1
|
Yang Y, Li Y, Zhu J. Research progress on the function and regulatory pathways of amino acid permeases in fungi. World J Microbiol Biotechnol 2024; 40:392. [PMID: 39581943 DOI: 10.1007/s11274-024-04199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Nitrogen sources are pivotal for the formation of fungal mycelia and the biosynthesis of metabolites, playing a crucial role in the growth and development of fungi. Amino acids are integral to protein construction, constitute an essential nitrogen source for fungi. Fungi actively uptake amino acids from their surroundings, a process that necessitates the involvement of amino acid permeases (AAPs) located on the plasma membrane. By sensing the intracellular demand for amino acids and their extracellular availability, fungi activate or suppress relevant pathways to precisely regulate the genes encoding these transporters. This review aims to illustrate the function of fungal AAPs on uptake of amino acids and the effect of AAPs on fungal growth, development and virulence. Additionally, the complex mechanisms to regulate expression of aaps are elucidated in mainly Saccharomyces cerevisiae, including the Ssy1-Ptr3-Ssy5 (SPS) pathway, the Nitrogen Catabolite Repression (NCR) pathway, and the General Amino Acid Control (GAAC) pathway. However, the physiological roles of AAPs and their regulatory mechanisms in other species, particularly pathogenic fungi, merit further exploration. Gaining insights into these aspects could reveal how AAPs facilitate fungal adaptation and survival under diverse stress conditions, shedding light on their potential impact on fungal biology and pathogenicity.
Collapse
Affiliation(s)
- Yuzhen Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Yanqiu Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Jing Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China.
| |
Collapse
|
2
|
Wong CWY, Burton T, Carrera Montoya J, Birje N, Zhou X, Salazar JK, Mackenzie JM, Rau TF, Teplitski M, Zhang W. Antimicrobial Efficacy of GS-2 on Reusable Food Packaging Materials for Specialty Crops. Foods 2024; 13:3490. [PMID: 39517274 PMCID: PMC11545833 DOI: 10.3390/foods13213490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The European Union (EU) regulations mandate 10% of all food packaging to be reusable by 2030. United States (U.S.) exporters of specialty crops face new challenges in ensuring microbiological food safety using reusable packaging. A novel antimicrobial formulation consisting of ammonium carboxylate salt of capric acid and L-arginine (GS-2) was recently developed as a spray coating chemical for food packaging materials. In this study, we evaluated the antimicrobial efficacy of GS-2 against microbial strains representing three foodborne bacterial pathogens (Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica), one fungal spoilage organism (Aspergillus niger), and one surrogate viral pathogen (murine norovirus) on three reusable plastic materials (acrylonitrile butadiene styrene, high-density polyethylene, and polypropylene) and one cardboard packaging material, respectively. Different chemical concentrations, exposure times, and storage conditions were individually evaluated for the relative antimicrobial efficacies of GS-2 against these microorganisms. Our results showed that GS-2 was highly effective for inactivating bacterial pathogens on both plastic and cardboard surfaces. For instance, 3% GS-2 achieved a >5 log CFU/in2 reduction in E. coli O157:H7, L. monocytogenes, and S. enterica on tested plastic surfaces at an exposure time of 60 min. However, its efficacy against A. niger and murine norovirus was less optimal, resulting in a ≤1 log CFU/in2 reduction on all tested surfaces. Based on our study, GS-2 demonstrated a strong potential as an antibacterial coating reagent for reusable food packaging materials to minimize pathogen contamination and ensure the safety of the specialty crops.
Collapse
Affiliation(s)
- Catherine W. Y. Wong
- Institute for Food Safety and Health, Department of Food Science and Nutrition, Illinois Institute of Technology, 6502 S Archer Rd., Bedford Park, IL 60501, USA; (C.W.Y.W.)
| | - Thomas Burton
- Department of Microbiology & Immunology, The Peter Doherty Institute for Infection & Immunity, University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia; (T.B.); (J.M.M.)
| | - Julio Carrera Montoya
- Department of Microbiology & Immunology, The Peter Doherty Institute for Infection & Immunity, University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia; (T.B.); (J.M.M.)
| | - Nupoor Birje
- Institute for Food Safety and Health, Department of Food Science and Nutrition, Illinois Institute of Technology, 6502 S Archer Rd., Bedford Park, IL 60501, USA; (C.W.Y.W.)
| | - Xinyi Zhou
- Institute for Food Safety and Health, Department of Food Science and Nutrition, Illinois Institute of Technology, 6502 S Archer Rd., Bedford Park, IL 60501, USA; (C.W.Y.W.)
| | - Joelle K. Salazar
- Division of Food Processing Science and Technology, U.S. Food and Drug Administration, 6502 S Archer Rd., Bedford Park, IL 60501, USA;
| | - Jason M. Mackenzie
- Department of Microbiology & Immunology, The Peter Doherty Institute for Infection & Immunity, University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia; (T.B.); (J.M.M.)
| | - Thomas F. Rau
- Wintermute Biomedical Ltd., Corvallis, MT 59828, USA;
| | - Max Teplitski
- International Food Produce Association, 1901 Pennsylvania Ave. NW Suite 1100, Washington, DC 20006, USA;
| | - Wei Zhang
- Institute for Food Safety and Health, Department of Food Science and Nutrition, Illinois Institute of Technology, 6502 S Archer Rd., Bedford Park, IL 60501, USA; (C.W.Y.W.)
