
- Junyi Shao
- Department of Dermatology and Venereology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Murong Hu
- Department of Dermatology and Venereology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, 310000, China
| | - Wenwen Wang
- Department of Dermatology and Venereology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhaoqi Pan
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University,Wenzhou, Zhejiang, 325000, China
| | - Dewei Zhao
- Department of Urology, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
| | - Jingjing Liu
- Department of Dermatology and Venereology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Mingfen Lv
- Department of Dermatology and Venereology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yi Zhang
- Department of Dermatology and Venereology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Zhiming Li
- Department of Dermatology and Venereology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
49
|
Hu L, Bao Z. Inhibitory effect of a novel Curcumin derivative DMC-HA on keloid fibroblasts. Aging (Albany NY) 2024; 16:2398-2409. [PMID: 38284901 PMCID: PMC10911336 DOI: 10.18632/aging.205487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
Keloids pose a significant dermatological challenge, marked by abnormal fibroblast proliferation and excessive collagen deposition in response to skin injury or trauma. In the present study, we introduce DMC-HA, a derivative of Curcumin, as a promising candidate for keloid treatment. DMC-HA is poised to provide superior therapeutic benefits compared to Curcumin due to its structural modifications. Examining the comparative effects of DMC-HA and Curcumin on keloid fibroblasts can offer insights into their potential as therapeutic agents and the underlying mechanisms in keloid pathogenesis. In our study, CCK-8 experiments revealed that, at equivalent concentrations, DMC-HA demonstrated greater efficacy in inhibiting the proliferation of keloid fibroblasts compared to Curcumin. Flow cytometry analysis indicated that DMC-HA induced fibroblast apoptosis more significantly than Curcumin at the same concentration. Further data demonstrated that DMC-HA notably increased the production of reactive oxygen species (ROS), upregulated the expression levels of Bax, cleaved PARP, and cleaved Caspase-3. Interestingly, the impact of DMC-HA was reversed upon the application of the antioxidant NAC. Additionally, DMC-HA could suppress IL-6-induced increased expression of p-STAT3. Collectively, our findings suggest that DMC-HA is more effective than Curcumin in inhibiting the proliferation of keloid fibroblasts. The underlying mechanism of its action appears to be associated with the augmentation of ROS induction and the concurrent inhibition of STAT3 activation.
Collapse
Affiliation(s)
- Liang Hu
- Department of Burns and Plastic Surgery, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Zhicheng Bao
- Department of Rehabilitation Medicine, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, China
| |
Collapse
|
50
|
Lv X, He Z, Yang M, Wang L, Fu S. Analysis of subsets and localization of macrophages in skin lesions and peripheral blood of patients with keloids. Heliyon 2024; 10:e24034. [PMID: 38283250 PMCID: PMC10818209 DOI: 10.1016/j.heliyon.2024.e24034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Keloids are a type of abnormal fibrous proliferation disease of the skin, characterized by local inflammation that lacks clear pathogenesis and satisfactory treatment. The phenomenon of distinct phenotypes, including M1 and M2 macrophages, is called macrophage polarization. Recently, macrophage polarization has been suggested to play a role in keloid formation. This study aimed to evaluate the relation between macrophage polarization and keloids and identify novel effective treatments for keloids. Differentially expressed genes were identified via RNA sequencing of the skin tissue of healthy controls and patients with keloids and validated using quantitative PCR. Multiplex immunofluorescence microscopy was used to detect different phenotypes of macrophages in keloid tissues. Finally, quantitative PCR validation of differentially expressed genes and flow cytometry were used to analyze macrophages in the peripheral blood of healthy controls and patients with keloids. Total and M2 macrophages were significantly increased in the local skin tissue and peripheral blood of patients with keloids compared with healthy controls. In addition, inflammation- and macrophage polarization-related differentially expressed genes in keloid tissue showed similar expression patterns in the peripheral blood. This study highlighted an increased frequency of total macrophages and M2 polarization in the local skin tissue and peripheral blood of patients with keloids. This systematic macrophage polarization tendency also indicates a potential genetic predisposition to keloids. These findings suggest the possibility of developing new diagnostic and therapeutic indicators for keloids focusing on macrophages.
Collapse
Affiliation(s)
- Xinyi Lv
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Zhenghao He
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan 410011, China
- Department of Plastic Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Ming Yang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Lu Wang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Siqi Fu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| |
Collapse
|