1
|
Tao N, Ying Y, Xu X, Sun Q, Shu Y, Hu S, Lou Z, Gao J. Th22 is the effector cell of thymosin β15-induced hair regeneration in mice. Inflamm Regen 2024; 44:3. [PMID: 38191481 PMCID: PMC10773137 DOI: 10.1186/s41232-023-00316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/25/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Thymosin beta family has a significant role in promoting hair regeneration, but which type of T cells play a key role in this process has not been deeply studied. This research aimed to find out the subtypes of T cell that play key role in hair regeneration mediated by thymosin beta 15 (Tβ15). METHODS Ready-to-use adenovirus expressing mouse Tmsb15b (thymosin beta 15 overexpression, Tβ15 OX) and lentivirus-Tβ15 short hairpin RNA (Tβ15 sh) were used to evaluate the role of Tβ15 in hair regeneration and development. The effect of Th22 cells on hair regeneration was further studied by optimized Th22-skewing condition medium and IL-22 binding protein (IL-22BP, an endogenous antagonist of IL-22, also known as IL-22RA2) in both ex vivo culture C57BL/6J mouse skin and BALB/c nude mice transplanted with thymus organoid model. RESULTS The results show that Tβ15, the homologous of Tβ4, can promote hair regeneration by increasing the proliferation activity of hair follicle cells. In addition, high-level expression of Tβ15 can not only increase the number of Th22 cells around hair follicles but also accelerate the transformation of hair follicles to maturity. Consistent with the expected results, when the IL-22BP inhibitor was used to interfere with Th22, the process of hair regeneration was blocked. CONCLUSIONS In conclusion, Th22 is the key effector cell of Tβ15 inducing hair regeneration. Both Tβ15 and Th22 may be the potential drug targets for hair regeneration.
Collapse
Affiliation(s)
- Nana Tao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yuyuan Ying
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xie Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Qingru Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yaoying Shu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Shiyu Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| |
Collapse
|
2
|
Sanzi Yangqin Decoction Alleviates Allergic Asthma by Modulating Th1/Th2 Balance: Coupling Network Pharmacology with Biochemical Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9037154. [PMID: 36212941 PMCID: PMC9536894 DOI: 10.1155/2022/9037154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to verify that Sanzi Yangqin Decoction (SYD) can relieve asthma in mice and explore the effect on TH1/Th2 balance. The targets of SYD and asthma were explored from the public database using various methods. The potential targets and signaling pathways were identified by KEGG enrichment analysis from DAVID database. Mice asthma models were established using OVA and aluminum hydroxide. Lung tissues of mice were stained with HE and Masson. The contents of IFN-γ, IL-4, and TNF-α in BALF and IgE in mouse serum were detected using ELISA. In addition, the changes in Th1 and Th2 cells of the spleen were detected by flow cytometry. Fourteen core targets including IL4, IFNG, and MMP9 were identified for the treatment of asthma by SYD. The content of IL-4 in the lung tissue and BALF was gradually decreased with the increase in SYD concentration, while the IFN-γ was gradually increased. The drug significantly reduced IgE levels in serum and TNF-α in BALF. The number of Th1 cells in the spleen increased, while Th2 cells decreased in a concentration-dependent manner. SYD can alleviate pulmonary inflammation, restore Th1/Th2 balance, and relieve asthma.