| |
Collapse
|
3
|
Liang L, Zang X, Zhang P, Sun J, Shi Q, Chang S, Ren P, Li Z, Meng L. Screening of the Candidate Metabolite to Evaluate the Mycelium Physiological Maturation of Lyophyllum decastes Based on Metabolome and Transcriptome Analysis. J Fungi (Basel) 2024; 10:734. [PMID: 39590654 PMCID: PMC11596021 DOI: 10.3390/jof10110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Lyophyllum decastes is a commercially cultivated rare edible mushroom with high dietary and medicinal value. The mycelium physiological maturation was an important factor to the yield and quality of mushrooms obtained. However, it was impossible to obtain discriminative characteristics represented the maturity level of the mycelia from morphological features. In this article, we screened a candidate metabolite for evaluating the mycelium physiological maturation by metabolomic and transcriptomic analysis during mycelial vegetative growth stages of L. decastes. The results showed that mycelial vegetative growth 55 d had reached to physiological maturation according to the yield and quality of L. decastes, which the single bottle yield (307 g/bottle), the contents of flavonoids (2.94 mg/g dry weight), and 5 flavor amino acids (glutamate 177.90 μg/g, aspartate 95.74 μg/g, phenylalanine 31.68 μg/g, tyrosine 13.79 μg/g, and alanine 10.99 μg/g) were the highest. In addition, the metabolomic and transcriptomic analysis results showed that biosynthesis of secondary metabolites and amino acid had significant different during mycelial vegetative growth stages, and glutamine may be a candidate indicator to evaluate the mycelial physiological maturation. These findings contribute to improve our knowledge of mycelium physiological maturation and it will be used to increase mushroom yield and quality.
Collapse
Affiliation(s)
- Lidan Liang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Xizhe Zang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Peijin Zhang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Jingwei Sun
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Qingyun Shi
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Siyuan Chang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Pengfei Ren
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhuang Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Li Meng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
4
|
Sarkar R, Adhikary K, Banerjee A, Ganguly K, Sarkar R, Mohanty S, Dhua R, Bhattacharya K, Ahuja D, Pal S, Maiti R. Novel targets and improved immunotherapeutic techniques with an emphasis on antimycosal drug resistance for the treatment and management of mycosis. Heliyon 2024; 10:e35835. [PMID: 39224344 PMCID: PMC11367498 DOI: 10.1016/j.heliyon.2024.e35835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Infections due to pathogenic fungi are endemic in particular area with increased morbidity and mortality. More than a thousand people are infected per year and the way of treatment is of high demand having a significant impact on the population health. Medical practitioners confront various troublesome analytic and therapeutical challenges in the administration of immunosuppressed sufferer at high danger of expanding fungal infections. An upgraded antimycosal treatment is fundamental for a fruitful result while treating intrusive mycoses. A collection of antimycosal drugs keeps on developing with their specific antifungal targets including cell membrane, mitochondria, cell wall, and deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) or protein biosynthesis. Some fundamental classes of ordinarily directed medications are the polyenes, amphotericin B, syringomycin, allylamines, honokiol, azoles, flucytosine, echinocandins etc. However, few immunotherapy processes and vaccinations are being developed to mark this need, although one presently can't seem to arrive at the conclusion. In this review article, there has been a trial to give details upgradation about the current immune therapeutic techniques and vaccination strategies against prevention or treatment of mycosis as well as the difficulties related with their turn of events. There has been also a visualization in the mentioned review paper about the various assorted drugs and their specific target analysis along with therapeutic interventions.
Collapse
Affiliation(s)
- Riya Sarkar
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Krishnendu Adhikary
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Arundhati Banerjee
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Krishnendu Ganguly
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Riya Sarkar
- Department of Medical Laboratory Technology, Dr. B. C. Roy Academy of Professional Courses, Durgapur, West Bengal, 713206, India
| | - Satyajit Mohanty
- Department of Advanced Pharmacology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Rumpa Dhua
- Department of Nutrition, Bankura Sammilani College, Kenduadihi, Bankura, West Bengal, 722102, India
| | - Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Suchandra Pal
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, 713209, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura, West Bengal, 722101, India
| |
Collapse
|
5
|
Folorunso OS, Sebolai OM. A Limited Number of Amino Acid Permeases Are Crucial for Cryptococcus neoformans Survival and Virulence. Int J Microbiol 2024; 2024:5566438. [PMID: 39148675 PMCID: PMC11326883 DOI: 10.1155/2024/5566438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
One unique attribute of Cryptococcus neoformans is its ability to procure essential monomers from its surroundings to survive in diverse environments. Preferentially, sugars are the energy sources for this opportunistic pathogenic fungus under the carbon catabolite repression (CCR); however, sugar restriction induces alternative use of low molecular weight alcohol, organic acids, and amino acids. The expression of transmembrane amino acid permeases (Aaps) allows C. neoformans to utilize different amino acids and their conjugates, notwithstanding under the nitrogen catabolite repression (NCR). Being referred to as global permeases, there is a notion that all cryptococcal Aaps are important to survival and virulence. This functional divergence makes alternative drug targeting against Cryptococcus a challenge. We examine the functions and regulations of C. neoformans Aap variants with the aim of rationalizing their relevance to cryptococcal cell survival and virulence. Based on nutrient bioavailability, we linked the Cac1 pathway to Ras1 activation for thermotolerance that provides a temperature cushion for Aap activity under physiological conditions. Lastly, mutants of Aaps are examined for significant phenotypic deficiencies/advantages, which buttress the specific importance of limited numbers of Aaps involved in cryptococcal infections.
