1
|
Wu F, Chen Z, Zhang Z, Wang Z, Zhang Z, Wang Q, Pan Y. The Role of SOCS3 in Regulating Meat Quality in Jinhua Pigs. Int J Mol Sci 2023; 24:10593. [PMID: 37445769 DOI: 10.3390/ijms241310593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Meat quality is an important economic trait that influences the development of the pig industry. Skeletal muscle development and glycolytic potential (GP) are two crucial aspects that significantly impact meat quality. It has been reported that abnormal skeletal muscle development and high glycogen content results in low meat quality. However, the genetic mechanisms underlying these factors are still unclear. Compared with intensive pig breeds, Chinese indigenous pig breeds, such as the Jinhua pig, express superior meat quality characteristics. The differences in the meat quality traits between Jinhua and intensive pig breeds make them suitable for uncovering the genetic mechanisms that regulate meat quality traits. In this study, the Jinhua pig breed and five intensive pig breeds, including Duroc, Landrace, Yorkshire, Berkshire, and Pietrain pig breeds, were selected as experimental materials. First, the FST and XP-EHH methods were used to screen the selective signatures on the genome in the Jinhua population. Then, combined with RNA-Seq data, the study further confirmed that SOCS3 could be a key candidate gene that influences meat quality by mediating myoblast proliferation and glycometabolism because of the down-regulated expression of SOCS3 in Jinhua pigs compared with Landrace pigs. Finally, through SOCS3 knockout (KO) and overexpression (OE) experiments in mouse C2C12 cells, the results showed that SOCS3 regulated the cell proliferation of myoblasts. Moreover, SOCS3 is involved in regulating glucose uptake by the IRS1/PI3K/AKT signaling pathway. Overall, these findings provide a basis for the genetic improvement of meat quality traits in the pig industry.
Collapse
Affiliation(s)
- Fen Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zitao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenyang Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Yuchun Pan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| |
Collapse
|
2
|
Palihaderu PADS, Mendis BILM, Premarathne JMKJK, Dias WKRR, Yeap SK, Ho WY, Dissanayake AS, Rajapakse IH, Karunanayake P, Senarath U, Satharasinghe DA. Therapeutic Potential of miRNAs for Type 2 Diabetes Mellitus: An Overview. Epigenet Insights 2022; 15:25168657221130041. [PMID: 36262691 PMCID: PMC9575458 DOI: 10.1177/25168657221130041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNA(miRNA)s have been identified as an emerging class for therapeutic
interventions mainly due to their extracellularly stable presence in humans and
animals and their potential for horizontal transmission and action. However,
treating Type 2 diabetes mellitus using this technology has yet been in a
nascent state. MiRNAs play a significant role in the pathogenesis of Type 2
diabetes mellitus establishing the potential for utilizing miRNA-based
therapeutic interventions to treat the disease. Recently, the administration of
miRNA mimics or antimiRs in-vivo has resulted in positive modulation of glucose
and lipid metabolism. Further, several cell culture-based interventions have
suggested beta cell regeneration potential in miRNAs. Nevertheless, few such
miRNA-based therapeutic approaches have reached the clinical phase. Therefore,
future research contributions would identify the possibility of miRNA
therapeutics for tackling T2DM. This article briefly reported recent
developments on miRNA-based therapeutics for treating Type 2 Diabetes mellitus,
associated implications, gaps, and recommendations for future studies.
