1
|
Jayaraman J, Yoon M, Hemara LM, Bohne D, Tahir J, Chen RKY, Brendolise C, Rikkerink EHA, Templeton MD. Contrasting effector profiles between bacterial colonisers of kiwifruit reveal redundant roles converging on PTI-suppression and RIN4. THE NEW PHYTOLOGIST 2023; 238:1605-1619. [PMID: 36856342 DOI: 10.1111/nph.18848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Testing effector knockout strains of the Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) for reduced in planta growth in their native kiwifruit host revealed a number of nonredundant effectors that contribute to Psa3 virulence. Conversely, complementation in the weak kiwifruit pathogen P. syringae pv. actinidifoliorum (Pfm) for increased growth identified redundant Psa3 effectors. Psa3 effectors hopAZ1a and HopS2b and the entire exchangeable effector locus (ΔEEL; 10 effectors) were significant contributors to bacterial colonisation of the host and were additive in their effects on virulence. Four of the EEL effectors (HopD1a, AvrB2b, HopAW1a and HopD2a) redundantly contribute to virulence through suppression of pattern-triggered immunity (PTI). Important Psa3 effectors include several redundantly required effectors early in the infection process (HopZ5a, HopH1a, AvrPto1b, AvrRpm1a and HopF1e). These largely target the plant immunity hub, RIN4. This comprehensive effector profiling revealed that Psa3 carries robust effector redundancy for a large portion of its effectors, covering a few functions critical to disease.
Collapse
Affiliation(s)
- Jay Jayaraman
- The New Zealand Institute for Plant and Food Research Ltd, Mt. Albert Research Centre, Auckland, 1025, New Zealand
| | - Minsoo Yoon
- The New Zealand Institute for Plant and Food Research Ltd, Mt. Albert Research Centre, Auckland, 1025, New Zealand
| | - Lauren M Hemara
- The New Zealand Institute for Plant and Food Research Ltd, Mt. Albert Research Centre, Auckland, 1025, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Deborah Bohne
- The New Zealand Institute for Plant and Food Research Ltd, Mt. Albert Research Centre, Auckland, 1025, New Zealand
| | - Jibran Tahir
- The New Zealand Institute for Plant and Food Research Ltd, Mt. Albert Research Centre, Auckland, 1025, New Zealand
| | - Ronan K Y Chen
- The New Zealand Institute for Plant and Food Research Ltd, Food Industry Science Centre, Palmerston North, 4472, New Zealand
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Ltd, Mt. Albert Research Centre, Auckland, 1025, New Zealand
| | - Erik H A Rikkerink
- The New Zealand Institute for Plant and Food Research Ltd, Mt. Albert Research Centre, Auckland, 1025, New Zealand
| | - Matthew D Templeton
- The New Zealand Institute for Plant and Food Research Ltd, Mt. Albert Research Centre, Auckland, 1025, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Bioprotection Aotearoa, Lincoln, 7647, New Zealand
| |
Collapse
|
2
|
Yoon M, Middleditch MJ, Rikkerink EHA. A conserved glutamate residue in RPM1-INTERACTING PROTEIN4 is ADP-ribosylated by the Pseudomonas effector AvrRpm2 to activate RPM1-mediated plant resistance. THE PLANT CELL 2022; 34:4950-4972. [PMID: 36130293 PMCID: PMC9710000 DOI: 10.1093/plcell/koac286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Gram-negative bacterial plant pathogens inject effectors into their hosts to hijack and manipulate metabolism, eluding surveillance at the battle frontier on the cell surface. The effector AvrRpm1Pma from Pseudomonas syringae pv. maculicola functions as an ADP-ribosyl transferase that modifies RESISTANCE TO P. SYRINGAE PV MACULICOLA1 (RPM1)-INTERACTING PROTEIN4 (RIN4), leading to the activation of Arabidopsis thaliana (Arabidopsis) resistance protein RPM1. Here we confirmed the ADP-ribosyl transferase activity of another bacterial effector, AvrRpm2Psa from P. syringae pv. actinidiae, via sequential inoculation of Pseudomonas strain Pto DC3000 harboring avrRpm2Psa following Agrobacterium-mediated transient expression of RIN4 in Nicotiana benthamiana. We conducted mutational analysis in combination with mass spectrometry to locate the target site in RIN4. A conserved glutamate residue (Glu156) is the most likely target for AvrRpm2Psa, as only Glu156 could be ADP-ribosylated to activate RPM1 among candidate target residues identified from the MS/MS fragmentation spectra. Soybean (Glycine max) and snap bean (Phaseolus vulgaris) RIN4 homologs without glutamate at the positions corresponding to Glu156 of Arabidopsis RIN4 are not ADP-ribosylated by bacterial AvrRpm2Psa. In contrast to the effector AvrB, AvrRpm2Psa does not require the phosphorylation of Thr166 in RIN4 to activate RPM1. Therefore, separate biochemical reactions by different pathogen effectors may trigger the activation of the same resistance protein via distinct modifications of RIN4.