Collapse
Affiliation(s)
- Olufemi S Folorunso
- Department of Microbiology and Biochemistry University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa
| | - Olihile M Sebolai
- Department of Microbiology and Biochemistry University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa
| |
Collapse
|
6
|
Zhang Y, Li B, Fu M, Wang Z, Chen K, Du M, Zalán Z, Hegyi F, Kan J. Antifungal mechanisms of binary combinations of volatile organic compounds produced by lactic acid bacteria strains against Aspergillusflavus. Toxicon 2024; 243:107749. [PMID: 38710308 DOI: 10.1016/j.toxicon.2024.107749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
Aspergillus flavus(A. flavus), a common humic fungus known for its ability to infect agricultural products, served as the subject of investigation in this study. The primary objective was to assess the antifungal efficacy and underlying mechanisms of binary combinations of five volatile organic compounds (VOCs) produced by lactic acid bacteria, specifically in their inhibition of A. flavus. This assessment was conducted through a comprehensive analysis, involving biochemical characterization and transcriptomic scrutiny. The results showed that VOCs induce notable morphological abnormalities in A. flavus conidia and hyphae. Furthermore, they disrupt the integrity of the fungal cell membrane and cell wall, resulting in the leakage of intracellular contents and an increase in extracellular electrical conductivity. In terms of cellular components, VOC exposure led to an elevation in malondialdehyde content while concurrently inhibiting the levels of total lipids, ergosterol, soluble proteins, and reducing sugars. Additionally, the impact of VOCs on A. flavus energy metabolism was evident, with significant inhibition observed in the activities of key enzymes, such as Na+/K+-ATPase, malate dehydrogenase, succinate dehydrogenase, and chitinase. And they were able to inhibit aflatoxin B1 synthesis. The transcriptomic analysis offered further insights, highlighting that differentially expressed genes (DEGs) were predominantly associated with membrane functionality and enriched in pathways about carbohydrate and amino acid metabolism. Notably, DEGs linked to cellular components and energy-related mechanisms exhibited down-regulation, thereby corroborating the findings from the biochemical analyses. In summary, these results elucidate the principal antifungal mechanisms of VOCs, which encompass the disruption of cell membrane integrity and interference with carbohydrate and amino acid metabolism in A. flavus.
Collapse
Affiliation(s)
- Yi Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Bin Li
- College of Food Science, Southwest University, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Mingze Fu
- College of Food Science, Southwest University, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Zhirong Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Kewei Chen
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Muying Du
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Zsolt Zalán
- Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Budapest, 1022, Hungary
| | - Ferenc Hegyi
- Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Budapest, 1022, Hungary
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China.
| |
Collapse
|
7
|
Silao FGS, Valeriano VD, Uddström E, Falconer E, Ljungdahl PO. Diverse mechanisms control amino acid-dependent environmental alkalization by Candida albicans. Mol Microbiol 2024; 121:696-716. [PMID: 38178569 DOI: 10.1111/mmi.15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Candida albicans has the capacity to neutralize acidic growth environments by releasing ammonia derived from the catabolism of amino acids. The molecular components underlying alkalization and its physiological significance remain poorly understood. Here, we present an integrative model with the cytosolic NAD+-dependent glutamate dehydrogenase (Gdh2) as the principal ammonia-generating component. We show that alkalization is dependent on the SPS-sensor-regulated transcription factor STP2 and the proline-responsive activator Put3. These factors function in parallel to derepress GDH2 and the two proline catabolic enzymes PUT1 and PUT2. Consistently, a double mutant lacking STP2 and PUT3 exhibits a severe alkalization defect that nearly phenocopies that of a gdh2-/- strain. Alkalization is dependent on mitochondrial activity and in wild-type cells occurs as long as the conditions permit respiratory growth. Strikingly, Gdh2 levels decrease and cells transiently extrude glutamate as the environment becomes more alkaline. Together, these processes constitute a rudimentary regulatory system that counters and limits the negative effects associated with ammonia generation. These findings align with Gdh2 being dispensable for virulence, and based on a whole human blood virulence assay, the same is true for C. glabrata and C. auris. Using a transwell co-culture system, we observed that the growth and proliferation of Lactobacillus crispatus, a common component of the acidic vaginal microenvironment and a potent antagonist of C. albicans, is unaffected by fungal-induced alkalization. Consequently, although Candida spp. can alkalinize their growth environments, other fungal-associated processes are more critical in promoting dysbiosis and virulent fungal growth.