Collapse
Affiliation(s)
- PADS Palihaderu
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka
| | - BILM Mendis
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka
| | - JMKJK Premarathne
- Department of Livestock and Avian
Sciences, Faculty of Livestock, Fisheries, and Nutrition, Wayamba University of Sri
Lanka, Makandura, Gonawila (NWP), Sri Lanka
| | - WKRR Dias
- Department of North Indian Music,
Faculty of Music, University of the Visual and Performing Arts, Colombo, Sri
Lanka
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences,
Xiamen University Malaysia Campus, Jalan Sunsuria, Bandar Sunsuria, Sepang,
Selangor, Malaysia
| | - Wan Yong Ho
- Division of Biomedical Sciences,
Faculty of Medicine and Health Sciences, University of Nottingham (Malaysia Campus),
Semenyih, Malaysia
| | - AS Dissanayake
- Department of Clinical Medicine,
Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | - IH Rajapakse
- Department of Psychiatry, Faculty of
Medicine, University of Ruhuna, Galle, Sri Lanka
| | - P Karunanayake
- Department of Clinical Medicine,
Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - U Senarath
- Department of Community Medicine,
Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - DA Satharasinghe
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka,DA Satharasinghe, Department of Basic
Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science,
University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| |
Collapse
|
3
|
Sharma AK, Singh S, Singh H, Mahajan D, Kolli P, Mandadapu G, Kumar B, Kumar D, Kumar S, Jena MK. Deep Insight of the Pathophysiology of Gestational Diabetes Mellitus. Cells 2022; 11:2672. [PMID: 36078079 PMCID: PMC9455072 DOI: 10.3390/cells11172672] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus is a severe metabolic disorder, which consistently requires medical care and self-management to restrict complications, such as obesity, kidney damage and cardiovascular diseases. The subtype gestational diabetes mellitus (GDM) occurs during pregnancy, which severely affects both the mother and the growing foetus. Obesity, uncontrolled weight gain and advanced gestational age are the prominent risk factors for GDM, which lead to high rate of perinatal mortality and morbidity. In-depth understanding of the molecular mechanism involved in GDM will help researchers to design drugs for the optimal management of the condition without affecting the mother and foetus. This review article is focused on the molecular mechanism involved in the pathophysiology of GDM and the probable biomarkers, which can be helpful for the early diagnosis of the condition. The early diagnosis of the metabolic disorder, most preferably in first trimester of pregnancy, will lead to its effective long-term management, reducing foetal developmental complications and mortality along with safety measures for the mother.
Collapse
Affiliation(s)
- Amarish Kumar Sharma
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sanjeev Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Himanshu Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Deviyani Mahajan
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Prachetha Kolli
- Microgen Health Inc., 14225 Sullyfield Cir Suite E, Chantilly, VA 20151, USA
| | | | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, Haryana, India
| | - Sudarshan Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
4
|
New long-non coding RNAs related to fat deposition based on pig model. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Obesity is a problem in the last decades since the development of certain technologies has forced submission to a faster pace of life, resulting in nutritional changes. Domestic pigs are an excellent animal model in recognition of adiposity-related processes, corresponding to the size of individual organs, the distribution of body fat in the organism, and similar metabolism. The present study applied next-generation sequencing to identify adipose tissue (AT) transcriptomic signals related to increased fat content by identifying differentially expressed genes (DEGs), including long-non coding RNAs in Złotnicka White pigs (n=16). Moreover, besides commonly used functional analysis, we applied the Freiburg RNA tool to predict DE lncRNA targets based on calculation hybridisation energy. And in addition, DE lncRNAs were recognized based on information available in databases. The obtained results show that closely 230 gene expression was found to be dependent on fat content, included 8 lncRNAs. The most interesting was that among identified DE lncRNAs was transcript corresponding to human MALAT1, which was previously considered in the obesity-related context. Moreover, it was identified that in ENSSSCG00000048394, ENSSSCG00000047210, ENSSSCG00000047442 and ENSSSCG00000041577 lncRNAs are contained repeat insertion domains of LncRNAs (RIDLs) considered as important gene expression regulatory elements, and ENSSSCG00000041577 seems to be the host for mir1247(NR_031649.1). The analysis of energy hybridisation between DE lncRNAs and DEGs using the Freiburg IntaRNAv2 tool, including isoforms expressed in AT, showed that ENSSSCG00000047210 lncRNA interacted with the highest number of DEGs and ENSSSCG00000047210 expression was only correlated with positive fat-related DEGs. The functional analysis showed that down-regulated DEGs involved in ECM proteoglycan pathways could be under control of both positive and negative fat-related lncRNAs. The present study, using pigs as an animal model, expands our current knowledge of possible gene expression regulation by lncRNAs in fat tissue and indicates for MALAT1 role in the fat deposition determination, which function is still often questioned or doubtful.
