1
|
Lee KK, Kim JW, Lee CS, Lee SC. Ferritin-nanocaged copper arsenite minerals with oxidative stress-amplifying activity for targeted cancer therapy. J Control Release 2023; 361:350-360. [PMID: 37536548 DOI: 10.1016/j.jconrel.2023.07.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/08/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
We report copper(II) arsenite-encapsulated ferritin nanoparticles (CuAS-FNs) as oxidative stress-amplifying anticancer agents. The CuAS-FNs were fabricated through CuAS mineralization in the cavity of the FNs. The formation of crystalline CuAS complex minerals in the FNs was systematically identified using various analytical tools, including X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM)-associated energy-dispersive X-ray spectroscopy (TEM-EDS). The CuAS-FNs showed pH-dependent release behavior, in which the CuAS mineral was effectively retained at physiological pH, in contrast, at lysosomal pH, the CuAS complex was dissociated to release arsenite and Cu2+ ions. At lysosomal pH, the release rate of arsenite (HAsO32-) and Cu2+ ions from the CuAS-FNs more accelerated than at physiological pH. Upon transferrin receptor-1-mediated endocytosis, the CuAS-FNs simultaneously released arsenite and Cu2+ ions in cells. The released arsenite ions can increase the intracellular concentration of hydrogen peroxide (H2O2), with which the Cu2+ ions can elevate the level of hydroxyl radicals (·OH) via Fenton-like reaction. Thus, the CuAS-FNs could target cancer cell through the recognizing ability of FNs and kill cancer cells by amplifying the ·OH level through the synergistic activity of Cu2+ and arsenic ions. Importantly, MCF-7 tumors were effectively suppressed by CuAS-FNs without systemic in vivo toxicity. Therefore, the CuAS-FNs is a promising class of Fenton-like catalytic nanosystem for cancer treatment.
Collapse
Affiliation(s)
- Kyung Kwan Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Won Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Chang-Soo Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| | - Sang Cheon Lee
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Małek A, Wojnicki M, Borkowska A, Wójcik M, Ziółek G, Lechowski R, Zabielska-Koczywąs K. Gold Nanoparticles Inhibit Extravasation of Canine Osteosarcoma Cells in the Ex Ovo Chicken Embryo Chorioallantoic Membrane Model. Int J Mol Sci 2023; 24:9858. [PMID: 37373007 DOI: 10.3390/ijms24129858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Canine osteosarcoma (OS) is an aggressive bone tumor with high metastatic potential and poor prognosis, mainly due to metastatic disease. Nanomedicine-based agents can be used to improve both primary and metastatic tumor treatment. Recently, gold nanoparticles were shown to inhibit different stages of the metastatic cascade in various human cancers. Here, we assessed the potential inhibitory effect of the glutathione-stabilized gold nanoparticles (Au-GSH NPs) on canine OS cells extravasation, utilizing the ex ovo chick embryo chorioallantoic membrane (CAM) model. The calculation of cells extravasation rates was performed using wide-field fluorescent microscopy. Transmission electron microscopy and Microwave Plasma Atomic Emission Spectroscopy revealed Au-GSH NPs absorption by OS cells. We demonstrated that Au-GSH NPs are non-toxic and significantly inhibit canine OS cells extravasation rates, regardless of their aggressiveness phenotype. The results indicate that Au-GSH NPs can act as a possible anti metastatic agent for OS treatment. Furthermore, the implemented CAM model may be used as a valuable preclinical platform in veterinary medicine, such as testing anti-metastatic agents.
Collapse
Affiliation(s)
- Anna Małek
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
| | - Aleksandra Borkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Faculty of Pharmacy, The Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Michał Wójcik
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Gabriela Ziółek
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Roman Lechowski
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Katarzyna Zabielska-Koczywąs
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| |
Collapse
|
3
|
Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci 2021; 9:7667-7704. [PMID: 34673853 DOI: 10.1039/d1bm01127h] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over recent years, advancements in nanomedicine have allowed new approaches to diagnose and treat tumors. Nano drug delivery systems exploit the enhanced permeability and retention (EPR) effect and enter the tumor tissue's interstitial space. However, tumor barriers play a crucial role, and cause inefficient EPR or the homing effect. Mounting evidence supports the hypothesis that the components of the tumor microenvironment, such as the extracellular matrix, and cellular and physiological components collectively or cooperatively hinder entry and distribution of drugs, and therefore, limit the theragnostic applications of cancer nanomedicine. This abnormal tumor microenvironment plays a pivotal role in cancer nanomedicine and was recently recognized as a promising target for improving nano-drug delivery and their therapeutic outcomes. Strategies like passive or active targeting, stimuli-triggered nanocarriers, and the modulation of immune components have shown promising results in achieving anticancer efficacy. The present review focuses on the tumor microenvironment and nanoparticle-based strategies (polymeric, inorganic and organic nanoparticles) for intruding the tumor barrier and improving therapeutic effects.