Collapse
Affiliation(s)
- Fitz Gerald S Silao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| | - Valerie Diane Valeriano
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Erika Uddström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| | - Emilie Falconer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| | - Per O Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Duarte ABS, Perez-Castillo Y, da Nóbrega Alves D, de Castro RD, de Souza RL, de Sousa DP, Oliveira EE. Antifungal activity against Candida albicans of methyl 3,5-dinitrobenzoate loaded nanoemulsion. Braz J Microbiol 2024; 55:25-39. [PMID: 38135805 PMCID: PMC10920570 DOI: 10.1007/s42770-023-01214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The objective of this study was to evaluate the antifungal activity of free methyl 3,5 dinitrobenzoate (MDNB) and its nanoemulsion (MDNB-NE) against strains of Candida albicans. Additionally, a molecular modeling study was also carried out to propose the mechanism of action and toxicity of MDNB. These results demonstrated the MDNB-NE presented a droplet size of 181.16 ± 3.20 nm and polydispersity index of 0.30 ± 0.03. MDNB and MDNB-NE inhibited the growth of all strains with minimum inhibitory concentrations of 0.27-1.10 mM. The biological results corroborated the molecular model, which pointed to a multi-target antifungal mechanism of action for MDNB in C. albicans. The study could serve as a basis for further research involving compounds with nitro groups with antifungal.
Collapse
Affiliation(s)
- Allana Brunna Sucupira Duarte
- Post Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Yunierkis Perez-Castillo
- Bio-Cheminformatics Research Group and Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito, Ecuador
| | - Danielle da Nóbrega Alves
- Laboratory of Experimental Pharmacology and Cell Culture, Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa, Brazil
| | - Ricardo Dias de Castro
- Laboratory of Experimental Pharmacology and Cell Culture, Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa, Brazil
| | | | | | - Elquio Eleamen Oliveira
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
9
|
Zhang Y, Yang J, Wang S, Chen Y, Zhang G. TMT-Based Proteomic Analysis Reveals the Molecular Mechanisms of Sodium Pheophorbide A against Black Spot Needle Blight Caused by Pestalotiopsis neglecta in Pinus sylvestris var. mongolica. J Fungi (Basel) 2024; 10:102. [PMID: 38392774 PMCID: PMC10889695 DOI: 10.3390/jof10020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Black spot needle blight is a minor disease in Mongolian Scots pine (Pinus sylvestris var. mongolica) caused by Pestalotiopsis neglecta, but it can cause economic losses in severe cases. Sodium pheophorbide a (SPA), an intermediate product of the chlorophyll metabolism pathway, is a compound with photoactivated antifungal activity, which has been previously shown to inhibit the growth of P. neglecta. In this study, SPA significantly reduced the incidence and disease index and enhanced the chlorophyll content and antioxidant enzyme activities of P. sylvestris var. mongolica. To further study the molecular mechanism of the inhibition, we conducted a comparative proteomic analysis of P. neglecta mycelia with and without SPA treatment. The cellular proteins were obtained from P. neglecta mycelial samples and subjected to a tandem mass tag (TMT)-labelling LC-MS/MS analysis. Based on the results of de novo transcriptome assembly, 613 differentially expressed proteins (DEPs) (p < 0.05) were identified, of which 360 were upregulated and 253 downregulated. The 527 annotated DEPs were classified into 50 functional groups according to Gene Ontology and linked to 256 different pathways using the Kyoto Encyclopedia of Genes and Genomes database as a reference. A joint analysis of the transcriptome and proteomics results showed that the top three pathways were Amino acid metabolism, Carbohydrate metabolism, and Lipid metabolism. These results provide new viewpoints into the molecular mechanism of the inhibition of P. neglecta by SPA at the protein level and a theoretical basis for evaluating SPA as an antifungal agent to protect forests.
Collapse
Affiliation(s)
- Yundi Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China
| | - Jing Yang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Shuren Wang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China
| | - Yunze Chen
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Guocai Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
10
|
McCarthy MW. Intravenous immunoglobulin as a potential treatment for long COVID. Expert Opin Biol Ther 2023; 23:1211-1217. [PMID: 38100573 DOI: 10.1080/14712598.2023.2296569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/14/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION On 31 July 2023, the United States Department of Health and Human Services announced the formation of the Office of Long COVID Research and Practice and the United States National Institutes of Health (NIH) opened enrollment for the therapeutic arm of the RECOVER initiative, a prospective, randomized study to evaluate new treatment options for long coronavirus disease 2019 (long COVID). AREAS COVERED One of the first drugs to be studied in this nationwide initiative is intravenous immunoglobulin (IVIG), which will be a treatment option for subjects enrolled in RECOVER-AUTO, a randomized trial to investigate therapeutic strategies for autonomic dysfunction related to long COVID. EXPERT OPINION IVIG is a mixture of human antibodies (human immunoglobulin) that has been widely used to treat a variety of diseases, including immune thrombocytopenia purpura, Kawasaki disease, chronic inflammatory demyelinating polyneuropathy, and certain infections such as influenza, human immunodeficiency virus, and measles. However, the role of IVIG in the treatment of post-COVID-19 conditions is uncertain. This manuscript examines what is known about IVIG in the treatment of long COVID and explores how this therapeutic agent may be used in the future to address this condition.