Collapse
|
5
|
Pan S, Chen Y, Yan J, Li F, Chen X, Xu X, Xing H. The emerging roles and mechanisms of exosomal non-coding RNAs in the mutual regulation between adipose tissue and other related tissues in obesity and metabolic diseases. Front Endocrinol (Lausanne) 2022; 13:975334. [PMID: 36060952 PMCID: PMC9433671 DOI: 10.3389/fendo.2022.975334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Exosomes (EXs) are the major types of extracellular vesicles (EVs) of 30-100 nm diameter that can be secreted by most cells to the extracellular environment. EXs transport endogenous cargoes (proteins, lipids, RNAs, etc.) to target cells and thereby triggers the release of these bioactive components, which then play important roles in regulating numerous biological processes under both physiological and pathological conditions. Throughout the studies in recent years, growing evidences have shown that EXs-derived non-coding RNAs (EXs-ncRNAs) are emerging as key players in cell-to-cell communication between adipose tissue and other related tissues in obesity and metabolic diseases. In this review, we will summarize the recent findings about EXs-ncRNAs, especially focus on the following aspects: 1) the biogenesis of EXs and emerging roles of EXs-ncRNAs, 2) the role of EXs-ncRNAs (EXs-miRNAs, EXs-lncRNAs, EXs-circRNAs, etc.) that were secreted by adipose-related tissues in promoting the differentiation of preadipocytes into mature and fully functional adipocytes, and 3) the crosstalk between the adipose tissue derived EXs-ncRNAs and the development of insulin resistance, obesity and various cancers. This review aims to reveal the emerging roles and mechanisms of EXs-ncRNAs in the mutual regulation of adipose tissue and its related tissues in obesity and metabolic diseases, so as to provide references for elucidating the etiology of obesity and related metabolic diseases and screening novel therapeutic targets.
Collapse
Affiliation(s)
- Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Department of Animal Science, Washington State University, Pullman, WA, United States
- *Correspondence: Shifeng Pan,
| | - Yongfang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jie Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xinyu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Hernández-Díazcouder A, González-Ramírez J, Giacoman-Martínez A, Cardoso-Saldaña G, Martínez-Martínez E, Osorio-Alonso H, Márquez-Velasco R, Sánchez-Gloria JL, Juárez-Vicuña Y, Gonzaga G, Sánchez-Lozada LG, Almanza-Pérez JC, Sánchez-Muñoz F. High fructose exposure modifies the amount of adipocyte-secreted microRNAs into extracellular vesicles in supernatants and plasma. PeerJ 2021; 9:e11305. [PMID: 34055478 PMCID: PMC8140597 DOI: 10.7717/peerj.11305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/29/2021] [Indexed: 11/28/2022] Open
Abstract
Background High fructose exposure induces metabolic and endocrine responses in adipose tissue. Recent evidence suggests that microRNAs in extracellular vesicles are endocrine signals secreted by adipocytes. Fructose exposure on the secretion of microRNA by tissues and cells is poorly studied. Thus, the aim of this study was to evaluate the effect of fructose exposure on the secretion of selected microRNAs in extracellular vesicles from 3T3-L1 cells and plasma from Wistar rats. Methods 3T3-L1 cells were exposed to 550 µM of fructose or standard media for four days, microRNAs levels were determined in extracellular vesicles of supernatants and cells by RT-qPCR. Wistar rats were exposed to either 20% fructose drink or tap water for eight weeks, microRNAs levels were determined in extracellular vesicles of plasma and adipose tissue by RT-qPCR. Results This study showed that fructose exposure increased the total number of extracellular vesicles released by 3T3-L1 cells (p = 0.0001). The levels of miR-143-5p were increased in extracellular vesicles of 3T3-L1 cells exposed to fructose (p = 0.0286), whereas miR-223-3p levels were reduced (p = 0.0286). Moreover, in plasma-derived extracellular vesicles, miR-143-5p was higher in fructose-fed rats (p = 0.001), whereas miR-223-3p (p = 0.022), miR-342-3p (p = 0.0011), miR-140-5p (p = 0.0129) and miR-146b-5p (p = 0.0245) were lower. Conclusion Fructose exposure modifies the levels of microRNAs in extracellular vesicles in vitro and in vivo. In particular, fructose exposure increases miR-143-5p, while decreases miR-223-3p and miR-342-3p.