Collapse
Affiliation(s)
- Minsoo Yoon
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Martin J Middleditch
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Erik H A Rikkerink
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
3
|
Kim H, Prokchorchik M, Sohn KH. Investigation of natural RIN4 variants reveals a motif crucial for function and provides an opportunity to broaden NLR regulation specificity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:58-70. [PMID: 34978118 DOI: 10.1111/tpj.15653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/29/2021] [Accepted: 12/20/2021] [Indexed: 05/27/2023]
Abstract
Multiple bacterial effectors target RPM1-INTERACTING PROTEIN4 (RIN4), the biochemical modifications of which are recognized by several plant nucleotide-binding and leucine-rich repeat immune receptor (NLR) proteins. Recently, a comparative study of Arabidopsis and apple (Malus domestica) RIN4s revealed that the RIN4 specificity motif (RSM) is critical for NLR regulation. Here, we investigated the extent to which the RSM contributes to the functions of natural RIN4 variants. Functional analysis of 33 natural RIN4 variants from 28 plant species showed that the RSM is generally required yet sometimes dispensable for the RIN4-mediated suppression of NLR auto-activity or effector-triggered NLR activation. Association analysis of the sequences and fire blight resistance gene originating from Malus × robusta 5 (FB_MR5) activation functions of the natural RIN4 variants revealed H167 to be an indispensable residue for RIN4 function in the regulation of NLRs. None of the tested natural RIN4 variants could suppress RESISTANCE TO PSEUDOMONAS SYRINGAE PV. MACULICOLA1 (RPM1) auto-activity and activate FB_MR5. To engineer RIN4 to carry broader NLR compatibility, we generated chimeric RIN4 proteins, several of which could regulate RPM1, RESISTANT TO PSEUDOMONAS SYRINGAE2 (RPS2), and FB_MR5. We propose that the intrinsically disordered nature of RIN4 provides a flexible platform to broaden pathogen recognition specificity by establishing compatibility with otherwise incompatible NLRs.