Collapse
|
11
|
Antifungal mechanisms of volatile organic compounds produced by Pseudomonas fluorescens ZX as biological fumigants against Botrytis cinerea. Microbiol Res 2023; 267:127253. [PMID: 36455309 DOI: 10.1016/j.micres.2022.127253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2022]
Abstract
To explore the antifungal mechanisms of volatile organic compounds (VOCs) produced by Pseudomonas fluorescens ZX against Botrytis cinerea, biochemical analyses and transcriptomic techniques were employed in this work. The results showed that P. fluorescens ZX-producing VOCs can increase the cell membrane permeability of B. cinerea and disrupt cell membrane integrity, resulting in leakage of the pathogen's cellular contents, inhibition of ergosterol biosynthesis (about 76%), and an increase in malondialdehyde (MDA) content. Additionally, for B. cinerea respiration, P. fluorescens ZX-producing VOCs (1 × 109 CFU /mL) significantly inhibited the activities of ATPase (55.7%), malate dehydrogenase (MDH) (33.1%), and succinate dehydrogenase (SDH) (57.9%), seriously interfering with energy metabolism and causing accumulation of reactive oxygen species (ROS). Furthermore, transcriptome analysis of B. cinerea following exposure to VOCs revealed 4590 differentially expressed genes (DEGs) (1388 upregulated, 3202 downregulated). Through GO analysis, these DEGs were determined to be enriched in intrinsic components of membrane, integral components of membrane, and membrane parts, while KEGG analysis indicated that they were enriched in many amino acid metabolism pathways. Significantly, the DEGs related to ergosterol biosynthesis, ATPase, mitochondrial respiratory chain, malate dehydrogenase, and cell membrane showed down-regulation, corroborating the biochemical analyses. Taken together, these results suggest that the antifungal activity of P. fluorescens ZX-producing VOCs against B. cinerea occurs primary mechanisms: causing significant damage to the cell membrane, negatively affecting respiration, and interfering with amino acid metabolism.
Collapse
|
12
|
Piatek M, O'Beirne C, Beato Z, Tacke M, Kavanagh K. Exposure of Candida parapsilosis to the silver(I) compound SBC3 induces alterations in the proteome and reduced virulence. Metallomics 2022; 14:mfac046. [PMID: 35751649 PMCID: PMC9348618 DOI: 10.1093/mtomcs/mfac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/23/2022] [Indexed: 11/14/2022]
Abstract
The antimicrobial properties of silver have been exploited for many centuries and continue to gain interest in the fight against antimicrobial drug resistance. The broad-spectrum activity and low toxicity of silver have led to its incorporation into a wide range of novel antimicrobial agents, including N-heterocyclic carbene (NHC) complexes. The antimicrobial activity and in vivo efficacy of the NHC silver(I) acetate complex SBC3, derived from 1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene (NHC*), have previously been demonstrated, although the mode(s) of action of SBC3 remains to be fully elucidated. Label-free quantitative proteomics was applied to analyse changes in protein abundance in the pathogenic yeast Candida parapsilosis in response to SBC3 treatment. An increased abundance of proteins associated with detoxification and drug efflux were indicative of a cell stress response, whilst significant decreases in proteins required for protein and amino acid biosynthesis offer potential insight into the growth-inhibitory mechanisms of SBC3. Guided by the proteomic findings and the prolific biofilm and adherence capabilities of C. parapsilosis, our studies have shown the potential of SBC3 in reducing adherence to epithelial cells and biofilm formation and hence decrease fungal virulence.
Collapse
Affiliation(s)
- Magdalena Piatek
- Department of Biology, SSPC Pharma Research Centre, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Cillian O'Beirne
- School of School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Ireland
| | - Zoe Beato
- School of School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Ireland
| | - Matthias Tacke
- School of School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Ireland
| | - Kevin Kavanagh
- Department of Biology, SSPC Pharma Research Centre, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
13
|
Shao Y, Molestak E, Su W, Stankevič M, Tchórzewski M. Sordarin - the antifungal antibiotic with a unique modus operandi. Br J Pharmacol 2021; 179:1125-1145. [PMID: 34767248 DOI: 10.1111/bph.15724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022] Open
Abstract
Fungal infections cause serious problems in many aspects of human life, in particular infections in immunocompromised patients represent serious problems. Current antifungal antibiotics target various metabolic pathways, predominantly the cell wall or cellular membrane. Numerous compounds are available to combat fungal infections, but their efficacy is far from being satisfactory and some of them display high toxicity. The emerging resistance represents a serious issue as well; hence, there is a considerable need for new anti-fungal compounds with lower toxicity and higher effectiveness. One of the unique antifungal antibiotics is sordarin, the only known compound that acts on the fungal translational machinery per se. Sordarin inhibits protein synthesis at the elongation step of the translational cycle, acting on eukaryotic translation elongation factor 2. In this review, we intend to deliver a robust scientific platform promoting the development of antifungal compounds, in particular focusing on the molecular action of sordarin.