Collapse
Affiliation(s)
- Ammu V V V Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Garikapati Kusuma Kumari
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Renat R Khaydarov
- Institute of Nuclear Physics, Uzbekistan Academy of Sciences, Tashkent, 100047, Uzbekistan.
| |
Collapse
|
4
|
Targeted Chemotherapy Delivery via Gold Nanoparticles: A Scoping Review of In Vivo Studies. CRYSTALS 2021. [DOI: 10.3390/cryst11101169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the field of oncology, a lot of improvements in nanotechnology creates support for better diagnosis and therapeutic opportunities, and due to their physical and chemical properties, gold nanoparticles are highly applicable. We performed a literature review on the studies engaging the usage of gold nanoparticles on murine models with a focus on the type of the carrier, the chemotherapy drug, the target tumoral tissue and outcomes. We identified fifteen studies that fulfilled our search criteria, in which we analyzed the synthesis methods, the most used chemotherapy conjugates of gold nanoparticles in experimental cancer treatment, as well as the improved impact on tumor size and system toxicity. Due to their intrinsic traits, we conclude that chemotherapy conjugates of gold nanoparticles are promising in experimental cancer treatment and may prove to be a safer and improved therapy option than current alternatives.
Collapse
|
5
|
Enhanced Cytotoxic Effect of Doxorubicin Conjugated to Glutathione-Stabilized Gold Nanoparticles in Canine Osteosarcoma-In Vitro Studies. Molecules 2021; 26:molecules26123487. [PMID: 34201296 PMCID: PMC8227216 DOI: 10.3390/molecules26123487] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OSA) is the most common malignant bone neoplasia in humans and dogs. In dogs, treatment consists of surgery in combination with chemotherapy (mostly carboplatin and/or doxorubicin (Dox)). Chemotherapy is often rendered ineffective by multidrug resistance. Previous studies have revealed that Dox conjugated with 4 nm glutathione-stabilized gold nanoparticles (Au-GSH-Dox) enhanced the anti-tumor activity and cytotoxicity of Dox in Dox-resistant feline fibrosarcoma cell lines exhibiting high P-glycoprotein (P-gp) activity. The present study investigated the influence of Au-GSH-Dox on the canine OSA cell line D17 and its relationship with P-gp activity. A human Dox-sensitive OSA cell line, U2OS, served as the negative control. Au-GSH-Dox, compared to free Dox, presented a greater cytotoxic effect on D17 (IC50 values for Au-GSH-Dox and Dox were 7.9 μg/mL and 15.2 μg/mL, respectively) but not on the U2OS cell line. All concentrations of Au-GSH (ranging from 10 to 1000 μg/mL) were non-toxic in both cell lines. Inhibition of the D17 cell line with 100 μM verapamil resulted in an increase in free Dox but not in intracellular Au-GSH-Dox. The results indicate that Au-GSH-Dox may act as an effective drug in canine OSA by bypassing P-gp.
Collapse
|
6
|
Sen S, Sarkar K. Effective Biocidal and Wound Healing Cogency of Biocompatible Glutathione: Citrate-Capped Copper Oxide Nanoparticles Against Multidrug-Resistant Pathogenic Enterobacteria. Microb Drug Resist 2020; 27:616-627. [PMID: 33048008 DOI: 10.1089/mdr.2020.0131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multidrug-resistant (MDR) superficial bacterial infections caused by carbapenem-resistant Enterobacter sp. and Klebsiella sp. have emerged as major threats toward global health care management. In search of a novel antimicrobial, our main objectives were to explore the antimicrobial, antibiofilm, and wound healing potential of glutathione and citrate-capped copper oxide nanoparticles (CuNPs) against gram-negative MDR pathogens Klebsiella quasipneumoniae and Enterobacter sp., ensuring the lowest possible host cell nano-cytotoxicity and minimum susceptibility of the CuNPs toward oxidation. The CuNPs were found to elicit reactive oxygen species (ROS) generation within bacterial cells, inhibiting the bacterial growth and division. They contributed to the remodeling of the bacterial lipopolysaccharide, induced membrane lysis, and promoted antibiofilm activities by reduced cell-cell aggregation and matrix destabilization while displaying excellent biocompatibility against HEK-293 and HeLa cell lines. The CuNPs were also instrumental in preventing postsurgical wound infections and aiding in wound closure in the murine excisional wound model, as observed in albino Wistar rats, forcing us to believe that the CuNPs are bioactive in wound therapy. The results are encouraging and demands further experimental exploitation of the particles in treating other MDR gram-negative infections, irrespective of their resistance status.