Collapse
|
3
|
Yu C, Huang W, Zhou Z, Liang S, Zhou Z, Liu J, Zhao H, Liu L, Dong H, Zou F, Cai S. Short isoform thymic stromal lymphopoietin reduces inflammation and aerobic glycolysis of asthmatic airway epithelium by antagonizing long isoform thymic stromal lymphopoietin. Respir Res 2022; 23:75. [PMID: 35351157 PMCID: PMC8966346 DOI: 10.1186/s12931-022-01979-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background Up-regulation of aerobic glycolysis has been reported as a characterization of asthma and facilitates airway inflammation. We has been previously reported that short isoform thymic stromal lymphopoietin (sTSLP) could reduce inflammation in asthmatic airway epithelial cells. Here we wanted to investigate whether the inhibition of sTSLP on asthma is related to aerobic glycolysis. Methods Asthmatic model was established in challenging Male BALB/c mice and 16-HBE (human bronchial epithelial) cell line with house dust mite (HDM). Indicators of glycolysis were assessed to measure whether involve in sTSLP regulating airway epithelial cells inflammation in asthmatic model in vivo and in vitro. Results sTSLP decreased inflammation of asthmatic airway and aerobic glycolysis in mice. HDM or long isoform thymic stromal lymphopoietin (lTSLP) promoted HIF-1α expression and aerobic glycolysis by miR-223 to target and inhibit VHL (von Hippel-Lindau) expression 16-HBE. Inhibition of aerobic glycolysis restrained HDM- and lTSLP-induced inflammatory cytokines production. sTSLP along had almost no potential to alter aerobic glycolysis of 16-HBE. But sTSLP decreased LDHA (lactate dehydrogenase A) and LD (Lactic acid) levels in BALF, and HIF-1α and LDHA protein levels in airway epithelial cells of asthma mice model. lTSLP and sTSLP both induced formation of TSLPR and IL-7R receptor complex, and lTSLP obviously facilitated phosphorylation of JAK1, JAK2 and STAT5, while sTSLP induced a little phosphorylation of JAK1 and STAT5. Conclusion We identified a novel mechanism that lTSLP could promote inflammatory cytokines production by miR-223/VHL/HIF-1α pathway to upregulate aerobic glycolysis in airway epithelial cells in asthma. This pathway is suppressed by sTSLP through occupying binding site of lTSLP in TSLPR and IL-7R receptor complex.
Collapse
Affiliation(s)
- Changhui Yu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wufeng Huang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zicong Zhou
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shixiu Liang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zili Zhou
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jieyi Liu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haijing Zhao
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Laiyu Liu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hangming Dong
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Zhang X, Sun Z, Guo S, Zhang J, Gu W, Chen Z, Huang L. E3 Ubiquitin Ligase March1 Facilitates OX40L Expression in Allergen-Stimulated Dendritic Cells Through Mediating the Ubiquitination of HDAC11. J Asthma Allergy 2021; 14:955-966. [PMID: 34385821 PMCID: PMC8352640 DOI: 10.2147/jaa.s318104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background It was demonstrated that membrane-associated RING-CH 1 (March 1) might play an important role in the pathogenesis of asthma. Methods The levels of mRNA and protein were measured by qRT-PCR and Western blot, respectively. Immunofluorescence assay was used to determine whether March1 co-locates with HDAC11. Co-immunoprecipitation was performed to examine the combination of proteins. Moreover, luciferase assay was used to measure the promoter activity of genes. Results The mRNA and protein levels of both March1 and OX40 ligand (OX40L) were increased in the dendritic cells (DCs) from asthmatic children and asthmatic animals. Histone deacetylase 11 (HDAC11) protein was decreased in the DCs from asthmatic children and asthmatic model. Increasing of March1 or decreasing of March1 only affect the expression of HDAC11 in protein level. Besides, increasing of HDAC11 could inhibit OX40L expression, and decreasing of HDAC11 promoted OX40L expression in house dust mites (HDMs)-treated DCs. Increasing of HDAC11 notably reversed the promotion of March1 to OX40L expression. Our data further proved that March1 reduced the protein level of HDAC11 through inducing ubiquitination and degradation. HDAC11 combined with krüppel-like factor 4 (KLF4) to decrease the activity of OX40L gene promoter, thus to downregulate the level of OX40L. Conclusion Overall, our data showed that HDAC11 promoted KLF4-dependent OX40L decreasing. However, March1 promoted OX40L expression through enhancing the ubiquitination and degradation of HDAC11 and subsequent blocking the inhibition of HDAC11 to OX40L.