Collapse
Affiliation(s)
- Yutian Shao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Eliza Molestak
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Marek Stankevič
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University, Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
14
|
Abu Bakar N, Lau Yii Chung B, Smykla J, Karsani SA, Alias SA. Protein homeostasis, regulation of energy production and activation of DNA damage-repair pathways are involved in the heat stress response of Pseudogymnoascus spp. Environ Microbiol 2021; 24:1849-1864. [PMID: 34528369 DOI: 10.1111/1462-2920.15776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 11/30/2022]
Abstract
Proteome changes can be used as an instrument to measure the effects of climate change, predict the possible future state of an ecosystem and the direction in which is headed. In this study, proteomic and GO functional enrichment analysis of six Pseudogymnoascus spp. isolated from various global biogeographical regions were carried out to determine their response to heat stress. In total, 2,122 proteins were identified with high confidence. Comparative quantitative analysis showed that changes in proteome profiles varied greatly between isolates from different biogeographical regions. Although the identities of the proteins that changed varied between the different regions, the functions they governed were similar. Gene Ontology analysis showed enrichment of proteins involved in multiple protective mechanisms, including the modulation of protein homeostasis, regulation of energy production, and activation of DNA damage and repair pathways. Our proteomic analysis did not show any clear relationship between protein changes and the strains' biogeographical origins. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nurlizah Abu Bakar
- Institute of Ocean and Earth Sciences, C308, Institute of Advanced Studies Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,National Antarctic Research Centre, B303, Institute of Advanced Studies Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Benjamin Lau Yii Chung
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Jerzy Smykla
- Department of Biodiversity, Institute of Nature Conservation Polish Academy of Sciences, Mickiewicza 33, 31-120 Krakow, Poland
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, C308, Institute of Advanced Studies Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,National Antarctic Research Centre, B303, Institute of Advanced Studies Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Molecular targets for antifungals in amino acid and protein biosynthetic pathways. Amino Acids 2021; 53:961-991. [PMID: 34081205 PMCID: PMC8241756 DOI: 10.1007/s00726-021-03007-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 01/22/2023]
Abstract
Fungi cause death of over 1.5 million people every year, while cutaneous mycoses are among the most common infections in the world. Mycoses vary greatly in severity, there are long-term skin (ringworm), nail or hair infections (tinea capitis), recurrent like vaginal candidiasis or severe, life-threatening systemic, multiorgan infections. In the last few years, increasing importance is attached to the health and economic problems caused by fungal pathogens. There is a growing need for improvement of the availability of antifungal drugs, decreasing their prices and reducing side effects. Searching for novel approaches in this respect, amino acid and protein biosynthesis pathways appear to be competitive. The route that leads from amino acid biosynthesis to protein folding and its activation is rich in enzymes that are descriptive of fungi. Blocking the action of those enzymes often leads to avirulence or growth inhibition. In this review, we want to trace the principal processes of fungi vitality. We present the data of genes encoding enzymes involved in amino acid and protein biosynthesis, potential molecular targets in antifungal chemotherapy, and describe the impact of inhibitors on fungal organisms.
Collapse
|
16
|
Maksimov AY, Balandina SY, Topanov PA, Mashevskaya IV, Chaudhary S. Organic Antifungal Drugs and Targets of Their Action. Curr Top Med Chem 2021; 21:705-736. [PMID: 33423647 DOI: 10.2174/1568026621666210108122622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
In recent decades, there has been a significant increase in the number of fungal diseases. This is due to a wide spectrum of action, immunosuppressants and other group drugs. In terms of frequency, rapid spread and globality, fungal infections are approaching acute respiratory infections. Antimycotics are medicinal substances endorsed with fungicidal or fungistatic properties. For the treatment of fungal diseases, several groups of compounds are used that differ in their origin (natural or synthetic), molecular targets and mechanism of action, antifungal effect (fungicidal or fungistatic), indications for use (local or systemic infections), and methods of administration (parenteral, oral, outdoor). Several efforts have been made by various medicinal chemists around the world for the development of antifungal drugs with high efficacy with the least toxicity and maximum selectivity in the area of antifungal chemotherapy. The pharmacokinetic properties of the new antimycotics are also important: the ability to penetrate biological barriers, be absorbed and distributed in tissues and organs, get accumulated in tissues affected by micromycetes, undergo drug metabolism in the intestinal microflora and human organs, and in the kinetics of excretion from the body. There are several ways to search for new effective antimycotics: - Obtaining new derivatives of the already used classes of antimycotics with improved activity properties. - Screening of new chemical classes of synthetic antimycotic compounds. - Screening of natural compounds. - Identification of new unique molecular targets in the fungal cell. - Development of new compositions and dosage forms with effective delivery vehicles. The methods of informatics, bioinformatics, genomics and proteomics were extensively investigated for the development of new antimycotics. These techniques were employed in finding and identification of new molecular proteins in a fungal cell; in the determination of the selectivity of drugprotein interactions, evaluation of drug-drug interactions and synergism of drugs; determination of the structure-activity relationship (SAR) studies; determination of the molecular design of the most active, selective and safer drugs for the humans, animals and plants. In medical applications, the methods of information analysis and pharmacogenomics allow taking into account the individual phenotype of the patient, the level of expression of the targets of antifungal drugs when choosing antifungal agents and their dosage. This review article incorporates some of the most significant studies covering the basic structures and approaches for the synthesis of antifungal drugs and the directions for their further development.