Collapse
Affiliation(s)
- Samya Sen
- Department of Microbiology, University of Kalyani, Kalyani, India
| | - Keka Sarkar
- Department of Microbiology, University of Kalyani, Kalyani, India
| |
Collapse
|
7
|
Zhao C, Bai Y, Fu S, Wu L, Xia C, Xu C. Metabolic alterations in dairy cows with subclinical ketosis after treatment with carboxymethyl chitosan-loaded, reduced glutathione nanoparticles. J Vet Intern Med 2020; 34:2787-2799. [PMID: 32964552 PMCID: PMC7694824 DOI: 10.1111/jvim.15894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/03/2023] Open
Abstract
Background Subclinical ketosis (SCK) causes economic losses in the dairy industry because it reduces the milk production and reproductive performance of cows. Hypothesis/Objectives To evaluate whether carboxymethyl chitosan‐loaded reduced glutathione (CMC‐rGSH) nanoparticles can alleviate the incidence or degree of SCK in a herd. Animals Holstein dairy cows 21 days postpartum (n = 15). Methods The trial uses a prospective study. Five cows with serum β‐hydroxybutyric acid (BHBA) ≥1.20 mmol/L and aspartate aminotransferase (AST) <100 IU/L were assigned to group T1, 5 cows with BHBA ≥1.20 mmol/L and AST >100 IU/L to group T2, and 5 cows with BHBA <1.00 mmol/L and AST <100 IU/L to group C. Carboxymethyl chitosan‐loaded reduced glutathione (0.012 mg/kg body weight per cow) was administered to cows in T1 and T2 once daily via jugular vein for 6 days after diagnosis. Serum from all groups were collected 1 day before administration, then on days 1, 3, 5, 7, 10, and 15 after administration to determine the changes in biochemical index and 1H‐NMR. Results The difference in liver function or energy metabolism indices in T1, T2, and C disappeared at day 7 and day 10 after the administration (P > .05). Valine, lactate, alanine, lysine, creatinine, glucose, tyrosine, phenylalanine, formate, and oxalacetic acid levels, and decrease in isoleucine, leucine, proline, acetate, trimethylamine N‐oxide, glycine, and BHBA levels were greater (P < .05) at day 7 than day 0 for cows in T2. Conclusions and Clinical Importance Carboxymethyl chitosan‐loaded reduced glutathione treatment might alleviate SCK by enhancing gluconeogenesis and reducing ketogenesis in amino acids.
Collapse
Affiliation(s)
- Chang Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yunlong Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shixin Fu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ling Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
8
|
Li W, Cao Z, Liu R, Liu L, Li H, Li X, Chen Y, Lu C, Liu Y. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4222-4233. [DOI: 10.1080/21691401.2019.1687501] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linlin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
The clinical pharmacokinetics impact of medical nanometals on drug delivery system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:47-61. [DOI: 10.1016/j.nano.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
|
10
|
Design and Molecular Modeling of Abiraterone-Functionalized Gold Nanoparticles. NANOMATERIALS 2018; 8:nano8090641. [PMID: 30131467 PMCID: PMC6164775 DOI: 10.3390/nano8090641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
Abstract
The aim of our work was the synthesis and physicochemical characterization of a unique conjugate consisting of gold nanoparticles (AuNPs) and a pharmacologically active anticancer substance abiraterone (AB). The direct coupling of AB with gold constitutes an essential feature of the unique AuNPs–AB conjugate that creates a promising platform for applications in nanomedicine. In this work, we present a multidisciplinary, basic study of the obtained AuNPs–AB conjugate. Theoretical modeling based on the density functional theory (DFT) predicted that the Aun clusters would interact with abiraterone preferably at the N-side. A sharp, intense band at 1028 cm−1 was observed in the Raman spectra of the nanoparticles. The shift of this band in comparison to AB itself agrees well with the theoretical model. AB in the nanoparticles was identified by means of electrochemistry and NMR spectroscopy. The sizes of the Au crystallites measured by XRPD were about 9 and 17 nm for the nanoparticles obtained in pH 7.4 and 3.6, respectively. The size of the particles as measured by TEM was 24 and 30 nm for the nanoparticles obtained in pH 7.4 and pH 3.6, respectively. The DLS measurements revealed stable, negatively charged nanoparticles.
Collapse
|