Collapse
Affiliation(s)
- Xinxing Zhang
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215003, People's Republic of China
| | - Zhichao Sun
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215003, People's Republic of China
| | - Suyu Guo
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215003, People's Republic of China
| | - Jiahui Zhang
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215003, People's Republic of China
| | - Wenjing Gu
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215003, People's Republic of China
| | - Zhengrong Chen
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215003, People's Republic of China
| | - Li Huang
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215003, People's Republic of China
| |
Collapse
|
5
|
Graham JJ, Longhi MS, Heneghan MA. T helper cell immunity in pregnancy and influence on autoimmune disease progression. J Autoimmun 2021; 121:102651. [PMID: 34020252 PMCID: PMC8221281 DOI: 10.1016/j.jaut.2021.102651] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023]
Abstract
Pregnancy presents the maternal immune system with a unique immunological challenge since it has to defend against pathogens while tolerating paternal allo-antigens expressed by fetal tissues. T helper (Th) cells play a central role in modulating immune responses and recent advances have defined distinct contributions of various Th cell subsets throughout each phase of human pregnancy, while dysregulation in Th responses show association with multiple obstetrical complications. In addition to localized decidual mechanisms, modulation of Th cell immunity during gestation is mediated largely by oscillations in sex hormone concentrations. Aberrant Th cell responses also underlie several autoimmune disorders while pregnancy-induced changes in the balance of Th cell immunity has been shown to exert favorable outcomes in the progression Th1 and Th17 driven autoimmune conditions only to be followed by post-partal exacerbations in disease.
Collapse
Affiliation(s)
- Jonathon J Graham
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Michael A Heneghan
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom.
| |
Collapse
|
6
|
Huang M, Wei Y, Dong J. Epimedin C modulates the balance between Th9 cells and Treg cells through negative regulation of noncanonical NF-κB pathway and MAPKs activation to inhibit airway inflammation in the ovalbumin-induced murine asthma model. Pulm Pharmacol Ther 2021; 65:102005. [PMID: 33636365 DOI: 10.1016/j.pupt.2021.102005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022]
Abstract
Allergic asthma is a common airway inflammatory disease and mainly caused by abnormal immune responses to allergens and viruses. The precise mechanisms of airway inflammation and airway hyper-responsiveness (AHR) are still not completely understood. CD4+ helper T cells (Th cells) serve as critical regulators of allergic immunity. The imbalance between T helper 9 (Th9) cells and forkhead box protein 3 (Foxp3)+ regulatory T (Treg) cells may contribute to airway inflammation in asthma. Epimedin C, a dominant compound isolated from Herba Epimedii, has shown anti-inflammatory effects and the immunoregulatory activity, such as increase of lymphocyte proliferation. However, the protective role of epimedin C in an experimental model of ovalbumin (OVA)-induced allergic airway inflammation and the underlying mechanism remain unknown. Female BALB/c mice were sensitized by intraperitoneal injection (i.p.) of OVA plus aluminum hydroxide (Alum) and subsequently challenged with an aerosol of 3% OVA in saline. Mice were treated with different concentrations of epimedin C (20 mg/kg/d, 40 mg/kg/d, 80 mg/kg/d) for 4 weeks. Experimental endpoints were evaluated via the analysis of AHR to acetyl-β-methacholine (Mch), differential inflammatory cell counts, concentrations of cytokines interleukin-9 (IL-9), IL-4 and IL-10 in bronchoalveolar lavage fluid (BALF), serum OVA-specific IgE level, as well as airway inflammation, mucus secretion and collagen deposition in mice. Mechanistically, we investigated the percentages of Th9 cells and Treg cells, as well as mRNA levels of IL-9 and transcription factor Foxp3 in lungs. Furthermore, the proteins expression of nuclear factor-κB (NF-κB) family members p105/p50, RelA, p100/p52 and RelB, as well as mitogen-activated protein kinase (MAPK) family members extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 MAPK was detected. Epimedin C dose-dependently attenuated AHR, airway inflammation, mucus hypersecretion and collagen deposition in OVA-induced murine asthma model. The expression levels of IL-9, IL-4 and OVA-specific IgE were significantly decreased while IL-10 was increased by epimedin C. We further confirmed that epimedin C decreased the percentage of lung Th9 cells with lower mRNA expression of IL-9 and increased the percentage of lung Treg cells with higher mRNA expression of Foxp3. In addition, epimedin C dose-dependently decreased the protein levels of p52, RelB, phosphorylation of ERK1/2 and p38 MAPK which are pivotal to the development of Th9 cells and Treg cells. Collectively, epimedin C could inhibit pathophysiological features of asthma by reconstruction of the balance between Th9 cells and Treg cells through regulation of the noncanonical NF-κB p52/RelB pathway and MAPKs activation. These findings suggest epimedin C as a potential remedy for inflammatory airway diseases.