Collapse
Affiliation(s)
- Alexander Yu Maksimov
- Department of Pharmacy and Pharmacology, Faculty of Chemistry, Perm State University, Perm 614990, Russian Federation
| | - Svetlana Yu Balandina
- Department of Pharmacy and Pharmacology, Faculty of Chemistry, Perm State University, Perm 614990, Russian Federation
| | - Pavel A Topanov
- Department of Pharmacy and Pharmacology, Faculty of Chemistry, Perm State University, Perm 614990, Russian Federation
| | - Irina V Mashevskaya
- Department of Pharmacy and Pharmacology, Faculty of Chemistry, Perm State University, Perm 614990, Russian Federation
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry (OMC lab), Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jawaharlal Nehru Marg, Jaipur 302017, India
| |
Collapse
|
17
|
Li Y, Zhao M, Zhang Z. Quantitative proteomics reveals the antifungal effect of canthin-6-one isolated from Ailanthus altissima against Fusarium oxysporum f. sp. cucumerinum in vitro. PLoS One 2021; 16:e0250712. [PMID: 33891670 PMCID: PMC8064541 DOI: 10.1371/journal.pone.0250712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Canthin-6-one, one of the main alkaloid compounds extracted from Ailanthus altissima, has recently attracted increasing interest for its antifungal activity. To evaluate the potential of canthin-6-one in controlling plant fungal diseases, we investigated the antifungal activity of canthin-6-one isolated from A. altissima against Fusarium oxysporum f. sp. cucumerinum (Foc) in vitro. The mycelial growth rate and micro-broth dilution were used to test antifungal activity. Furthermore, label-free quantitative proteomics and parallel reaction monitoring (PRM) techniques were applied to analyze the antifungal mechanism. It was found that canthin-6-one significantly inhibited the growth of Foc, and had higher inhibitory action than chlorothalonil at the same concentration. Proteomic analysis showed that the expression of 203 proteins altered significantly after canthin-6-one treatment. These differentially expressed proteins were mainly involved in amino acid biosynthesis and nitrogen metabolism pathways. These results suggest that canthin-6-one significantly interferes with the metabolism of amino acids. Therefore, it affects nitrogen nutrients and disturbs the normal physiological processes of fungi, and ultimately leads to the death of pathogens. This study provides a natural plant antifungal agent and a new perspective for the study of antifungal mechanisms.
Collapse
Affiliation(s)
- Yongchun Li
- School of Forestry, Northeast Forestry University, Harbin, China
- College of Chemistry and Life Science, Chifeng University, Chifeng, China
| | - Meirong Zhao
- College of Chemistry and Life Science, Chifeng University, Chifeng, China
| | - Zhi Zhang
- School of Forestry, Northeast Forestry University, Harbin, China
- * E-mail:
| |
Collapse
|
18
|
Zhong XC, Xu W, Zhang Y, Zhang QQ, Du ZJ. Algibacter marinivivus sp. nov., isolated from the surface of a marine red alga. Int J Syst Evol Microbiol 2020; 70:5048-5053. [DOI: 10.1099/ijsem.0.004375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A Gram-stain-negative, non-flagellated bacterium, designated ZY111T, was isolated from the surface of a marine red alga, which was collected from the coast in Weihai, Shandong Province, PR China. Strain ZY111T exhibited growth at 4–37 °C (optimum, 25–28 °C) in the presence of 0–8.0 % (w/v) NaCl (optimum, 2.0–4.0% NaCl) and at pH 6.5–9.5 (optimum, pH 7.0–8.0). The 16S rRNA gene sequence analysis revealed that strain ZY111T belonged to the genus
Algibacter
, with
Algibacter amylolyticus
DSM 29199T as its closest relative (97.7 % similarity). The averagenucleotide identity value of strain ZY111T with
A. amylolyticus
DSM 29199T was 79.03 %. The digitalDNA–DNA hybridization value of strain ZY111T with
A. amylolyticus
DSM 29199T was 22.40 %. The dominant fatty acids were iso-C15 : 0, iso-C15 : 1 G, iso-C15 : 0 3-OH and iso-C17 : 0 3-OH. The sole respiratory quinone was determined to be menaquinone-6. The polar lipid profile of strain ZY111T consisted of phosphatidylethanolamine, two unidentified aminolipids and three unidentified lipids. The G+C content was 31.9 mol%. The phenotypic, chemotaxonomic and phylogenetic data clearly showed that strain ZY111T represents a novel species of the genus
Algibacter
, for which the name Algibacter marinivivus sp. nov. is proposed. The type strain is ZY111T (=KCTC 62373T=MCCC 1H00295T).
Collapse
Affiliation(s)
- Xian-Chun Zhong
- Marine College, Shandong University, Weihai 264209, PR China
| | - Wei Xu
- Marine College, Shandong University, Weihai 264209, PR China
| | - Yu Zhang
- Marine College, Shandong University, Weihai 264209, PR China
| | - Qi-Qing Zhang
- Marine College, Shandong University, Weihai 264209, PR China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai 264209, PR China
- State key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
19
|
Hijikata A, Shionyu-Mitsuyama C, Nakae S, Shionyu M, Ota M, Kanaya S, Shirai T. Knowledge-based structural models of SARS-CoV-2 proteins and their complexes with potential drugs. FEBS Lett 2020; 594:1960-1973. [PMID: 32379896 PMCID: PMC7267562 DOI: 10.1002/1873-3468.13806] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/28/2022]
Abstract
The World Health Organization (WHO) has declared the coronavirus disease 2019 (COVID‐19) caused by the novel coronavirus SARS‐CoV‐2 a pandemic. There is, however, no confirmed anti‐COVID‐19 therapeutic currently. In order to assist structure‐based discovery efforts for repurposing drugs against this disease, we constructed knowledge‐based models of SARS‐CoV‐2 proteins and compared the ligand molecules in the template structures with approved/experimental drugs and components of natural medicines. Our theoretical models suggest several drugs, such as carfilzomib, sinefungin, tecadenoson, and trabodenoson, that could be further investigated for their potential for treating COVID‐19.