Collapse
Affiliation(s)
- Adrián Hernández-Díazcouder
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México.,Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Javier González-Ramírez
- Laboratorio de Biología Celular, Facultad de Enfermería, Universidad Autónoma de Baja California Campus Mexicali, Mexicali, Baja California, Mexico
| | - Abraham Giacoman-Martínez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Guillermo Cardoso-Saldaña
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Eduardo Martínez-Martínez
- Laboratorio de Comunicación Celular y Vesículas Extracelulares, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Ricardo Márquez-Velasco
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - José L Sánchez-Gloria
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Yaneli Juárez-Vicuña
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Guillermo Gonzaga
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Julio César Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| |
Collapse
|
7
|
Abstract
MicroRNAs orchestrate the tight regulation of numerous cellular processes and the deregulation in their activities has been implicated in many diseases, including diabetes and cancer. There is an increasing amount of epidemiological evidence associating diabetes, particularly type 2 diabetes mellitus, to an elevated risk of various cancer types, including breast cancer. However, little is yet known about the underlying molecular mechanisms and even less about the role miRNAs play in driving the tumorigenic potential of the cell signaling underlying diabetes pathogenesis. This article reviews the role of miRNA in bridging the diabetes–breast cancer association by discussing specific miRNAs that are implicated in diabetes and breast cancer and highlighting the overlap between the disease-specific regulatory miRNA networks to identify a 20-miRNA signature that is common to both diseases. Potential therapeutic targeting of these molecular players may help to alleviate the socioeconomic burden on public health that is imposed by the type 2 diabetes mellitus (T2DM)–breast cancer association.
Collapse
|
8
|
Wang Z, Wang X, Bi M, Hu X, Wang Q, Liang H, Liu D. Effects of the histone acetylase inhibitor C646 on growth and differentiation of adipose-derived stem cells. Cell Cycle 2021; 20:392-405. [PMID: 33487075 DOI: 10.1080/15384101.2021.1876389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
As an important histone acetylase, the transcriptional coactivator P300/CBP affects target gene expression and plays a role in the maintenance of stem cell characteristics and differentiation potential. In this study, we explored the action of a highly effective selective histone acetylase inhibitor, C646, on goat adipose-derived stem cells (gADSCs), and investigated the impact of histone acetylation on the growth characteristics and the differentiation potential of ADSCs. We found that C646 blocked the cell proliferation, arrested the cell cycle, and triggered apoptosis. Notably, immunocytochemistry and western blot analyses showed that the acetylation level of histone H3K9 was increased. Moreover, although real-time quantitative PCR and western blot confirmed that P300 expression was inhibited under these conditions, the expression level of two other histone acetylases, TIP60 and PCAF, was significantly increased. Furthermore, C646 clearly promoted the differentiation of gADSCs into adipocytes and had an impact on their differentiation into neuronal cells. This study provides new insights into the epigenetic regulation of stem cell differentiation and may represent an experimental basis for the comprehension of stem cell characteristics and function. Furthermore, it is of great relevance for the application of adult stem cells to somatic cell cloning, which may improve the efficiency of large livestock cloning and foster the production of transgenic animals.
Collapse
Affiliation(s)
- Zhimin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Meiyu Bi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Xiao Hu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Qing Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Hao Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| |
Collapse
|
9
|
Visceral Adipose Tissue of Prediabetic and Diabetic Females Shares a Set of Similarly Upregulated microRNAs Functionally Annotated to Inflammation, Oxidative Stress and Insulin Signaling. Antioxidants (Basel) 2021; 10:antiox10010101. [PMID: 33445738 PMCID: PMC7828194 DOI: 10.3390/antiox10010101] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/09/2021] [Accepted: 01/09/2021] [Indexed: 12/18/2022] Open
Abstract
Hypertrophic and hypoxic visceral adipose tissue (VAT) secretes proinflammatory cytokines promoting insulin resistance (IR), prediabetes and type 2 diabetes (T2DM) microRNAs (miRNAs) are markers of metabolic disorders regulating genes critical for e.g., inflammation, glucose metabolism, and antioxidant defense, with raising diagnostic value. The aim of the current study was to evaluate whether hyperglycemia is able to affect the expression of selected miRNAs in VAT of prediabetic (IFG) and diabetic (T2DM) patients vs. normoglycemic (NG) subjects using qPCR. Statistical analyses suggested that miRNAs expression could be sex-dependent. Thus, we determined 15 miRNAs as differentially expressed (DE) among NG, T2DM, IFG females (miR-10a-5p, let-7d-5p, miR-532-5p, miR-127-3p, miR-125b-5p, let-7a-5p, let-7e-5p, miR-199a-3p, miR-365a-3p, miR-99a-5p, miR-100-5p, miR-342-3p, miR-146b-5p, miR-204-5p, miR-409-3p). Majority of significantly changed miRNAs was similarly upregulated in VAT of female T2DM and IFG patients in comparison to NG subjects, positively correlated with FPG and HbA1c, yet, uncorrelated with WHR/BMI. Enrichment analyses indicated involvement of 11 top DE miRNAs in oxidative stress, inflammation and insulin signaling. Those miRNAs expression changes could be possibly associated with low-grade chronic inflammation and oxidative stress in VAT of hyperglycemic subjects.