Collapse
Affiliation(s)
- Muhua Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institute of Integrative Medicine, Fudan University, Shanghai, 200040, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institute of Integrative Medicine, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
7
|
Chi X, Li Y, Qiu X. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology 2020; 160:233-247. [PMID: 32031242 DOI: 10.1111/imm.13176] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulins emerging from B lymphocytes and capable of recognizing almost all kinds of antigens owing to the extreme diversity of their antigen-binding portions, known as variable (V) regions, play an important role in immune responses. The exons encoding the V regions are known as V (variable), D (diversity), or J (joining) genes. V, D, J segments exist as multiple copy arrays on the chromosome. The recombination of the V(D)J gene is the key mechanism to produce antibody diversity. The recombinational process, including randomly choosing a pair of V, D, J segments, introducing double-strand breaks adjacent to each segment, deleting (or inverting in some cases) the intervening DNA and ligating the segments together, is defined as V(D)J recombination, which contributes to surprising immunoglobulin diversity in vertebrate immune systems. To enhance both the ability of immunoglobulins to recognize and bind to foreign antigens and the effector capacities of the expressed antibodies, naive B cells will undergo class switching recombination (CSR) and somatic hypermutation (SHM). However, the genetics mechanisms of V(D)J recombination, CSR and SHM are not clear. In this review, we summarize the major progress in mechanism studies of immunoglobulin V(D)J gene recombination and CSR as well as SHM, and their regulatory mechanisms.
Collapse
Affiliation(s)
- Xiying Chi
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yue Li
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
8
|
Lou C, Mitra N, Wubbenhorst B, D'Andrea K, Hoffstad O, Kim BS, Yan A, Zaenglein AL, Fuxench ZC, Nathanson KL, Margolis DJ. Association between fine mapping thymic stromal lymphopoietin and atopic dermatitis onset and persistence. Ann Allergy Asthma Immunol 2019; 123:595-601.e1. [PMID: 31491540 DOI: 10.1016/j.anai.2019.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common chronic relapsing skin disease. Genetic variants have been associated with skin barrier function and immune regulation. Thymic stromal lymphopoietin (TSLP), an immune regulator, has been previously associated with AD. OBJECTIVE To fine map TSLP and evaluate associations with the onset and persistence of AD. METHODS TSLP variation was determined using targeted massively parallel sequencing in a longitudinal cohort of children with AD. Evaluations included linkage disequilibrium and the persistence of AD for as many as 10 years of follow-up. The association between the presence of AD and rs1898671 variation was evaluated in a second independent cohort. RESULTS The minor variant frequency for rs1898671 was 23.5% (95% CI, 21.4%-25.8%). This variant was not in linkage disequilibrium with other TSLP variants in the longitudinal cohort (n = 741). White children with AD were less likely to have rs1898671 variant (odds ratio [OR], 1.41; 95% CI, 1.20-1.66) than Genome Aggregation Database controls. Children with AD and the rs1898671 variant during follow-up were more likely to have remission than children who were wild type for rs1898671 (OR, 1.56; 95% CI, 1.26-1.91). In the second cohort (n = 585), the rs1898671 variant was less prevalent in those with AD than those without. The protective effect was greater in rs1898671 heterozygotes (OR, 1.91; 95% CI, 1.34-2.75) than homozygotes (OR, 1.28; 95% CI, 0.61-2.70). CONCLUSION TSLP and specifically rs1898671 are important in the pathogenesis of AD and could represent a potential clinical target for the development of therapies to treat individuals with AD.