Collapse
Affiliation(s)
- Atsushi Hijikata
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan
| | | | - Setsu Nakae
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan
| | - Masafumi Shionyu
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan
| | - Motonori Ota
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Japan
| | - Shigehiko Kanaya
- Computational Biology Laboratory, Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Tsuyoshi Shirai
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan
| |
Collapse
|
20
|
Nonn M, Binder A, Volk B, Kiss L. Stereo- and regiocontrolled synthesis of highly functionalized cyclopentanes with multiple chiral centers. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1733612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Melinda Nonn
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Adrienn Binder
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - Balázs Volk
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., Budapest, Hungary
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
21
|
Chen C, Cai N, Chen J, Wan C. UHPLC-Q-TOF/MS-Based Metabolomics Approach Reveals the Antifungal Potential of Pinocembroside against Citrus Green Mold Phytopathogen. PLANTS (BASEL, SWITZERLAND) 2019; 9:E17. [PMID: 31877872 PMCID: PMC7020183 DOI: 10.3390/plants9010017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
Pinocembroside (PiCB) isolated from Ficus hirta Vahl. fruit was studied herein with the aim to find the potential mechanism for significant inhibition of growth of Penicillium digitatum, a causative pathogen of citrus green mold disease. PiCB substantially inhibited mycelial growth of P. digitatum, with the observed half maximal effective concentration (EC50), minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC) of 120.3, 200, and 400 mg/L, respectively. Moreover, PiCB altered hyphal morphology and cellular morphology by breaking and shrinking of mycelia, decomposing cell walls, cytoplasmic inclusions. In addition to, a non-targeted metabolomics analysis by UHPLC-Q-TOF/MS was also performed, which revealed that PiCB treatment notably disrupted the metabolisms of amino acids, lipids, fatty acids, TCA, and ribonucleic acids, thereby contributing to membrane peroxidation. Current findings provide a new perception into the antifungal mechanism of PiCB treatment in inhibiting P. digitatum growth through membrane peroxidation.
Collapse
Affiliation(s)
- Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China; (C.C.); (N.C.)
| | - Nan Cai
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China; (C.C.); (N.C.)
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China; (C.C.); (N.C.)
- Pingxiang University, Pingxiang 337055, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China; (C.C.); (N.C.)
| |
Collapse
|
22
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
23
|
Role of Amino Acid Metabolism in the Virulence of Human Pathogenic Fungi. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00124-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Ren JL, Sun H, Dong H, Yang L, Zhang AH, Han Y, Wang L, Liu L, Wang XJ. A UPLC-MS-based metabolomics approach to reveal the attenuation mechanism of Caowu compatibility with Yunnan Baiyao. RSC Adv 2019; 9:8926-8933. [PMID: 35517678 PMCID: PMC9062013 DOI: 10.1039/c8ra09894h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/05/2019] [Indexed: 12/17/2022] Open
Abstract
Yunnan Baiyao (YNBY) is a well-known traditional Chinese medicine containing Caowu (Aconiti kusnezoffii radix, CW). However, the application of YNBY is limited by the toxicity of CW. Notably, CW is not used alone in YNBY, but is combined with other herbs in a formula for clinical use. In the present study, the compatibility of the protective effects and mechanism of YNBY with the potential toxicity of CW was investigated. After combining with other compatible herbs, the serum metabolic disorder induced by CW can be regulated. Using UPLC-MS-based metabolomics, 63 endogenous serum metabolites were identified as being associated with the potential toxicity of CW, 17 of which were regulated to normal levels when CW was combined with other compatible herbs in YNBY. These regulated metabolites were closely related to glycerophospholipid metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, tyrosine metabolism, and primary bile acid biosynthesis metabolic pathways. This study aims to evaluate the attenuation mechanism of CW compatibility with YNBY. Yunnan Baiyao (YNBY) is a well-known traditional Chinese medicine containing Caowu (Aconiti kusnezoffii radix, CW).![]()
Collapse
Affiliation(s)
- Jun-ling Ren
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
| | - Hui Sun
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
| | - Hui Dong
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
| | - Le Yang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
| | - Ai-hua Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
| | - Ying Han
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
| | - Li Wang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau University of Science and Technology
- Taipa
- China
| | - Xi-jun Wang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
| |
Collapse
|
25
|
Meir Z, Osherov N. Vitamin Biosynthesis as an Antifungal Target. J Fungi (Basel) 2018; 4:E72. [PMID: 29914189 PMCID: PMC6023522 DOI: 10.3390/jof4020072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
The large increase in the population of immunosuppressed patients, coupled with the limited efficacy of existing antifungals and rising resistance toward them, have dramatically highlighted the need to develop novel drugs for the treatment of invasive fungal infections. An attractive possibility is the identification of possible drug targets within essential fungal metabolic pathways not shared with humans. Here, we review the vitamin biosynthetic pathways (vitamins A⁻E, K) as candidates for the development of antifungals. We present a set of ranking criteria that identify the vitamin B2 (riboflavin), B5 (pantothenic acid), and B9 (folate) biosynthesis pathways as being particularly rich in new antifungal targets. We propose that recent scientific advances in the fields of drug design and fungal genomics have developed sufficiently to merit a renewed look at these pathways as promising sources for the development of novel classes of antifungals.
Collapse
Affiliation(s)
- Zohar Meir
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel.
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel.
| |
Collapse
|