Collapse
|
10
|
Li Q, Du X, Liu L, Liu H, Pan Z, Li Q. Upregulation of miR-146b promotes porcine ovarian granulosa cell apoptosis by attenuating CYP19A1. Domest Anim Endocrinol 2021; 74:106509. [PMID: 32653739 DOI: 10.1016/j.domaniend.2020.106509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are 21- to 24-nucleotide long small noncoding RNAs, which play an important role in follicular atresia and granulosa cell (GC) apoptosis in the mammalian ovary. Here, we report that miR-146b, a conserved and ovary-enriched miRNA, modulates estradiol (E2) secretion, GC apoptosis, and follicular atresia in pigs. Genome-wide analysis and quantitative real-time PCR revealed that miR-146b was significantly upregulated during follicular atresia, and fluorescence-activated cell sorting showed that miR-146b functioned as a proapoptotic factor to induce GC apoptosis. MicroRNA-mRNA network analysis and luciferase reporter assays showed that CYP19A1, the pivotal enzyme for E2 synthesis signaling, was directly targeted by miR-146b. Furthermore, miR-146b interacted with the 3'untranslated region of CYP19A1 to prevent translation, thereby regulating CYP19A1-mediated E2 secretion and GC apoptosis. However, miR-146b was not regulated by the transcription factor SMAD4 or oxidative stress, both of which are critical regulators of CYP19A1. We, thus, conclude that miR-146b is a novel epigenetic factor regulating GC functions, follicular development, and female reproduction.
Collapse
Affiliation(s)
- Q Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - X Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - L Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - H Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Z Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Q Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Zhang Y, Guo X, Pei J, Chu M, Ding X, Wu X, Liang C, Yan P. CircRNA Expression Profile during Yak Adipocyte Differentiation and Screen Potential circRNAs for Adipocyte Differentiation. Genes (Basel) 2020; 11:E414. [PMID: 32290214 PMCID: PMC7230347 DOI: 10.3390/genes11040414] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
The yak (Bos grunniens) is subjected to nutritional deficiency during the whole winter grazing season; deciphering the adipose metabolism and energy homeostasis under cold and nutrients stress conditions could be a novel way to understand the specific mechanism of energy metabolism. Circular RNAs (circRNAs) have elucidated that they play a key role in many biological events, but the regulatory function of adipose development remains mostly unknown. Therefore, the expression pattern of circRNAs were identified for the first time during yak adipocyte differentiation to gain insight into their potential functional involvement in bovine adipogenesis. We detected 7203 circRNA candidates, most of them contained at least two exons, and multiple circRNA isoforms could be generated from one parental gene. Analysis of differential expression circRNAs displayed that 136 circRNAs were differentially expressed at day 12 (Ad) after adipocyte differentiation, compared with the control at day 0 (Pread 0), while 7 circRNAs were detected on day 2. Sanger sequencing validated that six circRNAs had head-to-tail junction, and quantitative real-time PCR (qPCR) results revealed that the expression patterns of ten circRNAs were consistent with their expression levels from RNA-sequencing (RNA-seq) data. We further predicted the networks of circRNA-miRNA-gene based on miRNAs sponging by circRNAs, in which genes were participated in the adipocyte differentiation-related signaling pathways. After that, we constructed several adipocyte differentiation-related ceRNAs and revealed six circRNAs (novel_circ_0009127, novel_circ_0000628, novel_circ_0011513, novel_circ_0010775, novel_circ_0006981 and novel_circ_0001494) were related to adipogenesis. Furthermore, we analyzed the homology among yak, human and mouse circRNAs and found that 3536 yak circRNAs were homologous to human and mouse circRNAs. In conclusion, these findings provide a solid basis for the investigation of yak adipocyte differentiation-related circRNAs and serve as a great reference to study the energy metabolism of high-altitude animals.