Collapse
Affiliation(s)
- Carolyn Lou
- Department of Biostatistics, Epidemiology and Informatics, Perlman School of Medicine, Philadelphia, Pennsylvania
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perlman School of Medicine, Philadelphia, Pennsylvania
| | - Bradley Wubbenhorst
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perlman School of Medicine, Philadelphia, Pennsylvania
| | - Kurt D'Andrea
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perlman School of Medicine, Philadelphia, Pennsylvania
| | - Ole Hoffstad
- Department of Biostatistics, Epidemiology and Informatics, Perlman School of Medicine, Philadelphia, Pennsylvania
| | - Brian S Kim
- Washington University School of Medicine, St Louis, Missouri
| | - Albert Yan
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrea L Zaenglein
- Departments of Dermatology and Pediatrics, Pennsylvania State University/Hershey Medical Center, Hershey, Pennsylvania
| | - Zelma Chiesa Fuxench
- Department of Dermatology, Perlman School of Medicine, Philadelphia, Pennsylvania
| | - Katherine L Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perlman School of Medicine, Philadelphia, Pennsylvania
| | - David J Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perlman School of Medicine, Philadelphia, Pennsylvania; Department of Dermatology, Perlman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
9
|
Cai LM, Zhou YQ, Yang LF, Qu JX, Dai ZY, Li HT, Pan L, Ye HQ, Chen ZG. Thymic stromal lymphopoietin induced early stage of epithelial-mesenchymal transition in human bronchial epithelial cells through upregulation of transforming growth factor beta 1. Exp Lung Res 2019; 45:221-235. [PMID: 31378088 DOI: 10.1080/01902148.2019.1646841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Purpose: Epithelial-mesenchymal transition (EMT) involved in asthmatic airway remodeling. Thymic stromal lymphopoietin (TSLP), an epithelial-derived cytokine, was a key component in airway immunological response in asthma. But the role of TSLP in the EMT process was unknown. We aimed to access whether TSLP could induce EMT in airway epithelia and its potential mechanism. Materials and Methods: Human bronchial epithelial (HBE) cells were incubated with TSLP or transforming growth factor beta 1 (TGF-β1) or both. SB431542 was used to block TGF-β1 signal while TSLP siRNA was used to performed TSLP knockdown. Changes in E-cadherin, vimentin, collagen I and fibronectin level were measured by real-time PCR, western blot and immunofluorescence staining. Expressions of TGF-β after TSLP administration were measured by real-time PCR, western blot and ELISA. Results: TSLP induced changes of EMT relevant markers alone and promoted TGF-β1-induced EMT in HBEs. Intracellular and extracellular expression of TGF-β1 were upregulated by TSLP. SB431542 blocked changes of EMT relevant markers induced by TSLP. Knockdown of TSLP not only reduced TSLP and TGF-β1 expression but also inhibited changes of EMT relevant markers induced by TGF-β1 in HBEs. Conclusions: TSLP could induce early stage of EMT in airway epithelial cells through upregulation of TGF-β1. This effect may act as a targeting point for suppression of asthma.