Collapse
Affiliation(s)
- Haseong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon, 21983, Republic of Korea
| |
Collapse
|
4
|
Hsiao AS. Plant Protein Disorder: Spatial Regulation, Broad Specificity, Switch of Signaling and Physiological Status. FRONTIERS IN PLANT SCIENCE 2022; 13:904446. [PMID: 35685011 PMCID: PMC9171514 DOI: 10.3389/fpls.2022.904446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 05/14/2023]
Affiliation(s)
- An-Shan Hsiao
- *Correspondence: An-Shan Hsiao ; orcid.org/0000-0002-2485-9034
| |
Collapse
|
5
|
Yoon M, Rikkerink EHA. Rpa1 mediates an immune response to avrRpm1 Psa and confers resistance against Pseudomonas syringae pv. actinidiae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:688-702. [PMID: 31849122 DOI: 10.1111/tpj.14654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The type three effector AvrRpm1Pma from Pseudomonas syringae pv. maculicola (Pma) triggers an RPM1-mediated immune response linked to phosphorylation of RIN4 (RPM1-interacting protein 4) in Arabidopsis. However, the effector-resistance (R) gene interaction is not well established with different AvrRpm1 effectors from other pathovars. We investigated the AvrRpm1-triggered immune responses in Nicotiana species and isolated Rpa1 (Resistance to Pseudomonas syringae pv. actinidiae 1) via a reverse genetic screen in Nicotiana tabacum. Transient expression and gene silencing were performed in combination with co-immunoprecipitation and growth assays to investigate the specificity of interactions that lead to inhibition of pathogen growth. Two closely related AvrRpm1 effectors derived from Pseudomonas syringae pv. actinidiae biovar 3 (AvrRpm1Psa ) and Pseudomonas syringae pv. syringae strain B728a (AvrRpm1Psy ) trigger immune responses mediated by RPA1, a nucleotide-binding leucine-rich repeat protein with an N-terminal coiled-coil domain. In a display of contrasting specificities, RPA1 does not respond to AvrRpm1Pma , and correspondingly AvrRpm1Psa and AvrRpm1Psy do not trigger the RPM1-mediated response, demonstrating that separate R genes mediate specific immune responses to different AvrRpm1 effectors. AvrRpm1Psa co-immunoprecipitates with RPA1, and both proteins co-immunoprecipitate with RIN4. In contrast with RPM1, however, RPA1 was not activated by the phosphomimic RIN4T166D and silencing of RIN4 did not affect the RPA1 activity. Delivery of AvrRpm1Psa by Pseudomonas syringae pv. tomato (Pto) in combination with transient expression of Rpa1 resulted in inhibition of the pathogen growth in N. benthamiana. Psa growth was also inhibited by RPA1 in N. tabacum.
Collapse
Affiliation(s)
- Minsoo Yoon
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Erik H A Rikkerink
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
6
|
Prokchorchik M, Choi S, Chung EH, Won K, Dangl JL, Sohn KH. A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors. THE NEW PHYTOLOGIST 2020; 225:1327-1342. [PMID: 31550400 DOI: 10.1111/nph.16218] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Some virulence effectors secreted from pathogens target host proteins and induce biochemical modifications that are monitored by nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Arabidopsis RIN4 protein (AtRIN4: RPM1-interacting protein 4) homologs are present in diverse plant species and targeted by several bacterial type III effector proteins including the cysteine protease AvrRpt2. RIN4 is 'guarded' by several independently evolved NLRs from various plant species, including Arabidopsis RPS2. Recently, it was shown that the MR5 NLR from a wild apple relative can recognize the AvrRpt2 effector from Erwinia amylovora, but the details of this recognition remained unclear. The present contribution reports the mechanism of AvrRpt2 recognition by independently evolved NLRs, MR5 from apple and RPS2, both of which require proteolytically processed RIN4 for activation. It shows that the C-terminal cleaved product of apple RIN4 (MdRIN4) but not AtRIN4 is necessary and sufficient for MR5 activation. Additionally, two polymorphic residues in AtRIN4 and MdRIN4 are identified that are crucial in the regulation of and physical association with NLRs. It is proposed that polymorphisms in RIN4 from distantly related plant species allow it to remain an effector target while maintaining compatibility with multiple NLRs.
Collapse
Affiliation(s)
- Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand
| | - Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Eui-Hwan Chung
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
| | - Kyungho Won
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Naju, 54875, Korea
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
7
|
Simon I. Macromolecular Interactions of Disordered Proteins. Int J Mol Sci 2020; 21:ijms21020504. [PMID: 31941113 PMCID: PMC7014052 DOI: 10.3390/ijms21020504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 02/03/2023] Open
Affiliation(s)
- István Simon
- Institute of Enzymology, RCNS, Lorand Eotvos Research Network, Center of Excellence of the Hungarian Academy of Sciences, Magyar Tudósok krt. 2., H-1117 Budapest, Hungary
| |
Collapse
|