Collapse
Affiliation(s)
- Yongfeng Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Xian Guo
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Jie Pei
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Min Chu
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Xuezhi Ding
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Xiaoyun Wu
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Chunnina Liang
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Ping Yan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| |
Collapse
|
12
|
Yang Y, Liu F, Lu R, Jia J. Berberine Inhibits Adipogenesis in Porcine Adipocytes
via
AMP‐Activated Protein Kinase‐Dependent and ‐Independent Mechanisms. Lipids 2019; 54:667-678. [DOI: 10.1002/lipd.12200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 09/20/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yongqing Yang
- College of Life ScienceShanxi Normal University The First Gongyuan Road, Linfen Shanxi Province 041000 People's Republic of China
| | - Fenglan Liu
- College of Life ScienceShanxi Normal University The First Gongyuan Road, Linfen Shanxi Province 041000 People's Republic of China
| | - Rongsheng Lu
- College of Life ScienceShanxi Normal University The First Gongyuan Road, Linfen Shanxi Province 041000 People's Republic of China
| | - Junli Jia
- College of Life ScienceShanxi Normal University The First Gongyuan Road, Linfen Shanxi Province 041000 People's Republic of China
| |
Collapse
|
13
|
Ghasemi A, Hashemy SI, Azimi-Nezhad M, Dehghani A, Saeidi J, Mohtashami M. The cross-talk between adipokines and miRNAs in health and obesity-mediated diseases. Clin Chim Acta 2019; 499:41-53. [PMID: 31476303 DOI: 10.1016/j.cca.2019.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multiple studies have revealed a direct correlation between obesity and the development of multiple comorbidities, including metabolic diseases, cardiovascular disorders, chronic inflammatory disease, and cancers. However, the molecular mechanism underlying the link between obesity and the progression of these diseases is not completely understood. Adipokines are factors that are secreted by adipocytes and play a key role in whole body homeostasis. Collaboratively, miRNAs are suggested to have key functions in the development of obesity and obesity-related disorders. Based on recently emerging evidence, obesity leads to the dysregulation of both adipokines and obesity-related miRNAs. In the present study, we described the correlations between obesity and its related diseases that are mediated by the mutual regulatory effects of adipokines and miRNAs. METHODS We reviewed current knowledge of the modulatory effects of adipokines on miRNAs activity and their relevant functions in pathological conditions and vice versa. RESULTS Our research reveals the ability of adipokines and miRNAs to control the expression and activity of the other class of molecules, and their effects on obesity-related diseases. CONCLUSIONS This study may help researchers develop a roadmap for future investigations and provide opportunities to develop new therapeutic and diagnostic methods for treating obesity-related diseases.
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Azimi-Nezhad
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran; UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment en Physiopathologie Cardiovascular Université de Lorraine, France
| | - Alireza Dehghani
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
14
|
Chen L, Shi G, Chen G, Li J, Li M, Zou C, Fang C, Li C. Transcriptome Analysis Suggests the Roles of Long Intergenic Non-coding RNAs in the Growth Performance of Weaned Piglets. Front Genet 2019; 10:196. [PMID: 30936891 PMCID: PMC6431659 DOI: 10.3389/fgene.2019.00196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/25/2019] [Indexed: 11/19/2022] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) have been considered to play a key regulatory role in various biological processes. An increasing number of studies have utilized transcriptome analysis to obtain lincRNAs with functions related to cancer, but lincRNAs affecting growth rates in weaned piglets are rarely described. Although lincRNAs have been systematically identified in various mouse tissues and cell lines, studies of lincRNA in pigs remain rare. Therefore, identifying and characterizing novel lincRNAs affecting the growth performance of weaned piglets is of great importance. Here, we reconstructed 101,988 lincRNA transcripts and identified 1,078 lincRNAs in two groups of longissimus dorsi muscle (LDM) and subcutaneous fat (SF) based on published RNA-seq datasets. These lincRNAs exhibit typical characteristics, such as shorter lengths and lower expression relative to protein-encoding genes. Gene ontology analysis revealed that some lincRNAs could be involved in weaned piglet related processes, such as insulin resistance and the AMPK signaling pathway. We also compared the positional relationship between differentially expressed lincRNAs (DELs) and quantitative trait loci (QTL) and found that some of DELs may play an important role in piglet growth and development. Our work details part of the lincRNAs that may affect the growth performance of weaned piglets and promotes future studies of lincRNAs for molecular-assisted development in weaned piglets.
Collapse
Affiliation(s)
- Lin Chen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaoli Shi
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guoting Chen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingxuan Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengxun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cheng Zou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chengchi Fang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Changchun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|