Collapse
Affiliation(s)
- Liang-Ming Cai
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Yu-Qi Zhou
- Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Li-Fen Yang
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Jing-Xin Qu
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Zhen-Yuan Dai
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Hong-Tao Li
- Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Li Pan
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Hui-Qing Ye
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Zhuang-Gui Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
10
|
Anti-thymic stromal lymphopoietin antibody suppresses airway remodeling in asthma through reduction of MMP and CTGF. Pediatr Res 2019; 86:181-187. [PMID: 30464333 DOI: 10.1038/s41390-018-0239-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/02/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) mediates immune reaction in patients with asthma. Matrix metalloproteinase (MMP), connective tissue growth factor (CTGF), and transforming growth factor-β (TGF-β) are inflammatory mediators whose responses to the anti-TSLP antibody are unknown. This study examined the effect of an anti-TSLP antibody on MMP, CTGF, TGF-β, and airway structural changes in airway remodeling in asthma. METHODS Mice were randomly divided into phosphate-buffered-saline-challenged (PBS), ovalbumin-challenged (OVA), and ovalbumin-challenged with anti-TSLP antibody (OVA + anti-TSLP) groups. Airway responsiveness and serum ovalbumin-specific immunoglobulin E were measured. Differential cell counts and MMP-2 and MMP-9 were evaluated in bronchoalveolar lavage fluid (BALF). Airway structural changes were quantified using morphometric analysis and presentation by immunohistochemistry staining. Lung CTGF, TGF-β, and TSLP were analyzed using western blot. RESULTS Airway responsiveness was significantly lower in OVA + anti-TSLP and PBS groups than in OVA group. Airway structural changes exhibited less smooth muscle thickness in OVA + anti-TSLP and PBS groups than in OVA group. MMP-2 and MMP-9 in BALF and CTGF, TGF-β, and TSLP in lungs significantly decreased in OVA + anti-TSLP and PBS groups compared with OVA group. CONCLUSION Anti-TSLP antibody exerts the preventive effect of decreasing airway structural changes through reduction of MMP, TGF-β, and CTGF in airway remodeling of asthma.
Collapse
|
11
|
Lin SC, Shi LS, Ye YL. Advanced Molecular Knowledge of Therapeutic Drugs and Natural Products Focusing on Inflammatory Cytokines in Asthma. Cells 2019; 8:cells8070685. [PMID: 31284537 PMCID: PMC6678278 DOI: 10.3390/cells8070685] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Asthma is a common respiratory disease worldwide. Cytokines play a crucial role in the immune system and the inflammatory response to asthma. Abnormal cytokine expression may lead to the development of asthma, which may contribute to pathologies of this disease. As cytokines exhibit pleiotropy and redundancy characteristics, we summarized them according to their biologic activity in asthma development. We classified cytokines in three stages as follows: Group 1 cytokines for the epithelial environment stage, Group 2 cytokines for the Th2 polarization stage, and Group 3 cytokines for the tissue damage stage. The recent cytokine-targeting therapy for clinical use (anti-cytokine antibody/anti-cytokine receptor antibody) and traditional medicinal herbs (pure compounds, single herb, or natural formula) have been discussed in this review. Studies of the Group 2 anti-cytokine/anti-cytokine receptor therapies are more prominent than the studies of the other two groups. Anti-cytokine antibodies/anti-cytokine receptor antibodies for clinical use can be applied for patients who did not respond to standard treatments. For traditional medicinal herbs, anti-asthmatic bioactive compounds derived from medicinal herbs can be divided into five classes: alkaloids, flavonoids, glycosides, polyphenols, and terpenoids. However, the exact pathways targeted by these natural compounds need to be clarified. Using relevant knowledge to develop more comprehensive strategies may provide appropriate treatment for patients with asthma in the future.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Division of Allergy, Asthma and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Li-Shian Shi
- Department of Biotechnology, National Formosa University, Yunlin 63201, Taiwan
| | - Yi-Ling Ye
- Department of Biotechnology, National Formosa University, Yunlin 63201, Taiwan.
| |
Collapse
|